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Abstract
Even though imaging mass spectrometry (IMS) technique is evolving rapidly, its data analysis
capability lags behind. Especially with the improving of IMS data resolution, faster and more
accurate data analysis algorithms are required. To meet such challenges in IMS data analysis,
an effective and efficient algorithm for IMS data biomarker selection and classification using multi-
resolution (wavelet) analysis method is proposed. We first applied wavelet transform to IMS data
de-noising. The idea of wavelet pyramid method for image matching was then applied for biomarker
selection, in which Jaccard similarity was used to measure the similarity of wavelet coefficients.
Last, the Naive Bayes classifier was used for classification based on feature vectors in terms
of wavelet coefficients. Performance of the algorithm was evaluated in real data applications.
Experimental results show that this multi-resolution method has advantages of fast computing and
accuracy.

Keywords: Proteomics; Biomarker selection; Classification; Imaging Mass Spectrometry; Wavelets.

1 Introduction
Imaging mass spectrometry (IMS) is a technique developed from mass spectrometry to visualize the
spatial distribution of moieties such as proteins, peptides, metabolites and lipids ([1], [2]). Currently,
IMS is one of the few biochemical technologies able to establish the spatial biochemical composition
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Figure 1: A snap of IMS data. (Left) For a fixed IMS pixel, there is a corresponding mass spectrum (MS). (Right)
If an m/z value (mass-to-charge ratio) is fixed, the corresponding MS intensities for all pixels that make up an
image shows the spatial intensity of that protein.

of a sample in the full molecular range [3]. It can be used to map biomolecules in biological tissues
and has attracted a great deal of attention in the analyses of drug effects, in screening of drugs, and
in support for medical diagnoses [4]. However, the development of computational methods for IMS is
lagging behind its technological progress [5].

IMS data set can be treated as a hyper-spectral imaging type data cube, see Figure 1. The value
at each entry of the IMS data cube shows the abundance of corresponding molecule. For a fixed m/z
value ( mass-to-charge ratio) in an IMS data cube, the corresponding intensity values make up an
image that shows the distribution of that specific biochemical component in sample associated with
thism/z value. Also, for a fixed pixel in the image cube, there is a mass spectrum (MS) corresponding
to this pixel.

The main tasks for IMS data analysis are biomarker selection and classification. A biomarker is
a biological molecule found in blood, other body fluids, or tissues that is a sign of normal or abnormal
processes, or of a condition or disease [6]. In IMS data analysis, one usually finds biomarkers in
terms of m/z values associated with proteins or peptides. Current popular analysis methods for
IMS data include Principle Component Analysis (PCA) ([7], [8]), Support Vector Machine (SVM) [9]
and Clustering methods [10]. However, with the development of IMS techniques, the amount and
resolution of IMS data has also increased. This requires faster and more accurate data analysis
algorithms.

To meet challenges and needs in IMS data analysis, we have developed a mathematical and
statistical model using wavelet method for IMS cancer data analysis in biomarker selection and
classification. The motivations for introducing wavelet method to IMS data analysis are based on the
following. First, the multi-resolution property of wavelets allows us to analyze IMS data on different
resolution levels to obtain accurate results with less computation. The low resolution analysis can
decrease analysis time because we can represent the whole data set with less wavelet coefficients.
Also, over-fitting can be reduced and noises can be lessened at low resolution analysis. The high
resolution analysis can improve biomarker selection accuracy by analyzing data without losing detailed
information. Wavelet method combines the aforementioned advantages of low and high resolution
analysis together. Second, wavelet pyramid idea in image matching [11] can be applied to identify
biomarkers from low resolution to high resolution. Note that in cancer IMS studies, biomarkers are
identified by comparing cancer IMS data and non-cancer IMS data. This process is similar to image
matching. Hence, wavelet method, which is essential in the pyramid imaging matching process, can
also be expected to be useful in IMS data analysis. Third, wavelet transformation can reduce the
high dimensionality of IMS data. By transforming IMS data to wavelet coefficient space, we can
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Figure 2: An example of wavelet coefficients of the mass spectrometry for one IMS pixel. Those top coefficients
cover wide intervals are low resolution coefficients which describe data on large and rough scale. Those bottom
coefficients cover narrow intervals are high resolution coefficients which describe data on small and precise scale.

represent IMS data sparsely at low resolution while still keeping the necessary detail information at
high resolution. Last, only few studies have applied wavelet method to IMS data analysis, though
there are some work in mass spectrometry (MS) applying wavelet method, for example work in [12].
We would like to apply wavelet method to IMS data to determine if this method has some advantages
compares with other current methods. Successful application in MS data analysis would show that
the wavelet method can also be promising in dealing with IMS data.

The main contributions of this paper include: combining the advantages of both low resolution
and high resolution analysis in IMS data processing to achieve fast and accurate biomarker selection
algorithm; providing a new perspective of IMS data by transforming the original IMS data to wavelet
coefficient space and can find those patterns not easy to see in original data; introducing probabilistic
classification instead of traditional binary classification to obtain not only a classification result but
also a confidence level.

The remaining of the paper is organized in the following manner: section 2, we propose a wavelet
based de-noise algorithm for IMS data; section 3, a wavelet based IMS biomarker selection algorithm
using the idea of pyramid matching is proposed; section 4, we propose an IMS data classification
algorithm using feature variables selected from wavelet coefficients combined with Naive Bayes
classifier.

2 Wavelet Method for IMS data de-noising

Before we start biomarker selection, we need to pre-process IMS data by data de-noising. It’s based
on wavelet method. Here is how it works. Figure 2 is an example of wavelet coefficients (discrete
Haar wavelet coefficients) for a pixel in IMS data, with false color representation of the coefficient
value. The coefficients on the top of Figure 2 are low frequency wavelet coefficients, which describe
the data on a large scale and show the outline. The coefficients on the bottom of Figure 2 are high
frequency wavelet coefficients, which describe the data on a smaller scale and show the details. InN -
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Figure 3: Illustration of IMS data de-noising by using wavelet method. (Left) Apply wavelet transform to mass
spectrum. In each resolution level, set a threshold line, the yellow broken lines as shown in left figure. Only keep
those large coefficients greater than threshold and set those small coefficients smaller than threshold to be zero.
Then apply wavelet inverse transform to the modified coefficients and the result is de-noised data. (Right) The
yellow data is de-noised. The red data is original data.

level decomposition, one signal is decomposed into N detailed components and one approximation
component. We can de-noise the signal by keeping the large coefficients while setting the small
coefficients to be 0 based on a threshold level. By applying this method, we can remove the majority
of noises. Here are the basic steps for de-noising,

• Step 1: Decompose the signal f . Compute the wavelet decomposition of the signal f from
resolution level 1 to N .

• Step 2: Threshold detail coefficients. For each level from 1 to N , set the detail coefficients
less than threshold to be 0. In illustrative Figure 3, the yellow broken line is the threshold level.

• Step 3: Reconstruction of the signal. Compute wavelet reconstruction using the modified
coefficients to recover the de-noised signal.

We apply this process to all the original IMS data to obtain the de-noised IMS data. All sequent
analysis is based on the de-noised data. See [12] for more details on MS data preprocessing.

3 Biomarker Selection

3.1 Algorithm idea

Biomarkers in IMS cancer studies are proteins whose intensities differ between cancer area tissue
and non-cancer area tissue, therefore allowing them to be used as markers to tell the cancer status
of the specimen. The biomarker selection problem in IMS data analysis is very similar to the image
matching problem. In image matching, people find objects that are similar between images using
wavelet pyramid method. Here in IMS data analysis, we find those proteins whose intensities are
different between sample data. We just need to define a variable to measure the difference instead
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Figure 4: IMS data sets used in this study. (Top left) The brain tissue slice picture where the IMS data set 1 is
generated from. (Top right) IMS data set 1 snap for a specific m/z channel. (Down left) The brain tissue slice
picture where the IMS data set 2 is generated from. (Down right) IMS data set 2 snap for a specific m/z channel.

of similarity, and biomarker selection problem can be handled in the a similar way as wavelet pyramid
method applied in image matching.

The basic idea for image matching based on wavelet pyramid multi-resolution analysis can be
briefly described as follows [11].

• Step 1: Compare sub-images at the low resolution level.

• Step 2: Amplify the matched area and compare images at higher resolution level.

• Step 3: Repeat step 2 until to full resolution to find out the matched object in compared two
images and purpose of image matching achieved.

We apply this idea to wavelet multi-resolution IMS cancer data analysis to select biomarkers.

• Step 1: Compare cancer data and non-cancer data at low resolution level to select the m/z
ranges whose intensities are statistically significantly different between cancer and non-cancer
data. Those selected m/z ranges can be treated as ”suspicious” m/z data ranges because
their data difference in statistics may be caused by the existence of cancer biomarkers.

• Step 2: Increase the resolution level of those suspicious m/z data ranges to compare them
between cancer and non-cancer data at a higher resolution and select those smaller suspicious
m/z data sub-ranges with intensity statistically different between two data groups.

• Step 3: Repeat step 2 until to full resolution level. Those m/z values selected at full resolution
level are the biomarkers we selected from this algorithm.

3.2 Algorithm detail
In this study, we use two IMS data sets as shown in Figure 4. They are generated from the Vanderbilt
Mass Spectrometry Research Center using two different mouse brains from same species implanted
with the same type of cancer cells. Data set-1 has resolution 24*34, which contains 816 MS pixels.
Data set-2 has resolution 64*44, which contains 2816 MS pixels. We use one data set as training data
and another as test data. We illustrate this biomarker selection algorithm using the data experiment
we did on data set-1. From data set-1 (Figure 4), we select two round IMS data areas with radius
of r = 6 (6 pixels distance) which are symmetrical to each other by the symmetric line of the
mouse brain slice. Because of their symmetrical positions, these two areas contain the very same
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Figure 5: (Left) The left marked round area is the selected cancer pixels and right marked round area is the
selected non-cancer pixels; (Right) Slide picture of the mouse brain with a tumor where the data in left was
generated.

Figure 6: (Left) Wavelet coefficients space for a cancer MS. (Right) Wavelet coefficients space for a non-cancer
MS. For each cancer IMS pixel, there is a corresponding wavelet coefficients space like left picture. For each
non-cancer IMS pixel, there is a corresponding wavelet coefficients space like right picture. The difference table
as shown in Figure 10 is computed by comparing statistical difference of wavelet coefficients from cancer MS
group and non-cancer MS group.

biological structure so that we can better emphasize the differentiation of cancer and non-cancer in
IMS intensities. The data in these two selected areas are used as training data. Each round area
contains 109 IMS pixels, i.e. 109 mass spectra (MS).

For each selected training MS, compute its 12-level discrete wavelet decomposition. Figure
6 shows wavelet coefficients space for a cancer training pixel MS and a non-cancer training pixel
MS. Applying wavelet transform to each mass spectrum turns a spectrum data cube into a wavelet
coefficients data cube. Originally, each pixel is associated with a mass spectrum, but after transformation,
each pixel is associated with a wavelet coefficients vector space. Since the MS intensities of cancer
biomarkers vary dramatically from cancer pixels to non-cancer pixels and wavelet coefficient is a
description of MS on wavelet space, we can locate biomarkers by measuring the difference between
cancer wavelet coefficients and non-cancer wavelet coefficients. The difference of wavelet coefficients
can indicate the difference between cancer MS and non-cancer MS at different resolution levels.
Analyzing it from low resolution to high resolution, we can quickly locate the biomarkers. This idea
was inspired by the wavelet pyramid method in image matching [11].

We measure the difference using a method analogous to Jaccard similarity [13]. It measures
difference by measuring how much two groups data are overlapped (Figure 7). Statistically, the more
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Figure 7: An example of Jaccard similarity. According to definition of Jaccard similarity J(A,B) =
|A∩B|
A∪B , the

similarity between A1 and B1 are greater than the difference between A2 and B2. Hence the difference between
A1 and B1 are smaller than the difference between A2 and B2.

Figure 8: Statistically, according to definition of difference defined in formula (3.1) and (3.2), the difference between
data1 and data2 are smaller than the difference between data3 and data4, since data1 and data2 have more
overlap values. f is the distribution of data.

two group of data overlap, the more different they are (Figure 8).
The following is the mathematical definition of the difference described above. We denote the

set of selected training cancer pixels as Sc, the set of selected training non-cancer pixels as Sn.
For a fixed wavelet resolution level j ∈ J (in our experimental data we define J = {1, 2, ..., 12}) ,
a fixed wavelet window position k ∈ K (in our experimental data we define K = {1, 2, ..., 2j+2} )
and a selected pixel i ∈ Sc or i ∈ Sn, we denote the corresponding cancer wavelet coefficient as
ccj,k,i and its empirical distribution along the selected training cancer pixels set Sc as fc

j,k, and the
corresponding non-cancer wavelet coefficients group as cnj,k,i and its empirical distribution along the
selected training non-cancer pixels set Sn as fc

j,k. The similarity of wavelet coefficients between
cancer data group {ccj,k,i}i∈Sc and non-cancer data group {cnj,k,i}i∈Sc is defined as

Sj,k =

∫ +∞

−∞
min{fc

j,k(x), fn
j,k(x)}dx (3.1)

The intuitional meaning of Sj,k is the overlapping area of the histogram of the two groups to
be compared. We can approximately calculate this integral using the histogram of the empirical
distribution. Finally, we define the difference between the wavelet coefficients {ccj,k,i}i∈Sc and {cnj,k,i}i∈Sn

as:
dj,k = 1− Sj,k (3.2)

An illustration of dj,k is given in Figure 9.
We defineD = {dj,k}j∈J,k∈K , the difference table that describes the difference of the corresponding

wavelet coefficients between cancer group and non-cancer group at different wavelet resolution level
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Figure 9: Illustration of the definition of difference dj,k, area of red shadow. Since Jaccard distance measure
similarity, the difference (un-similarity) should be the complement value of Jaccard distance.

as the false-color map shown in Figure 10. These large difference value areas contain potential
biomarkers. ”Large difference” means the corresponding dj,k greater than the threshold, i.e., there
exists a statistically significant difference here between two groups of data. Similar to the wavelet
pyramid method applied in image matching, we take advantage of the multi-resolution property of
wavelet analysis to locate the biomarkers from low resolution wavelet coefficients to high resolution
wavelet coefficients using the idea we described in section 3.1. We analyze difference table D from
lower resolution level j = 8 to highest resolution level j = 12. From level j = 8 to level j = 12, if dj,k
is greater than the threshold (we set it as 0.85 for the experiment data we use here), that means the
contrast between cancer MS and non-cancer MS on the corresponding chemical protein is noticeable
at the jth wavelet resolution level as well as the kth wavelet window position. Thus, there is a good
chance that biomarkers exist in the corresponding m/z intervals. We then further analyze the wavelet
coefficients on the next higher wavelet resolution (i.e. amplify it) level in the same wavelet window
position. Otherwise if dj,k is not greater than the threshold, we stop and shift our analysis to the
adjacent wavelet window position k + 1. We repeat this process until we reach the highest resolution
level, level j = 12 in the data we used, and determine the specific m/z value whose intensities
difference are greater than the threshold. These m/z values selected at highest level j = 12 are the
m/z values of the biomarkers selected by this algorithm. The threshold can be changed in order to
select the corresponding number of biomarkers. Algorithm 1 shows this algorithm’s pseudo-code.

Table 1 is the list of the m/z values of the biomarkers selected by this multi-resolution analysis
method (MRA) algorithm described above along with the lists of biomarkers selected by some other
popular methods for IMS data biomarker selection.

According to the biological study [14], the biomarkers whose m/z = 6700 and m/z = 8380
are widely confirmed as the key cancer biomarkers for GL26 IMS data sets that we used in this
paper. Compared with other methods, the MRA method discovered both biomarkers while including
a relatively shorter biomarkers list. Figure 11 is the intensity distributions of these two biomarkers
(m/z = 6702.2, m/z = 8374.9). Its intensity differences between cancer and non-cancer area are
significant at this two m/z channels. These are biomarkers that have already been proven in a
previous cancer study [15]. Two such biomarkers include cytochrome c oxidase copper chaperone
and cytochrome c oxidase subunit 6c. They are related to the growth, division, and expansion of
tumor cells. These facts support the results of this MRA algorithm.

Additionally, based on our computing experiment, we determined that the MRA method for IMS
data biomarker selection has high algorithm computing speed. We tested the algorithm speed using
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Algorithm 1 MRA biomarker selection for IMS data
Require: IMS selected data
Ensure: biomarkers
1: Compute difference table D . use formula (1), (2)
2: lowest resolution level = 8 . selected by user
3: highest resolution level = 12 . selected by user
4: desired biomarker number = 30 . selected by user
5: initial threshold = 0.7 . selected by user
6: decrement size = 0.01 . selected by user
7: threshold = initial threshold
8: biomarkers = [] . to record biomarkers
9: while length(biomarkers) > desired biomarker number do
10: for j = lowest resolution level→ highest resolution level do
11: for k = 1→ 2(j+1) do
12: if (2j+1 ∗ (k − 1) + 1, 2j+1 ∗ k) is in marked interval then
13: if Dj,k > threshold then
14: Mark (2j+1 ∗ (k − 1) + 1, 2j+1 ∗ k) to be marked interval
15: end if
16: if j == highest resolution level then
17: biomarkers = [biomarkers, 2j+1 ∗ (k − 1) + 1]
18: end if
19: end if
20: end for
21: end for
22: threshold = threshold−Decrement size
23: end while

Figure 10: Difference table D = {dj,k}j∈J,k∈K . The color represents value. It measures the difference between
cancer data and non-cancer data. The MRA (multi-resolution analysis) biomarkers selection from low resolution
to high resolution is done based on this table.

73



Xiong & Hong; BJMCS, 5(1), 65-81, 2015; Article no.BJMCS.2015.006

EN4IMS list SAM list EN list PCA list MRA list
4664 2791 3434 8337 4476 13562 4934 8567 4599
4667 3010 3764 8366 4664 14327 4936 10257 4607
4670 3056 4011 8380 4670 14336 4937 10259 4757
4812 3734 4076 8395 4812 14343 4938 10261 4759
5446 3800 4271 8492 4884 14781 4939 10263 4762
5753 3920 4538 8672 5425 14786 4960 14969 4767
5754 4206 4566 8945 5429 14805 4962 14971 4770
5756 4341 4665 8982 5446 4963 14974 4892
5757 4605 4676 9327 5753 4964 14976 4895
6165 4734 4899 9343 5754 4966 14979 4903
6702 4767 5106 9531 5756 5439 14981 5438
6706 4921 5120 9602 6165 5441 14983 5446
7799 4936 5428 9619 6702 5442 14986 5449
8019 4964 5444 10238 6706 5444 15603 5714
8024 4981 5707 10267 6794 5445 15606 6244
8384 5001 5753 10466 7799 5446 15608 6248
8386 5024 6166 10662 8019 5448 15611 6312
9344 5170 6186 12434 8024 5449 15613 6702
10172 6225 6251 13560 8028 5451 15616 6705
10261 7706 6310 14525 8384 6571 15618 8375
10263 8420 6574 8386 6572 15620 8400
10265 8603 6700 8495 6574 15623 8403
10267 8709 6719 8524 6575 15625 8572
10282 8747 6780 9344 6577 16780 8978
10366 9062 7099 9553 7749 16782 9332
10374 9736 7118 10172 7751 16785 9613
10825 9956 7297 10261 7752 16787 9616
10949 10167 7315 10263 7792 9624
13562 10952 7338 10267 7794 11632
14336 11388 7357 10282 7795
14343 11640 7751 10366 7797
14781 12203 7776 10374 8560
14786 14865 7795 10811 8562
14805 14927 8025 10825 8564

14978 8107 10949 8566

Table 1: A comparison of biomarker lists generated by the Multi-Resolution Analysis Method (MRA) and by
currently major methods [17] for IMS data analysis. MRA method generates a shorter list while still contains
major biomarkers (m/z = 6702, m/z = 8375).
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Figure 11: (Left) Intensity distribution for biomarker of m/z = 6702.2 selected by MRA method. (Right) Intensity
distribution for biomarker of m/z = 8374.9 selected by MRA method. These two biomarkers have been confirmed
by biology study and also selected out by MRA method.

MATLAB 7.0 installed on a DELL laptop to run EN4IMS proposed by D. Hong and F. Zhang in
2010 [16] and the MRA method discussed in this paper with the same data set (data set-1). Here
is the hardware information of the computer used for this test: Intel(R) Core(TM)2 Duo CPU
T7250 @2.00GHZ 778 MHz, 2.00 GB. The test showed that the CPU time for EN4IMS to select
biomarkers is 49.265 seconds. The CPU time for MRA method is only 26.562 seconds. The shorter
running time of MRA method comes from the advantage of multi-resolution. In MRA method, we
saved computing time by avoiding analyzing every m/z data point one by one. We exclude those
m/z intervals whose data difference is not as large as the threshold we set. The amount of m/z data
points that still remain at higher resolution levels are much less than the total amount of whole m/z
data points. In this way, the amount of data we need to analyze is reduced. Thus, MRA method can
achieve high computing efficiency in IMS data analysis.

4 Classification

In this section, we will use the Naive Bayes classifier [18] to do classification on wavelet coefficient
space. Bayes classifier is an appropriate tool to deal with IMS data classification problem. It classifies
data based on its probabilities in each class and chooses the class with the highest probability to be
data’s class. Compared with non-probability classification method, Bayes classifier not only tells us
a classification result but also the probability to be classified in each class, so we can measure the
confidence of results. This advantage is also helpful if we want know the cancer stage or the degree
of cancer for each pixel, because more serious degree of cancer corresponds to higher probability to
be classified as cancer class in Bayes classifier.

As shown in Figure 12, we use data set-1 as training data and data set-2 as test data for
classification study. We train a model from data set-1 and test the trained model using data set-2 to
see its performance. Normalization is a necessary step before we start classification, this is because
the scale in training data and the scale in test data are different (Figure 13). For normalization
purposes, we divide each mass spectrum with its average intensity. After normalization, the scale will
be the same in all data sets.

Classification is based on feature variables. We select 10 feature variables from the wavelet
coefficients of each pixel’s mass spectrum. These feature variables are selected from training data’s
wavelet coefficients whose values are significantly different between cancer data group and non-
cancer data group. We can identify them using the difference table D as shown in Figure 10.
Those large entries dj,k in the difference table D correspond to the wavelet coefficients whose
difference is large between the cancer group and non-cancer group. Therefore, we chose those
wavelet coefficients with large dj,k in D as feature variables. For the data sets used in this study,
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Figure 12: Training data (Left) and test data (Right). The parameters of classification model are trained from
training data. The performance of classification model is measured using test data.

we chose wavelet coefficients from level 6 to level 12 whose difference is greater than the difference
threshold we set. We can ignore the detail coefficients from level 1 to level 5, since most of the
noise exists in high frequency coefficients, if our data contains too much detail, the amount of noise
will influence the classification accuracy. With the threshold we set, 10 feature variables are selected
from wavelet coefficients space for the mass spectrum of each pixel in cancer and non-cancer training
data. These 10 feature variables, as components, form a feature vector, denoted by e, corresponding
to a pixel MS. The classification process of each pixel is based on its feature vector which made up
by its selected feature variables.

In the next step, we use the Naive Bayes classifier to classify the cancer and non-cancer pixels
based on pixels feature vector. We denote the probability that an unknown testing pixel i, which has
a feature vector X, is a cancer pixel as

P (i ∈ C|e = X),

where i denotes the testing pixel, C denotes the set of cancer pixels, e denotes the feature vector of
this testing pixel, X denotes the value of its feature vector. Similarly, the probability that an unknown
testing pixel i, which has a feature vector X, is a non-cancer pixel is defined as

P (i ∈ Nc|e = X),

where Nc denotes the set of non-cancer pixels. If

P (i ∈ C|e = X) > P (i ∈ Nc|e = X),

the chance of this testing pixel being in the cancer group is greater than its chance in the non-cancer
group. If this is the case, then we classify this pixel as a cancer pixel. Otherwise, we classify it as a
non-cancer pixel. We can calculate the above conditional probabilities using Bayes formula:

P (i ∈ C|e = X) =
P (e = X|i ∈ C)P (i ∈ C)

P (e = X)
(4.1)

P (i ∈ Nc|e = X) =
P (e = X|i ∈ Nc)P (i ∈ Nc)

P (e = X)
(4.2)

Then we compare these two probabilities and P (e = X) can be canceled, thus leading to:

P (i ∈ C|e = X)

P (i ∈ Nc|e = X)
=

P (e = X|i ∈ C)P (i ∈ C)

P (e = X|i ∈ Nc)P (i ∈ Nc)
(4.3)
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Figure 13: Normalization of Mass Spectrum. Each MS is divided by its average intensity. This is a necessary data
preprocessing step before classification. After normalization, the scale of all data sets will be the same.

If P (i∈C|e=X)
P (i∈Nc|e=X)

> 1, that means P (i ∈ C|e = X) is greater than P (i ∈ Nc|e = X). We then
classify the testing pixel as cancer pixel, since the chance being cancer is larger than the chance
being non-cancer. Otherwise, we classify this testing pixel as non-cancer pixel. Therefore, the
classification criterion can be defined as:

P (e = X|i ∈ C)P (i ∈ C)

P (e = X|i ∈ Nc)P (i ∈ Nc)
> 1 ⇐⇒ i ∈ C (4.4)

P (e = X|i ∈ C)P (i ∈ C)

P (e = X|i ∈ Nc)P (i ∈ Nc)
< 1 ⇐⇒ i ∈ Nc (4.5)

To calculate values in (4.4), (4.5), we need to determine the likelihood probability P (e = X|i)
and find prior probability P (i). Figure 14 shows the distributions of cancer feature variables as well
as non-cancer feature variables. They are mostly in normal distributions. Since the feature vector is
made up by these 10 feature variables, we can assume that the distribution of feature vector in cancer
or in non-cancer is a 10-dimensional normal distribution.

Thus the likelihood P (e = X|i ∈ C) and P (e = X|i ∈ Nc), which is a probability density, can
be calculated by a 10-dimensional normal distribution. The mean value for the cancer data group can
be obtained by computing the average value of the feature vectors of all cancer pixels in training data.
The standard deviation for the cancer group can be obtained by computing the covariance matrix of
the feature vectors of all cancer pixels in the training data. The same idea applies for the non-cancer
group. Then, the likelihood for the testing feature vector X can be determined by the remaining of the
distributions,

(e|i ∈ C) v N10(µcancer,Σcancer) (4.6)

(e|i ∈ Nc) v N10(µnoncancer,Σnoncancer) (4.7)

where µ, Σ are mean and covariance of the 10-dimensional normal distributions.
To calculate the prior probability P (i ∈ C) and P (i ∈ Nc), we count the percentage of each type
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Figure 14: (Left) Distribution of 10 selected feature variables from cancer data group. (Right) Distribution 10
selected feature variables from non-cancer data group. They are mostly approximately normal distributed. Hence
it’s rational to use 10-dimensional normal distribution to approximate the distribution of feature vector.

Figure 15: Test data selection. (top left) Cancer test data selection: pixels in the rounded area in this picture are
selected cancer pixels; (top right) Non-cancer test data selection: pixels in the rounded area in this picture are
selected non-cancer pixels; (down) Photomicrograph of a cresyl violet stained mouse brain section.
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Figure 16: log10
P (e=X|i∈C)P (i∈C)

P (e=X|i∈Nc)P (i∈Nc)
for test data. According to the classification criteria defined in formula (4.4)

and (4.5), 0 is classification boundary (the broken yellow line in this figure). Red points are cancer pixels. Black
points are non-cancer pixels. According to classification criteria, those above the yellow broken line should be
classified as cancer pixels and those bellow the yellow broken line should be classified as non-cancer pixels.

Accuracy Sensitivity Specificity
PCA+LDA 78.64% 100% 57.27%
PCA+SVM 71.82% 84.56% 59.09%
MRA 99.5% 99.08% 100%

Table 2: Classification algorithm performance of Multi-resolution Analysis Method (MRA) and other popular
methods for IMS data analysis, where accuracy represents the rate of correct classification, sensitivity represents
the rate that cancer is classified correctly as cancer and specificity represents the rate that non-cancer is classified
correctly as non-cancer.

of pixels in training data,

P (i ∈ C) =
|C|

|C|+ |N | (4.8)

P (i ∈ Nc) =
|N |

|C|+ |N | (4.9)

Where |C|, |N | are the number of cancer pixels and number of non-cancer pixels in training data
respectively. With the above calculations, we can develop a classification model from training data.
After we have developed this model using the training data, we test its performance using data set-2
(Figure 15). We select the two rounded marked areas as shown in Figure 15 as test data. Each area
contains 109 pixels. The pixels in the left side rounded area are cancer pixels. Those in the right side
rounded area are non-cancer pixels.

Figure 16 is the classification result. This graph shows the exponent value of the left side part of
formula (4.4) and (4.5) for each pixel. Red points are results for cancer pixels and black points are for
non-cancer pixels.

According to the classification criteria defined in formula (4.4) and (4.5), threshold should be 0,
since log10(1) = 0. Thus, those red points above the threshold and those black points below threshold
are classified correctly. According to the result in Figure 16, there is only one pixel in cancer data that
is misclassified as non-cancer. Thus, the performance for this classification algorithm is: 99.5% for
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accuracy, which represents the rate of correct classification; 99.08% for sensitivity, which represents
the rate that cancer is classified correctly as cancer; and 100% for specificity, which represents the
rate that non-cancer is classified correctly as non-cancer. Table 2 is a comparison of the performance
of Multi-resolution Analysis Method with several other methods.

5 Conclusion
We proposed a multi-resolution analysis (MRA) method for IMS data analysis in biomarker selection
and classification. According to data experiment results in table 1 of section 4 and table 2 of section 5,
MRA method has advantages in effectiveness and accuracy in biomarker selection and classification
comparing with other popular methods. The multi-resolution property of wavelet space saves compu-
tating time in finding biomarkers. The data experiment has shown that the CPU computing time of
MRA method took only 54% of the computing time using EN4IMS method ([16], [17]).

Though it is challenge to incorporate spatial information for IMS data analysis using MRA method,
we will tackle this important problem and report corresponding results in a separate paper.
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