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Abstract
In the paper [1], Pusz and Woronowicz first gave the geometric mean of two positive definite
matrices. This mean has similar properties to those of the geometric mean of two positive numbers.
In [2], Ando, Li and Mathias listed ten properties that a geometric mean of m positive definite
matrices should satisfy. Then gave a definition of geometric mean of m matrices by a iteration
which satisfies these ten properties. For the geometric mean of two positive definite matrices, there
is an interesting relationship between matrix geometric mean and the information metric. Consider
the set of all positive matrices as a Riemannian manifold with the information metric. Then the
geometric mean of two matrices in the manifold is just the middle point of the geodesic connecting
them. In this paper, we review this notion and present two different proofs, the variation method
and the exponential map method, for proving the relationship.

Keywords: Geometric means; Positive definite matrices; Geodesics.
2010 Mathematics Subject Classification: 53C21; 83C05; 57N16

*Corresponding author: E-mail: whchen@thu.edu.tw

www.sciencedomain.org


Chen; BJMCS, 5(1), 1-12, 2015; Article no.BJMCS.2015.001

1 Introduction
Study of geometric means on positive definite matrices is an important topic to many disciplines of
science such as operator theory, physics, engineering and statistics etc (c.f. [3], [4] and [5]). However,

the product of two positive matrices is not always positive definite. For example, let A =

[
1 2
2 5

]
and

B =

[
1 −1
−1 2

]
. Then AB =

[
−1 3
−3 8

]
is not positive definite since AB is not symmetric. Hence we

can not define the geometric mean to be (AB)
1
2 , since the geometric mean of two positive matrices

should be positive.
The geometric mean of two positive definite matrices was first given by Pusz and Woronowicz in

[1]. They defined the geometric mean A#B of two positive definite matrices A and B by

A#B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 . (1.1)

More detailed study on the mean can be found in Kubo and Ando’s paper [3]. The geometric mean
A#B has some similar properties as those of the geometric mean of positive numbers. For example,
it satisfies the arithmetic-geometric-harmonic-mean inequality (c.f. [6] and [5] e.t.c.).

On the other hand, the geometric mean of positive definite matrices may be defined geometrically.
Information geometry began as the geometric study of statistical estimation, and consider the set
of probability distributions which constitute a statistical model as a Riemannian manifold with the
Fisher metric. In [7], Rao had already pointed out in his paper that the Fisher information matrix
determines a Riemannian metric on a statistical manifold (see also [8]). In addition, there is an
interesting relationship between matrix geometric mean and the information metric. It can be shown
that the geometric mean of A,B is just the middle point of the geodesic which connecting A and B.

In the rest of this paper, we will review the Fisher information metric on a statistical model in
section 2. In section 3, we will verify that the geometric mean is the midpoint of the geodesic segment
by the variation method and the exponential method. Moreover, a definition of geometric mean for
three or more positive definite matrices by a iteration will be reviewed in section 4. In the final section,
we discuss the geometric meaning of the geometric mean for more positive matrices.

2 Fisher Information Metric of a Statistical Model
We first introduce the Fisher information metric of a statistical model (c.f. [8] and [9]). Information
geometry has been used in diverse applications such as statistics, control theory, and information
theory. It began as the geometric study of statistical estimation. This involved viewing a statistical
model as a Riemannian manifold with the Fisher metric.

Definition 2.1. (c.f. [8]) Let S be a family of probability distributions on X . Suppose each element of
S, that is a probability distribution, may be parameterized using n real-valued variables [ξ1, · · · , ξn so
that

S = {pξ = p(x; ξ) | ξ = [ξ1, · · · , ξn ∈ Ξ}],
where Ξ is a subset of Rn and the mapping ξ 7→ pξ is injective, then we call such S an n-dimensional
statistical model on X .

For example, consider the multivariate normal distribution. Let X = Rk be the k-dimensional real
space, n = k + k(k+1)

2
and ξ = [µ,Σ], where µ is the mean and Σ is a k × k positive definite matrix.

Define Ξ = {[µ,Σ] |µ ∈ Rk, Σ ∈ Rk×k}. Then

p(x; ξ) = (2π)−
k
2 (detΣ)−

1
2 exp

{
− 1

2
(x− µ)tΣ−1(x− µ)

}

2
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Definition 2.2. Consider an n-dimensional statistical model S = {pθ | θ ∈ Θ} where pθ = p(x; θ) are
probability distribution functions and Θ is a subset of Rn. Then the Fisher information matrix of S at θ
is the n× n matrix G(θ) =

[
gij(θ)

]
where gij(θ) is defined by

gij(θ) = Eθ
[ ∂
∂θi

log p(x; ξ)
∂

∂θj
log p(x; ξ)

]
=

∫
X

[ ∂
∂θi

log p(x; ξ)
∂

∂ξj
log p(x; θ)

]
p(x; θ) dx.

We assume that Θ is an open subset of Rn and for each x ∈ X , the function ξ 7→ p(x; ξ) (Ξ→ R)
is C∞ so that we can define ∂

∂ξi
p(x; ξ) and ∂

∂ξi
∂
∂ξj

p(x; ξ).

In addition, we assume that the order of integration and differentiation may be freely rearranged.
For example, we shall often use formulas such as∫

X

∂

∂ξi
p(x; ξ) dx =

∂

∂ξi

∫
X
p(x; ξ) dx =

∂

∂ξi
1 = 0.

We also assume that p(x; ξ) > 0 for all ξ ∈ Ξ and all x ∈ X , and in the discussions below, we
define ∂i = ∂

∂ξi
. By the assumptions, it is easy to see that G is positive semidefinite. We assume that

G is positive definite.
Now we can define the Riemannian metric gθ =<,>θ on the tangent space Tθ(S) at θ by

< (∂i)θ, (∂j)θ >θ= gij(θ) = Eθ[∂ilθ∂j lθ, (∂i)θ, (∂j)θ ∈ Tθ(S). (2.1)

We call this the Fisher metric or the information metric.
An important example is the multivariate normal distributions with 0 expectation. The distributions

are given by

pA(x) =
1√

(2π)ndet(A)
exp{−1

2
xTA−1x}, (2.2)

where A is positive definite real matrix and x ∈ Rn. The tangent space at a point pA can be identified
as the set of all symmetric real matrices and the information metric was given by Skovgaard. The
formula is

gA(H1, H2) =
1

2
Tr(A−1H1A

−1H2)

=
1

2
Tr(A−

1
2H1A

− 1
2A−

1
2H2A

− 1
2 ),

where H1, H2 are symmetric real matrices. It coincides with the Hilbert-Schmidt inner product scaled
by 1

2
.

Remark 2.1. The distance on the manifold of multivariate normal distributions with zero expectation
has been provided by inference method. In [10], the authors presented an analytical computation of
the asymptotic temporal behavior of the information geometric complexity (IGC) of finite-dimensional
Gaussian statistical manifolds in the presence of microcorrelations (correlations between microvariables),
and observed a power law decay of the IGC at a rate determined by the correlation coefficient.
They found that microcorrelations lead to the emergence of an asymptotic information geometric
compression of the statistical macrostates explored by the system at a faster rate than that observed
in absence of microcorrelations. This finding uncovered an important connection between (micro)-
correlations and (macro)-complexity in Gaussian statistical dynamical systems.

In the next section, we will find that the geometric mean of two matrices is the middle point of
geodesic when we consider the set of real positive definite matrices as a Riemannian manifold with
the information metric.

3
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3 Geometric Mean of Two Positive Definite Matrices
We know that the arithmetic mean can be extend to the matrix

A1 + · · ·+An
n

,

for n positive definite matrices A1, · · · , An where n ≥ 2. Now we want to extend the notion of
geometric mean for positive numbers to positive definite matrices.

In fact, the geometric mean of two positive definite matrices A and B is defined by

A#B = A
1
2 (A−

1
2BA−

1
2 )

1
2A

1
2 .

The set of all Hermitian matrices is denote byHn, and the set of all positive definite matrices is denote
by Pn.

Next we show that the geometric mean of two positive definite matrices A,B is the middle point
of the geodesic which connects A and B when Pn is viewed as a Riemannian manifold. (c.f. [11] and
[12])

Let us review some results of Riemannian geometry. A Riemannian manifold is a differentiable
manifold M equipped with a Riemannian metric g(·, ·) denoted by the pair (M, g). A proper variation
of a piecewise differentiable curve c : [0, a] → M in a Riemannian manifold (M, g) is a variation
f : (−ε, ε) × [0, a] → M with the same initial point and endpoint and f(0, t) = c(t). The energy
functional E(s) of the curve c is defined by

E(s) =

∫ a

0

|∂f
∂t

(s, t)|2dt, s ∈ (−ε, ε).

It is known that from the first variation formula, the curve c is a geodesic on (M, g) if and only if c is a
critical point of the energy functional E(c(s)).

Consider Pn as a manifold. The tangent space of a point A can be identified as Hn. Define the
Riemannian metric at A by the differential

ds = ||A−
1
2 dAA−

1
2 ||2 = [Tr((A−1dA)2)]

1
2 . (3.1)

If γ : [a, b]→ Pn is a differentiable curve in Pn, then we define its length as

L(γ) =

∫ b

a

||γ−
1
2 (t)γ′(t)γ−

1
2 (t)||2 dt.

For each invertible X, ΓX(A) = X∗AX is a bijection of Pn onto Pn. If γ is a differentiable curve
in Pn, then the composition ΓX ◦ γ is another differentiable curve in Pn. One can prove that

Lemma 3.1. For each invertible X and for each differentiable curve γ

L(ΓX ◦ γ) = L(γ).

The following theorem states that the geometric mean of two positive definite matrices is the
middle point of the geodesic which connection them. We will introduce two different proofs, one is by
the first variation formula and the other is by the exponential map.

Theorem 3.2. The geodesic connecting A,B is

γ(t) = A
1
2 (A−

1
2BA−

1
2 )tA

1
2

where 0 ≤ t ≤ 1 and the geometric mean of A,B is the middle point of the geodesic which connecting
A and B.

4
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3.1 Proof by variation
By the Lemma 3.1, we may assume that A = I, γ(t) = Bt. Let l(t) be a curve such that l(0) = l(1) =
0. Then the variations of energy function is given by

d

dε
[

∫ 1

0

(
√
gγ(t)+εl(t)(γ′(t) + εl′(t), γ′(t) + εl′(t)))2 dt]|ε=0

= Tr(

∫ 1

0

−(Bt)−1(logB)2l(t)dt+ (Bt)−1(logB)l(t)|10 +

∫ 1

0

(Bt)−1(logB)2l(t) dt). (3.2)

Since l(0) = l(1) = 0, the first term vanishes here and the derivative at ε is 0. On the other hand

gγ(t)(γ
′(t), γ′(t)) = Tr((Bt)−1(Bt logB)(Bt)−1(Bt logB))

= Tr((logB)2)

does not depend on t, we conclude that γ(t) = Bt is the geodesic curve between I and B.

3.2 Proof by exponential map
Let X and Y be Banach space and U be an open subset of X. A map f : U → Y is said to be
differential at u ∈ U if there exist a bounded linear operator T from X to Y such that

lim
v→0

||f(u+ v)− f(u)− T (v)||Y
||v||X

= 0,

We call T the derivative of f at u and denote T by Df(u). Note that Df(u)(w) = d
dt
|t=0f(u+ tw).

Now let I be an open interval and Hn(I) be the collection of all Hermitian matrices whose
eigenvalues are in I. Then a function f in C1(I) induces a map from Hn(I) into Hn, where C1(I) is
the space of continuously differentiable real-valued function on I. If f ∈ C1(I) and A ∈ Hn(I), then
we define f [1](A) as the matrix whose i, j entry is

f [1](λi, λj) =

{
f(λi)−f(λj)

λi−λj
λi 6= λj

f ′(λi) λi = λj
,

where λ1, . . . , λn are the eigenvalues of A. This is called the Loewner matrix of f at A. (c.f. [1] and
[13])

The function f on Hn(I) is differentiable. Its derivative at A, denoted as Df(A), is a linear map
on Hn. We have

Df(A)(H) =
d

dt
|t=0f(A+ tH).

An interesting expression for this derivative in terms of Loewner matrices is given in the following
theorem.

Theorem 3.3. [14] Let f ∈ C1(I) and A ∈ Hn(I). Then

Df(A)(H) = f [1](A) •H

= U [f [1](Λ) • (U∗HU)]U∗,

where Λ is diagonal and A = UΛU∗ and • denotes the Schur product.

We write DeH for the derivative of the exponential map at a point H of Hn. This is a linear map
on Hn and the action is given by

DeH(K) =
d

dt
|t=0(eH+tK) = lim

t→0

eH+tK − eH

t
.

5
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Theorem 3.4. [6] For all H and K in Hn we have

||e−
H
2 DeH(K)e−

H
2 ||2 ≥ ||K||2.

Proof. First we claim that ||X∗KX||2 = ||K||2 if X∗X = I. Note that

||X∗KX||2 = (Tr[(X∗KX)(X∗KX)∗)
1
2

= (Tr[KK∗)
1
2

= ||K||2.

Now since H is Hermitian, H = UΛU∗ where Λ is a diagonal matrix and UU∗ = I. By Theorem 3.3
we have

DeH(K) = U [[xij • U∗KU ]U∗]

= U [[xij •B]U∗]

where xij =

{
eλi−eλj
λi−λj

λi 6= λj

eλi λi = λj
and B = U∗KU.

Note that e−
H
2 = U


e−

λ1
2 0 0

0
. . . 0

0 0 e−
λn
2

U∗. Hence we have

||e−
H
2 DeH(K)e−

H
2 ||2

= ||U


e−

λ1
2 0 0

0
. . . 0

0 0 e−
λn
2

U∗U [[xij ]•

B]U∗U


e−

λ1
2 0 0

0
. . . 0

0 0 e−
λn
2

U∗||2

= ||


e−

λ1
2 0 0

0
. . . 0

0 0 e−
λn
2

 [[xij ] •B]


e−

λ1
2 0 0

0
. . . 0

0 0 e−
λn
2

 ||2
= ||[aijbij ||2

where [bij ] = B,

aij = e−
λi
2
eλi − eλj
λi − λj

e−
λj
2

=
sinh(

λi−λj
2

)
λi−λj

2

6
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if λi 6= λj and aij = 1 if λi = λj . Since sinh(x)
x
≥ 1 for all x 6= 0, aij ≥ 1 for all i, j. Hence

||e−
H
2 DeH(K)e−

H
2 ||2 = ||[aijbij ||2

= (
∑
ij

a2ijbijbij)
1
2

≥ (
∑
ij

bijbij)
1
2

= ||B||2
= ||U∗KU ||2
= ||K||2.

Theorem 3.5. [6] Let H(t), a ≤ t ≤ b be any curve in Hn and let γ(t) = eH(t). Then we have

L(γ) ≥
∫ b

a

||H ′(t)||2 dt.

Proof. By the chain rule, we have

γ′(t) = eH(t)H ′(t) =
d

dh
|h=0[eH(t)+hH′(t) = DeH(t)(H ′(t)).

Theorem 3.4 implies that

||γ−
1
2 (t)γ′(t)γ−

1
2 (t)||2 = ||e−

H(t)
2 DeH(t)(H ′(t))e−

H(t)
2 ||2

≥ ||H ′(t)||2.

Integrating over t we complete the proof.

Now we define a metric δ2 on Pn. For any A,B ∈ Pn, we define δ2(A,B) by

δ2(A,B) = inf{L(γ) : γ is a curve from A to B}.

According to Lemma 1, each ΓX is an isometry for the length L. Hence it is also an isometry for the
metric δ2, that is,

δ2(A,B) = δ2(ΓX(A),ΓX(B)),

for all A,B in Pn and invertible X.
If γ(t) is any curve joiningA andB in Pn, thenH(t) = log γ(t) is a curve joining logA and logB in

Hn. Since
∫ b
a
||H ′(t)||2 dt is the length ofH(t) inHn andHn is a convex subspace of Euclidean space

Mn,
∫ b
a
||H ′(t)||2 dt is bounded below by the length of the straight line segment (1− t) logA+ t logB

which joining logA and logB where 0 ≤ t ≤ 1. Hence by Theorem 3.5,

L(γ) ≥ || logA− logB||2

and we have the following theorem.

Theorem 3.6. [6] For each pair of points A,B in Pn we have

δ2(A,B) ≥ || logA− logB||2.

In other words for any two matrices H and K in Hn

δ2(eH , eK) ≥ ||H −K||2.

7
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Thus the exponential map
exp : (Hn, || · ||2)→ (Pn, δ2)

increases distances.
We write [H,K] for the line segment joining H and K and [A,B] for the geodesic from A to B

where H,K in Hn and A,B in Pn.

Theorem 3.7. [6] Let A and B be commuting matrices in Pn. Then the exponential function maps
the line segment [logA, logB] in Hn to the geodesic [A,B] in Pn. In this case

δ2(A,B) = || logA− logB||2.

Proof. We claim that
γ(t) = exp((1− t) logA+ t logB),

where 0 ≤ t ≤ 1 is the unique curve of shortest length joining A and B in the space (Pn, δ2). Since A
and B commute, γ(t) = A1−tBt and γ′(t) = (logB − logA)γ(t). Thus

L(γ) =

∫ 1

0

||γ−
1
2 γ′(t)γ−

1
2 ||2 dt

=

∫ 1

0

|| logA− logB||2 dt

= || logA− logB||2.

Theorem 3.6 says that no curve can be shorter than this.
Now suppose γ̃ is another curve that joins A and B and has the same length as that of γ. Then

H̃(t) = log γ̃(t) is a curve that joins logA and logB in Hn, and by Theorem 3.5, this curve has length
|| logA − logB||2. But in a Euclidean space the straight line segment is the unique shortest curve
between two points. So ˜H(t) is a re-parametrization of the line segment [logA, logB].

When A and B commute, the natural parametrization of the geodesic [A,B] is given by

γ(t) = A1−tBt, 0 ≤ t ≤ 1,

in the sense that δ2(A, γ(t)) = tδ2(A,B) for each t. The general case is obtained from this and the
isometries ΓX .

Theorem 3.8. [6] Let A andB be any two elements of Pn. Then there exists a unique geodesic [A,B]
joining A and B. This geodesic has a parametrization

γ(t) = A
1
2 (A−

1
2BA−

1
2 )tA

1
2 , 0 ≤ t ≤ 1,

which is natural in the sense that
δ2(A, γ(t)) = tδ2(A,B)

for each t. Furthermore, we have

δ2(A,B) = || log(A−
1
2BA−

1
2 )||2.

Proof. The matrices I and A−
1
2BA−

1
2 commute. By Theorem 3.7, the geodesic [I, A−

1
2BA−

1
2 is

naturally parametrized as
γ0(t) = (A−

1
2BA−

1
2 )t.

Applying the isometry Γ
A

1
2

we obtain the curve

γ(t) = Γ
A

1
2

(γ0(t)) = A
1
2 (A−

1
2BA−

1
2 )tA

1
2

8
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joining the points Γ
A

1
2

(I) = A and Γ
A

1
2

(A−
1
2BA−

1
2 ) = B. Since Γ

A
1
2

is an isometry, this curve is
the geodesic [A,B]. The equality δ2(A, γ(t)) = tδ2(A,B) follows from the similar property for γ0(t)
noted earlier. We see that by Lemma 1

δ2(A,B) = δ2(I, A−
1
2BA−

1
2 )

= || log I − log(A−
1
2BA−

1
2 )||2

= || log(A−
1
2BA−

1
2 )||2.

4 Geometric Mean of Three or More Matrices

Ando, Li and Mathias [2] listed ten properties that a geometric mean of m matrices should satisfy,
which we call the ALM properties. For simplicity, we report this list in the case m = 3.

1. Consistency with scalars. If A, B, C commute then G(A,B,C) = (ABC)
1
3 .

2. Joint homogeneity. G(αA, βB, γC) = (αβγ)
1
3G(A,B,C), for α, β, γ > 0.

3. Permutation invariance. For any permutation π(A,B,C) of (A,B,C), it holds thatG(A,B,C) =
G(π(A,B,C)).

4. Monotonicity. If A ≥ A0, B ≥ B0, and C ≥ C0, then G(A,B,C) ≥ G(A0, B0, C0).

5. Continuity from above. If {An}, {Bn}, {Cn} are monotonic decreasing sequences converging
to A, B, C, respectively, then {G(An, Bn, Cn)} converges to G(A,B,C).

6. Congruence invariance. For any invertible S, it holds that

G(S∗AS, S∗BS, S∗CS) = S∗G(A,B,C)S.

7. Joint concavity. For 0 < λ < 1,

G(λA1 + (1− λ)A2, λB1 + (1− λ)B2, λC1 + (1− λ)C2)

≥ λG(A1, B1, C1) + (1− λ)G(A2, B2, C2).

8. Self-duality. G(A−1, B−1, C−1) = (G(A,B,C))−1.

9. Determinant identity.
detG(A,B,C) = (detAdetB detC)

1
3 .

10. Harmonic-geometric-arithmetic mean inequality.

(
A−1 +B−1 + C−1

3
)−1 ≤ G(A,B,C) ≤ A+B + C

3
.

They also give a definition of geometric mean of m matrices by a iteration. Denote G2(A1, A2) =
A1#A2 and suppose the mean Gm−1 of m−1 matrices is already defined. Given A1, . . . , Am, define
m sequences by

Aj+1
i = Gm−1(Aj1, A

j
2, . . . , A

j
i−1, A

j
i+1, . . . , A

j
m)

for j = 1, 2, . . . and A1
i = Ai. They proved that the sequences {Aji}

∞
j=1 converge to a common matrix

which satisfy the ALM properties. We denote by GALMm .

9
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5 Conclusion

So far, we state the proof of the theorem that the geometric mean is the middle point of the geodesic.
This allows us to find a geometric meaning.

Consider the ALM geometric mean GALMm , when m = 3, another geometric mean is defined in
the same way by Bini, Meini and Poloni [15] which is denoted by GBMP

3 , but the iteration is replaced
by

Aj+1
1 = G2(Aj2, A

j
3)# 1

3
Aj1,

Aj+1
2 = G2(Aj1, A

j
3)# 1

3
Aj2,

Aj+1
3 = G2(Aj1, A

j
2)# 1

3
Aj3,

where A#tB is defined by A
1
2 (A−

1
2BA−

1
2 )tA

1
2 . It has been proved that the three matrix sequences

have common limit which is different from the GALM3 , and satisfies the ALM properties.
The idea which the geometric mean can be viewed as the middle point of a geodesic is a very

important result. In fact, for two positive numbers, we know that the arithmetic mean is the middle
point of the geodesic connect these two scalar. In addition, for m positive numbers, the arithmetic
mean minimizes the sum of the squared distances to the given points xk

x̄ =
1

m

m∑
k=1

xk = argminx>0

m∑
k=1

d2
e(x, xk),

where de(x, y) = |x− y| is the Euclidean distance in R, and the geometric mean also minimizes the
sum of the squared hyperbolic distances to the given points xk

x̃ = m
√
x1x2 · · ·xm = argminx>0

m∑
k=1

d2
h(x, xk),

where dh(x, y) = | log x − log y| is the hyperbolic distance between x and y on positive number. So
Moakher [16] and Bhatia and Holroo [12] gave a definition of geometric mean of m positive definite
matrices A1, . . . , Am which is defined by

G(A1, . . . , Am) = argminX∈Pn

m∑
j=1

δ22(X,Aj)

. We call G(A1, . . . , Am) the barycenter or the center of mass. It can be shown that there is a unique
X0 such that

∑m
j=1 δ

2
2(X,Aj) is minimized. When m = 2, we have G(A,B) = A#B.

In fact, the barycenter also satisfies the ALM properties and is not always the same as GALMm .
So there are many different geometric mean which satisfy the ALM properties.

The barycenter mean has been used in diverse applications such as elasticity, signal processing,
medical imaging and computer vision. Recently, Barycenter means are extensively studied in generalized
notions of centroids and barycenter to the broad class of information-theoretic distortion measures
called Bregman divergences ([17]). It is also a comprehensive reference to generalized means in
the framework of information geometry, already extensively applied in image processing. Another
quite recent work shows the utility of geometric mean of KL-divergence as a complexity measure
([18]). Note that KL-divergence is known to asymptotically converge to Fisher information matrix.
Therefore, the geometric mean of KL-divergence corresponds to the integral of geometric products
of Fisher information matrices along the m-geodesic on the statistical manifold.
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