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ABSTRACT
Brain tumors are deadly but become deadliest because of delayed 
and inefficient diagnosis process. Large variations in tumor types 
also instigate additional complexity. Machine vision brain tumor 
diagnosis addresses the problem. This research’s objective was to 
develop a brain tumor classification model based on machine 
vision techniques using brain Magnetic Resonance Imaging (MRI). 
For this purpose, a novel hybrid-brain-tumor-classification (HBTC) 
framework was designed and evaluated for the classification of 
cystic (cyst), glioma, meningioma (menin), and metastatic (meta) 
brain tumors. The proposed framework lessens the inherent com
plexities and boosts performance of the brain tumor diagnosis 
process. The brain MRI dataset was input to the HBTC framework, 
pre-processed, segmented to localize the tumor region. From the 
segmented dataset Co-occurrence matrix (COM), run-length matrix 
(RLM), and gradient features were extracted. After the application 
of hybrid multi-features, the nine most optimized features were 
selected and input to the framework’s classifiers, namely multilayer 
perception (MLP), J48, meta bagging (MB), and random tree (RT) to 
classify cyst, glioma, menin, and meta tumors. Maximum brain 
tumor classification performance achieved by the HBTC framework 
was 98.8%. The components and performance of the proposed 
framework show that it is a novel and robust classification 
framework.
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Introduction

In the twenty-first century, no doubt, people’s living standards, technology 
paradigms, healthcare facilities, and infrastructure have improved remarkably 
where computing and information technology have grabbed all over the other 
fields like an octopus (Patel, Patel, and Scholar 2016). Besides the develop
ments, humankind is still facing several problems such as poverty, hunger, 
food, terrorism, water, diseases, climate change, and environmental pollution. 
Many fatal diseases are harming people like cancer, hepatitis, diabetes, heart 
problems, tuberculosis, and Alzheimer’s (Bloom and Cadarette 2019).
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The tumor is the deadliest one among ten highly ranked diseases worldwide 
which may damage many specific parts of the human body like lungs, liver, 
stomach, spinal cord, or brain. By the annual report of 2018 of the 
International Agency for Research on Cancer (IARC), number of tumor 
deaths and incoming expected cases were in millions (Ferlay et al. 2021; 
Sung et al. 2021). Our body comprises 37.5 trillion cells, where only the 
brain has 100 billion neurons and one trillion glial cells (Bianconi et al. 
2013; von Bartheld, Bahney, and Herculano-Houzel 2016). The abnormal 
growth of these cells is called a tumor or neoplasm and categorized as benign 
(non-cancerous) or malignant (cancerous). A malignant tumor grows to the 
other body parts, but a benign tumor stays at a specific region (Sinha 2018).

Brain is the most fundamental part of our body, composed of massive soft 
tissues and layers, connected to the spinal cord by nerve cells, making up the 
central nervous system (CNS) which controls all the physical, mental, emo
tional, or even spiritual functionalities of our body by farming a rapid and 
continuous communication network of neurons between brain and spinal 
cord. The complete nervous system is made of CNS and peripheral nervous 
system (PNS) (Wahid, Fayaz, and Shah 2016). Unfortunately, such an impor
tant and complex structure may also suffer from tumors. Brain tumors are the 
common cause of deaths around the world and affect people regardless of age, 
sex, and race. In 2020, International Agency for Research on Cancer (IARC) 
and GLOBOCAN observed 251,329 brain tumor deaths and estimated 308,102 
new cases (Ferlay et al. 2021; Sung et al. 2021).

Two main categories of brain tumors are primary and secondary or benign 
and malignant. Primary brain tumors start within the brain and stay there, but 
secondary tumors are the cancer cells that grow from other parts of the body. 
Benign tumors grow slowly and expose distinct borders, and they are removed 
depending on the regions of the brain where they locate. On the contrary, 
malignant brain tumors are fast-growing and harmful and do not show clear 
and precise edges because of their creeping root tendency to the nearby tissues. 
There are almost more than 120 brain tumors, but glioma, meningioma, and 
metastatic are the most frequently occurring brain tumors (D.N. et al. 2016; 
Sinha 2018).

Doctor’s clinical trials for elementary diagnosis include physical examina
tion, biography, digital screening, and biopsy tests. The objectives are to locate 
the abnormal tissues’ location, region, and orientation. After physical examina
tion and memoir, the next task is brain imaging. Brain imaging is critical since 
the brain comprises very sensitive and delicate tissues. There exist various 
medical imaging modalities, but MRI works well on soft tissues and is the 
best tool to detect abnormalities in brain tissues. Other imaging tools include 
Computed tomography (CT), perfusion MRI, functional MRI, positron emis
sion tomography (PET), or flu-orthodoxy-glucose positron emission tomogra
phy/computed tomography (FDG-PET/CT). Timely and accurate identification 
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of the site and status of a brain tumor can steer to effective treatment, including 
chemotherapies or surgeries, depending upon the condition (Chourmouzi et al. 
2014; Perkins,A. Liu 2016; J Strong and Garces 2016).

Manual diagnosis of brain tumors is tedious, delayed, qualitative, and 
imprecise; in contrast, we need an early and accurate quantitative diagnosis 
to save lives. Additionally, doctors also require the precise quantification of the 
tumor region for specific treatment (Perkins and Liu 2016; Wahid, Fayaz, and 
Salam Shah 2016).

Nowadays large arrays of MV techniques have been employed for data 
mining and classification in diverse fields. These include bioinformatics, agro- 
informatics, social sciences, robotics, etc. (Batchelor 2012a). Many MV tech
niques have recently evolved to develop automated brain tumor classification 
systems that assist radiologists and doctors for early and accurate diagnosis. 
Two primary objectives of these techniques are to segment and classify brain 
tumors. This research focused on developing a novel and robust machine 
vision system for automatic diagnosis and classification of brain tumors 
incorporating hybrid optimized multi-features analysis and machine vision 
classifiers to classify the four brain tumors using brain MRI scans (Batchelor 
and Whelan 2012; El-Dahshan et al. 2014; Gonzalez 2018; Wahid, Fayaz, and 
Salam Shah 2016).

Major contributions in this research study are the acquisition of MRI 
dataset from the RD-BVH, hybrid multi-features optimization and implemen
tation of HBTC framework.

Literature Review

From near past to recent, many researchers have been devoted in segmenting 
and classifying brain MRIs. This section provides a quick overview of some of 
the previous newer and the state-of-the-art approaches.

Arunkumar with his research fellows developed an outstanding brain tumor 
classification model based on classic machine vision approaches including 
Fourier transform image enhancement, fully automated trainable segmenta
tion, histogram-of-oriented-gradients (HOG) feature extraction, ANN-based 
classification model. Non-ROI brain components are filtered using size, cir
cularity and gray-dcale average. The developed model classified normal and 
abnormal brain slices with overall 92.14% classification accuracy using k-fold- 
cross validation method (Arunkumar et al. 2020).

Sarah and research participants made a comparative analysis of the two 
brain tumor segmentation algorithms namely active-counter and ostu- 
threshold. Multimodel-Brain-Tumor-Image-Segmentation (BRATS) bench
mark brain MRI dataset is used in this comparative analysis. Both algorithms 
were implemented using MATLAB and their similarity coefficients were 
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evaluated by Dice, BFScore, and Jaccard evaluations. Results showed that 
similarity index of active-counter was higher than the ostu-threshold 
(Husham et al. 2021).

Mallikarjan, with his research fellows, proposed a brain tumor classification 
system to classify benign and malignant tumors. Region-growing was used for 
segmentation, and center-symmetric-level-binary-pattern (CSLBP) and gray-level 
-run-length matrix (GLRLM) features were fused, and the system gained note
worthy classification accuracy (Mudda, Manjunath, and Krishnamurthy 2020a).

Santhosh and his fellows presented a classification model to classify normal 
and abnormal brain tissues. The system was based on threshold and watershed 
segmentation. SVM gave overall classification accuracy up to 85.32% (Seere 
and Karibasappa 2020).

Hafeez Ullah and research fellows proposed a brain tumor classification 
model based on brain MRIs, acquired from RD-BVH. Intensity, shape and 
texture features were extracted from brain MRI slices and the proposed 
methology gained overall 97% classification accuracy (Ullah, Batool, and 
Gilanie 2018).

Rafael, with other researchers, suggested a system to classify glioblastoma 
and metastatic. First- and second-order statistics features were extracted, and 
Interclass-correlation-coefficient (ICC) was applied for feature reduction. 
support vector machine (SVM) gave 89.6% accuracy rate for area-under-the- 
curve (AUC) (Ortiz-Ramón et al. 2020).

Gupta and Sasidhar described a brain tumor classification model to classify 
low-grade and high-grade brain tumors. Ostu-thresholding was used for seg
mentation and 18 Segmentation-Based Fractal Texture Analysis (SFTA) fea
tures were input to SVM which gave 87% accuracy (Gupta and Sasidhar 2020).

In another research study, Gilani with his research fellows acquired brain 
MRI datasets from RD-BVH and Harvard Medical School (HMS), and sug
gested a brain tumor cross-validation train-test classification model, based on 
multiple texture parameters. The model achieved classification accuracies for 
different categories ranging from 86% to 92% (Gilanie et al. 2019).

Zacharacki, with his coauthors, proposed a brain tumor classification and 
grading system using machine learning techniques. Gliomas, meningioma, 
glioblastoma, and metastases were classified in a binary manner. Statistical 
features were extracted and optimized using rank-based criteria. Classification 
accuracies were notable using 3-fold-cross-validation (Zacharaki et al. 2009).

Marco, with his fellows, proposed a model to classify benign and malignant 
brain tumors. Brain images were segmented using adaptive thresholding. Fast 
Fourier transform (FFT) features were extracted and then optimized by mini
mal-redundancy-maximal-relevance (MRMR). Finally, SVM was applied to 
classify brain images into normal and abnormal (Alfonse and Salem 2016).
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Mohsin, with his companion researchers, suggested a hybrid machine 
learning model for brain tumor identification. Segmentation was based on 
a feedback pulse-coupled neural network, and wavelet features were extracted. 
Feedforward backpropagation neural networks remarkably classified the brain 
images (Mohsen, El-Dahshan, and Salem 2012).

With fellow researchers, Selvaraj proposed a least-square-support-vector- 
machine (LS-SVM) based classification model to classify normal and abnor
mal brain MRI scans. Different statistical features, including GLCM features, 
were extracted. LS-SVM gave the highest results compared with K-nearest 
neighbor, MLP, and radial-basis-function (RBF) (Selvaraj et al. 2007).

Tiwari, with his coauthors, presented a model to classify meningioma and 
astrocytoma. Features including GLCM and GLRLM were extracted from 
ROIs. Firstly, 263 features were extracted, then 108 Laws texture energy 
measures (LTEM) features were added. Multilayered ANN gave results 
between 78.10% and 92.43% (Tiwari et al. 2017).

Salama and research fellows introduced a novel Multiple Features 
Evaluations Approach (MFEA) method to improve the Parkinson’s diagnosis 
process based on classification of voice variations. MFEA used five feature 
selection agents, each giving the dominant features. Features obtained by all 
agents are then combined to form the optimal features set. Next, multiple 
classifiers are evaluated on the original features and the filtered optimal 
features set. Neural network gave maximum performance on the original 
features where Random Forest gave the maximum 99.49% classification accu
racy using a 10-fold-cross-validation method (Mostafa et al. 2019).

Anter and Aboul described a liver tumor classification system to classify 
benign and malignant tumors. Feature vector comprised GLCM, LBP, SFTA, 
first-order statistics (FOS), and fused feature (FF). SVM, RF, artificial neural 
network (ANN), and KNN were applied using a cross-validation method to 
classify tumors (Anter and Hassenian 2018).

M.A. Mohammed with colleague researchers proposed a breast cancer 
classification model. The model was based on the classical SFTA (segmenta
tion-based fractal texture analysis) feature extraction method and ANN. 
Multi-fractal dimension features sets were created for 72 normal and 112 
abnormal images. The method applied two-threshold-binary-decomposition 
(TTBD) and marginal boundaries to compute 12 fractal dimension sets. Next, 
ANN gave the noteworthy classification accuracy (Mohammed et al. 2018).

Dilliraj, with his coauthors, demonstrated different brain tumor segmenta
tion approaches. Advanced Fuzzy C-Means, self-organizing map, and k-means 
algorithms were applied to compute the tumor region (Dilliraj, Vadivu, and 
Anbarasi 2014).

George and Manuel classified four grades of astrocytoma. For preproces
sing, pulse coupled neural network and median filter were applied, and fuzzy 
c-means (FCM) were used for segmentation. First-order and second-order 
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statistical features were reduced to 14 optimized features, which then were 
input to a deep neural network (DNN) and got 91% accuracy (George and 
Manuel 2019).

A deep learning scheme was designed by Heba and research team to classify 
four brain tumor classes namely normal, glioblastoma, sarcoma and metastatic 
bronchogenic carcinoma. Feature extraction was combined with discrete 
wavelet transform (DWT) and principal components analysis (PCA). 
Classifications were performed by deep neural network with seven hidden 
layers using 7-fold-cross-validation. The model gained overall 96.97% classi
fication rate (Mohsen et al. 2018)

Bhanumathi and Sangeetha proposed a model to classify glioma, acoustic 
neuroma, and meningioma. In the study, 20 normal and 30 infected images 
were taken. Convolutional neural network (CNN) models were used for 
classification where GoogLeNet gave the best accuracy (Bhanumathi and 
Sangeetha 2019).

Gumaei, with his companion researchers, proposed a classification model 
using regularized extreme learning machine (RELM) to discriminate between 
benign and malignant brain tumors. MRIs of meningioma, glioma, and 
pituitary were acquired and preprocessed. Feature selection was made using 
GIST, normalized GIST (NGIST), and PCA-NGIST. Using fivefold cross- 
validation, RELM gave overall accuracy of 92.6144% (Gumaei et al. 2019).

Many of the described approaches are just based on two-class classification: 
normal and abnormal. Some lacks the localized tumor dataset and many of the 
above methodologies needs to improve the precision. Even if deep learning 
systems boost the precision but these systems have lot of processing overhead 
for training. Thus, we have introduced a novel hybrid-brain-tumor- 
classification novel HBTC framework based on hybrid features optimization 
and multifeatures analysis for the brain tumor classification.

Material and Method

In this research, four brain tumor types, namely, cyst, menin, glioma, and 
meta, were classified using the proposed HBTC framework. This section 
describes the mythology of the proposed HBTC framework.

Methodology

Methodology of the proposed HBTC framework mainly comprises dataset 
acquisition, pre-processing, segmentation, feature extraction, feature optimi
zation, classification, and evaluation steps. Algorithm 1 presents the proce
dural steps of the proposed HBTC framework, shown in Table 1. The whole 
MRI dataset of the four brain tumor types is input in the first step. In 
the second step, the process entered into a loop. Every image is enhanced by 
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applying a hybrid, Kernel plus Sobel plus Low-pass (K-S-L) filters pre- 
processing scheme. Next, a tumor region is segmented, and ROIs are 
created. Next, COM, RLM, and Gradient features are extracted from each 
segmented ROI, to form a features vector. This process continues until 
there remain no more unprocessed MRIs. In the third step, a hybrid 
features optimization technique is applied to obtain the most relevant 
properties of the images for multi-features analysis. In the fourth step, 
machine vision classifiers were applied using 10-fold cross-validation on 
the hybrid optimized features to classify brain tumors. In the fifth step, 
framework performance was evaluated.

The HBTC framework was run using MaZda 4.6 (Strzelecki et al. 2013) and 
Waikato Environment for Knowledge Analysis (Weka 3.8) (Witten et al. 
2016), on Intel(R) Core (TM) i7-8550 U CPU with 16.0 GB of memory and 64- 
bit operating system of Microsoft Windows 10. The following sections explain 
each step in detail.

Dataset Acquisition
Prime initiative to implement of the HBTC framework was the collection of 
brain tumor MRI dataset. This section describes the dataset acquision. MRI 
works well on soft tissues such as the liver, brain, lungs, etc. (Seere and 
Karibasappa 2020) [18]. For this study, T2-weighted MRI dataset of the four 
brain tumor types was acquired from MRI machine with specification 
(OptimaTM MR450w – 70 cm) (Phal et al. 2008). installed in Radiology 
Department of Bahawal Victoria Hospital (RD-BVH) (Attique et al. 2012; 
Gilanie et al. 2019; Iqbal 2009; Ullah, Batool, and Gilanie 2018). The sample 
MRIs of the brain tumors are shown in Figure 1. The dataset comprised 250 
patients for each tumor type. Therefore, a total dataset of 1000 (250 × 4) MRIs 
was collected. The expert radiologist examined and marked all the collected 
brain MRIs, to ensure the ground truth.

Table 1. Procedural Steps of the HBTC framework.
Algorithm 1:Hybrid Brain Tumor Classification Procedure
Begin
Main { step1: Input � Brain Tumor MRI dataset 

step2: For 1 to Size-of Brain MRI dataset { 
Acquire brain tumor MRI 
Pre-process the input image 
Segment the tumor region 
Create segmented ROI 
Extract RLM, COM, Gradient features 
} End-For 

step3: Optimize via (MI + F + PA) + CFS 
step4: Multi-features analysis & classification 
step5: Evaluation

}End-Main
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Pre-Processing
Medical images contain inherent inhomogeneity, poor quality, and noise, thus 
we need to enhance the quality of the collected brain MR images. This section 
describes the details of preprocessing federated into the HBTC framework. 
Preprocessing comprised re-sizing, gray-level conversion, cropping, normaliza
tion, and image enhancement. Thus, the acquired MRI datasets were required to 
enhance. For this study, at the first step, all the collected MRI datasets were 
converted into the standard format of 8-bit (.bmp) gray-scale and normalized by 
using histogram equalization. In the second step, the image noise was removed 
by applying K-S-L image enhancement. (Gonzalez and Rafael 2018; Lakshmi 
Devasena and Hemalatha 2011). Gradient masks of Sobel filter of size 3 × 3 were 
applied on the x-axis (Grx) and the other two on the y-axis (Gry), and gradient 
magnitude (Gr) with its approximation also computed. The effects of applying 
the filters are shown in Figure 2. Gradient equations are also given below. 

Grj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Grx2 þ Gry2

p
(1) 

Segmentation
Image segmentation is a phase in image processing during which an image 
is split into various sub-groups according to its properties and features. It 
reduces the image’s complexity to simplify further processing or analysis. 
This section discusses segmentation carried out in HBTC framework.

Figure 1. Sample Images of Four Brain Tumor Types.
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Image segmentation falls into three categories: manual, automated, and 
semi-automated. Manual segmentation is tedious and error-prone because 
of human observational variability. Thus, it is used as a golden standard. 
The semi-automated method solves some problems of manual segmentation 
by using algorithms but still has limitations. There are diverse forms of 
semi-automated segmentation that reduce some observational variability, 
but not all of them (Sachdeva et al. 2013). Automated schemes do not 
involve users interactively. They fall into two classes: learning-based algo
rithms and non-learning-based algorithms. Learning approaches rely on 
training and testing phases, whereas non-learning strategies depend upon 
image and disease characteristics (Kevin Zhou, Fichtinger, and Rueckert 
2019).

In the HBTC framework, threshold and clustering-based segmentation 
(TACS) scheme was applied and segmented ROIs were created (Ortiz- 
Ramón et al. 2020). TACS’s procedural steps are given in Table 2, and its 
overall model is expressed in Figure 3. Background pixels (B_P) were 
computed based on a specific threshold value in the first step. The image 
background was considered a complete cluster based on the threshold. In the 
next step, the point was determined as a value of base-pixel. This base value 
of the pixel was used to weigh up all the neighbors of the pixel. With the 
same approach, the whole image was completed. If the pixel gray intensity 
value of (P_G) was greater than the B_P value, it was examined as a pixel 
region of fore-ground (F_P) and grown-up for the whole cluster by deter
mining its R_O_I (region of interest) or also commonly known as the 
foreground region.

Figure 2. Sample Effects of Image Preprocessing.
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Feature Extraction
This step intends to extract specific properties of the segmented ROIs to 
discriminate the patterns of input images (Radhakrishnan and Kuttiannan 
2012). This section addresses the feature extraction phase of the HBTC frame
work. The relevant properties are collected into a feature vector to process for 
the next stage. For texture analysis, we extracted occurrence matrix (COM), 
run-length matrix (RLM), and gradient features from the segmented ROIs of 
the brain (Ortiz-Ramón et al. 2020; Tiwari et al. 2017). For this purpose, ROIs 
of sizes (10 × 10), (15 × 15), and (20 × 20) were created, and 220 COM, 20 
RLM, and 5 Gradient features were extracted from each ROI (Anter and 
Hassenian 2018; Gonzalez and Rafael 2018; Seere and Karibasappa 2020). 
Thus, three datasets were obtained for experiments. The total feature vector 
volume (FVV) for each ROI dataset was 490000 (2000 x 245). We performed 

Table 2. TACS Model.
Algorithm 2: threshold and clustering-based segmentation (TACS)
Input: Brain Image Dataset
Parameter: MRI Dataset {Brain Image Dataset}
Output: Clustered Images (C_I) and Region of Interest (R_O_I)
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18.

Function TACS (MRI Dataset) 
Begin 

for Total Pixel Measure of whole image (TPM) do 
B_P ← set threshold for back-ground Pixels 
P_G ← measure Pixel Gray Intensity 
T_C_C ← initialize Total_Cluster_Count with 0 

if P_G > B_P then 
T_C_C ← increment Total_Cluster_Count 
F_G ← calculate fore-ground Pixels 
R_O_I ← Region of Interest from image 

else 
NOT count Segmentation Area 
B_P ← calculate Back-ground Pixel 

end if 
end for 
return (C_I, R_O_I) 

end Begin 
end Function

Figure 3. Overall Model of TACS Methodology with taking ROI.
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all Experiments on a machine with processor Core (TM) i7 Intel, 1.8 GHz, 
containing 16 GB of RAM and a 64-bit operating system of Microsoft 
Windows 10. Below all the extracted features are described precisely.

Run Length Matrix (RLM)
Galloway proposed this method and is called run-length. It computes the gray 
or color level runs of various lengths also called length or range of run. Gray or 
color scales are measured as a multitude of contiguous pixels having the same 
gray or color scales in a linear fashion. The number of pixels is measured 
horizontally in four dimensions(0� ,45� ,90�and 135�). In our study, we 
extracted 20 RLM features for each image, and matrices of various runs are 
formulated with respect to each specified θ. We measured short_run_empha
sis (S.R.E), long_run_emphasis (L.R.E), gray_level_non_uniformity (G.L.N), 
gray_level_non_uniformity_normalized (G.L.N.N), run_length_non_unifor
mity (R.L.N), run_length_non_uniformity_normalized (R.L.N.N), run_per
centage (R.P), for each of the segmented ROIs. Below the equations of the 
used runs are given (Baessler et al. 2020; Mudda, Manjunath, and 
Krishnamurthy 2020a).

S.R.E describes the determination of short-run lengths distribution, and 
a larger S.R.E indicates fine and more magnificent textural texture, and its 
equation is given in Equation 2) 

S:R:E ¼
Pgk

m¼0
Pgr

n¼1
2 m;njσð Þ

n2

gr σð Þ
(2) 

L.R.E describes the measurement of long-run lengths distribution, and larger 
L.R.E indicates long runs and more rough textures, and its equation is shown 
in Equation 3) 

L:R:E ¼
Pgk

m¼1
Pgr

n¼0 2 m; njσð Þ nð Þ2

gr σð Þ
(3) 

G.L.N computes similarity factor between gray levels intensities of the given 
image and a less G.L.N value indicates a more similarity between intensities, 
and its equation is shown below in Equation 4. 

G:L:N ¼
Pgk

m¼1 ½
Pgr

n¼1 2 m; njσð Þ�
2

gr σð Þ
(4) 

G.L.N.N is a normalized version of G.L.N with significant quality improve
ment and it also measures similarity factor between gray level intensities of the 
given image and a less G.L.N value indicates a more similarity between 
intensities, and its equation is shown in Equation 5) 
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G:L:N:N ¼
Pgk

m¼1 ½
Pgr

n¼1 2 m; njσð Þ�
2

gr σð Þ2
(5) 

R.L.N computes similarity index between run-lengths of the whole image and 
a less R.L.N value indicates high homogeneity factor, and its equation is shown 
in Equation 6. 

R:L:N ¼
Pgk

n¼1 ½
Pgr

m¼1 2 m; njσð Þ�
2

gr σð Þ
(6) 

R.L.N.N is a normalized version of R.L.N with significant improvement in 
quality and it also measures similarity factor between run-lengths of the whole 
image and a less R.L.N.N value indicates high homogeneity factor, and its 
equation is given below in Equation 7. 

R:L:N:N ¼
Pgk

m¼1 ½
Pgr

n¼1 2 m; njσð Þ�
2

gr σð Þ2
(7) 

Coarseness of the underlying texture is computed by R.P which is given below 
in Eq. (8). 

R:P ¼
gr σð Þ

gp
(8) 

Co-occurence Matrix (COM)
Co-occurrence matrix (COM) features are also called second-order statistical 
features, widely used for texture analysis (Haralick, Shanmugam, and Its’Hak 
1973). Co-occurrence features measure the dependency and relationship 
between intensities of neighboring pixels by considering their distances and 
angles. This method is widely used to discriminate the texture of an underlying 
image. In this study, four angles:0� ,45� ,90�and 135� , are used for each of the 
eleven second-order co-occurrence features. Obtained features are Energy, 
Entropy, Sum Entropy, Correlation, Inverse Difference, and Inertia features 
(Anter and Ella Hassenian 2018; Baessler et al. 2020; Qadri et al. 2019).

Energy measures the homogeneity by computing high-frequency neighbor
ing pairs, and its equation is given below in Equation 9. 

Enrg ¼
X

m

X

n
m; nð Þ

2 (9) 

Correlation determines the similarity of pixels for some pixel distance in the 
input image, given in Equation 10. 

Correlat ¼
1

ρaρb

X

m

X

n
C � ωað Þ D � ωbð Þ m; nð Þ (10) 
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Entropy measures the whole content of an image and the neighborhood 
variability of voxels, and its equation is given in Equation 11. 

Entrop ¼ �
X

m

X

n
m; nð Þlog2 m; nð Þ (11) 

To measure homogeneity at local level in an image the inverse difference is 
computed, given in Equation 12. 

InversDiff ¼
X

m

X

n

m; nð Þ

m � nj j
(12) 

To obtain the contrast factor in an image inertia value is quantified and its 
equation is given in Equation 13. 

Inert ¼
X

m

X

n
m � nð Þ

2 m; nð Þ (13) 

Gradient Features
A gradient of an image measures the intensity changes in some fixed or certain 
directions. Gradient features are given as a two-dimensional vector in which 
both the directional and magnitude components are computed by taking 
derivatives for both vertical and horizontal directions. Digital images are 
represented by discrete values x, y in both directions. It’s a 2D gradient vector 
containing the largest intensity increment computations in the order and its 
magnitude as the rate of change, and equations of the four gradient features, 
namely, Mean, Variance, Skewness, and Kurtosis are given below (Al-Kilidar 
and George 2020; Zhao et al. 2019).

The mean value of the gradient gives the average intensity of pixels and its 
equation is given in Equation 13. 

Mean ¼
1

Cm;nεR:O:I

Xa
bsv m; nð Þ (14) 

The gradient Variance describes similarity between the intensities of pixels 
within a given ROI, its equation is given in Equation 13. 

Variance ¼
1

Cm;nεR:O:I

X
absv m; nð Þ � meanð Þ

2 (15) 

To measure how symmetrical the distribution of intensity of pixels concerning 
the average, skewness of the gradient is computed, shown in Equation 13. 

Skewness ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance
p� �3

1
Cm;nεR:O:I

X
absv m; nð Þ � meanð Þ

3 (16) 
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The kurtosis of the gradient is calculated to measure the flatness of the 
distribution between pixels intensity and its equation is given in Equation 13. 

Kurtosis ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance
p� �4

1
Cm;nεR:O:I

X
absv m; nð Þ � meanð Þ

4
� 3 (17) 

Feature Optimzation
Reducing the number of input properties for a predictive model is known as 
feature optimization. This reduces the computational cost of modeling and 
enhances the performance. This section discusses the feature optimization 
incorporated in the HBTC framework. After feature extraction, the most 
significant part of our proposed machine vision HBTC framework was feature 
optimization. The main objective of this task was to extract the most dominant 
features and discard irrelevant ones. We were observed that all extracted 
features of the underlying MRI dataset in this research experiment were 
insignificant for brain tumors classification. The extracted feature vector 
volume (FVV) comprised a large number of 4,90,000 (2000 × 245) features. 
Such a large FVV was not sufficient for tumor classification.

Moreover, time and memory were also additional issues to deal with such 
a large dataset. It cannot be previously determined what the best features for 
texture analysis (Chandrashekar and Sahin 2014; Sachdeva et al. 2013). Thus, 
the feature optimization phase plays a vital role in improving the quality of the 
mining and analysis process in image processing, particularly in medical image 
analysis, reducing the curse-of-dimensionality (COD) problem (Pereira et al. 
2016). There are many feature optimization methods where principal compo
nent analysis (PCA) is a well-known approach but with some barriers (El- 
Dahshan et al. 2014). PCA is not sufficient to operate on datasets that are large 
and linearly inseparable (Shehzad et al. 2020). Furthermore, it is unsupervised, 
but our dataset was labeled. However, we adopted a novel hybrid feature 
optimization technique based on (F+ MI+PA) + CFS. At first, F+ MI+PA 
reduced FVV to 30 optimized features. Still, such a large (2000 × 30 = 60000) 
FVV was insufficient for rich texture analysis. Thus, further CSF reduced the 
wide-ranged FVV to 9 optimized features with a sufficiently decreased 
(2000 × 9 = 18000). Below are the Mathematical formulations and descriptions 
of all the mentioned approaches.

Fisher Coefficient (F)
The feature reduction technique should select the highest discriminated fea
tures and discard the other ones. If V is a feature vector {f1, f2, . . ., fn}, then 
Fisher index gives the measure of discrimination between fi (i = 1 to n), and it 
also applies between classes in the same manner. Dominant features have 
a high Fisher index, and the others with a lower Fisher index are considered 
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the low ones. This method uses the fisher coefficient for feature reduction and 
describes as a ratio between classes or within-class variance (Saqlain et al. 
2019). 

Fisher ¼
1
M
¼

1
1�
PD

d¼1
S2

d

PD
d¼1
PD

e¼1 SdSe αd � αeð Þ
2

PD
d¼1 SdTd

(18) 

Probability of Error Plus Average Correlation Coefficient (POE + ACC)
POE describes the ratio of improper classified samples to the total number of 
samples analyzed in the underlying dataset. The average correlation coefficient 
computes the absolute value between previously chosen features and newly 
selected features. When the extended average sum for the correlation coeffi
cient is computed, this sum is called the average correlation coefficient (ACC). 
This study combined both approaches in the feature selection process by 
adding weighted values in the formula. Our hybrid approach gave the features, 
which were selected with the lowest value of POE + ACC. Below are the 
sequences of extended formulas POE’s (Chandrashekar and Sahin 2014; 
Shehzad et al. 2020). 

P:A Swð Þ ¼
Miss � classified � data

TotalDataset
(19) 

S2 ¼ Sw : miniw P:A Swð Þ þ Correlate S1; Swð Þj j½ � (19:1) 

Sm ¼ Sw : miniw P:A Swð Þ þ
1

M � 1
Correlate S1; Swð Þj j

� �

(19:2) 

K1 ¼ Km : minim L1P:O:E Kmð Þ þ L2A:C:C Kmð Þ½ � (19:3) 

Mutual Information (MI)
It is a rank-based method to determine dependency between two random 
variables. The probability density functions of these variables are required to 
compute MI. This method uses separate random variables representing texture 
features and classification decisions, and the large value helps to discriminate 
the key features or class membership. This method also gives up to 10 
optimized features for a large value of mutual information coefficient 
(Chandrashekar and Sahin 2014; Shehzad et al. 2020). 

MI U1;Gð Þ ¼
XPd

G¼1

XQe

m¼1
R UG

1 ;Tm
� �

log2
R UG

1 ;Tm
� �

R UG
1ð ÞR Tmð Þ

� �

(20) 
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Correlation-based-Feature-Selection (CFS)
It is a supervised feature selection technique known as CFS. In this research, 
CFS combined with F+ MI+PA gave nine selected optimal features, shown in 
Table 3. The mathematical formulation of CFS is given below (Shehzad et al. 
2020). 

Uz ¼
V�ρpM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þ V V � 1ð Þ�ρpM

q (21) 

Classification
Classification is a technique in which input types are classified into an analo
gous group of classes. The selection of suitable classifiers involves many 
factors. These factors include performance, accuracy, and computational 
resource (Anter and Ella Hassenian 2018; El-Dahshan et al. 2014). This section 
describes the classification phase of the HBTC framework.

After the selecting the optimal set of features, the next step in the HBTC 
framework was to predict and assemble the dataset into the four tumor classes. 
In this experiment, four MV classifiers, namely MLP, J48, MB, and RT, were 
deployed using the k-fold cross-validation method, where k was set to 10. MV 
classifiers were deployed on the nine selected features to classify the four brain 
tumors (Batchelor 2012; Witten et al. 2016). RT builds a tree in which 
attributes are selected randomly at every node with no pruning, and it also 
provides an option to compute probabilities of classes based on backfitting 
(Witten 2017). MB builds random subsets of a primary dataset, forms an 
accumulated prediction by the productions produced by its supported classi
fiers, and minimizes variance to overcome over-fitting problems. J48 is an 
advanced random tree with tree pruning to increase results accuracy (Witten 
2017). MLP is a strong layered, supervised-learning neural network style for 
data classification, trained by backpropagation. It has a non-linear activation 
so works well on non-linear datasets (Alfonse and Salem 2016; Shehzad et al. 
2020; Witten 2017). The complete framework of HBTC is given in Figure 4.

Table 3. F+ MI+PA+CFS based 
selected features.

Sr. No. Feature

1. S(1_0)SumAverg
2. S(5_5)Correlat
3. S(1_-1)SumAverg
4. S(4_0)SumAverg
5. S(0_5)SumAverg
6. S(0_4)SumAverg
7. S(0_3)Correlat
8. S(0_2)Correlat
9. S(0_1)InvDfMom
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Evaluation
Performance evaluation is an integral part of an analytical model. It is the 
task of measuring the statistical score of the model and assessing the 
significance of the generated results. In this section, we present the perfor
mance evaluation of the HBTC framework. We evaluated the HBTC frame
work with these performance measuring parameters such as kappa 
Statistics, true positive (T_P), false positive (F_P), receiver operating char
acteristic (R_O_C), Time in seconds (Time Sec), and overall accuracy 
(Aslam et al. 2020; Hajian-Tilaki 2013).

Figure 4. The Complete HBTC Framework.
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Results and Discussion

This section provides the details of all the three experiments performed during the 
classification phase of the HBTC framework. During this phase, we performed three 
different experiments. In each experiment, four MV classifiers, namely, MLP, J48, 
MB, and RT, were deployed on finally selected hybrid optimized multi-features 
dataset to classify cyst, glioma, menin, and meta brain tumors. All the classifiers 
performed well, but MLP defeated the others. MLP is a good classifier for low-quality, 
massive and noisy datasets, as in the case of medical imaging datasets. A mathematical 
formulation of MLP is given in the following equation (Witten 2017). 

σr ¼ ð
XI

n¼1
μncnÞ þ σn (25) 

where I denotes number of input neurons, σn represents bias, cn denotes 
input, and μncn determines the weight. Activation function is given below. 

ρn að Þ ¼
1

1þ expr σnð Þ
(26) 

Neuronal output of MLP is presented by the equation given as:
Parameters for MLP are shown in the following Table 4.

Experiment 1

In the first experiment, the multi-features dataset of ROIs of sizes 10 × 10 was 
input to the four MV classifiers. MLP gave an overall accuracy of 64.8% to 
classify the four brain tumors. Results of the four MV classifiers for classifica
tion of a cyst, menin, glioma, and meta tumor, are shown in Table 5. The 
confusion matrix table of MLP is shown in Table 6.

Experiment 2

In the first experiment, results were not satisfactory in first experiment and 
remained less than 70%, thus, we started the second experiment and created 
the dataset of ROIs of sizes 15 × 15 was made, and input it to the MV 

Table 4. Parameters values of MLP.
MLP Parameters Values of Parameters

Hidden-Layers 1
Input Layers 15
Neurons 10
Momentum 0.2
Learning Rate 0.3
Threshold Validation 20
Epochs 500
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classifiers. Classification accuracies improved in this experiment, and J48 and 
MLP gave overall classification accuracies of 89.5% and 88.9%, respectively. 
Classification results of MB and RT were 87.8% and 81.4%, respectively. 
Table 7 shows the significant parameters of this experiment, and the confusion 
matrix values are shown in Table 8.

Experiment 3

When we increased the ROI size, the results improved in the second 
experiment. Thus we started the third experiment by again increasing 
the ROI size. This experiment created the ROIs of sizes 20 × 20 and 
formed a new multi-features dataset on the same MRIs. It was then input 
to the four MV classifiers. In this experiment, MLP outperformed and 
gave overall accuracy of 98.3%. MLP gave the best results, but other 
classifiers also improved on this dataset. J48, MB, and RT gave 96.8%, 
95.8%, and 94.8% accuracy. These results are presented in Table 9, and 
confusion matrix values are shown in Table 10.

Table 5. HBTC Machine Vision Classifiers based on 10 × 10 ROI.
Classifiers Kappa_ Statistics T_P_Rate F_P Rate R_O_C T_N_I Time. (Sec) Overall Accuracy

MLP 0.5307 0.648 0.117 0.827 1000 0.74 64.8%
J48 0.534 0.643 0.119 0.790 1000 0.02 64.3%
MB 0.5227 0.642 0.119 0.820 1000 0.13 64.2%
RT 0.496 0.622 0.126 0.708 1000 0 62.2%

Table 6. Confusion Matrix for MLP based on 10 × 10 ROI.
Classes cyst Glioma menin meta Total

cyst 240 0 2 8 250
glioma 2 200 30 18 250
menin 1 37 193 19 250
meta 39 78 15 118 250

Table 7. HBTC Machine Vision Classifiers based on 15 × 15 ROI.
Classifiers Kappa_ Statistics T_P_Rate F_P Rate R_O_C T_N_I Time. (Sec) Overall Accuracy

MLP 0.852 0.889 0.037 0.975 1000 0.75 88.9%
J48 0.86 0.895 0.035 0.956 1000 0.02 89.5%
MB 0.8373 0.878 0.041 0.971 1000 0.05 87.8%
RT 0.752 0.814 0.062 0.876 1000 0 81.4%

Table 8. Confusion Matrix for J48 based on 15 × 15 ROI.
Classes cyst glioma menin meta Total

cyst 239 5 3 3 250
glioma 5 245 0 0 250
menin 3 77 167 3 250
meta 4 0 2 244 250
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Performance comparison graph of MLP for the four brain tumor types on 
datasets of ROIs of sizes 10 × 10, 15 × 15, and 20 × 20 is shown in Figure 5. 
MLP gave the best classification results when applied to the ROI dataset of 
sizes 20 × 20. The overall comparison graph of the classification results of all 
the four classifiers is shown in Figure 6. The figure shows that MLP out
performed for classification of four tumor types named cyst, glioma, menin, 
and meta.

Now we summarize our discussion with the following highlights. This study 
introduced a novel HBTC framework based on machine vision approaches to 
classify brain tumors. We successfully designed, implemented, and evaluated 
all the components of the proposed HBTC framework. In the initial phase, we 
acquired MR images of four brain tumor types, and after preprocessing, we 

Table 9. HBTC Machine Vision Classifiers based on 20 × 20 ROI.
Classifiers Kappa_ Statistics T_P_Rate F_P Rate R_O_C T_N_I Time. (Sec) Overall Accuracy

MLP 0.9773 0.983 0.006 0.998 1000 1.19 98.3%
J48 0.9573 0.968 0.011 0.981 1000 0.01 96.8%
MB 0.944 0.958 0.014 0.971 1000 0.05 95.8%
RT 0.9307 0.948 0.017 0.965 1000 0 94.8%

Table 10. Confusion Matrix for MLP based on 20 × 20 ROI.
Classes cyst glioma menin meta Total

cyst 246 2 1 1 250
glioma 1 249 0 0 250
menin 5 0 241 4 250
meta 2 1 0 247 250

Figure 5. Comparison Graph of MLP on ROIs of sizes 10 × 10, 15 × 15 and 20 × 20.
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applied segmentation. Next, we mounted hybrid optimization on the multi- 
features dataset. Three separate experiments were performed on the ROIs 
datasets. All the classifiers performed well, but MLP outperformed. Results 
were not best on a dataset of 10 × 10, as MLP gave maximum accuracy of 
64.8% accuracy. Since ROIs were too small, a smaller region did not provide 
enough information for analysis. Results on the dataset of 15 × 15 were 
improved, and J48 gave 89.5% accuracy. But results were remarkable on 
a dataset of 20 × 20, and MLP gave 98.3% accuracy. Compared with others, 
RT performed less (94.8%) because RT models do not tune the dataset and 
generate large trees (Kevin Zhou, Fichtinger, and Rueckert 2019). MB showed 

Figure 6. Comparison Graph of Overall Classicification Performance of Four Classifers.

Table 11. Comparison of HBTC framework with other streamed classification techniques.

Source Citation Key Features Extracted Classification
Overall 

Acc

(Mudda, Manjunath, and 
Krishnamurthy 2020a)

MRI brain, GLRLM, CSLBP, ANN 94%

(Seere and Karibasappa 2020) MRI brain, Homogeneity, Shape, Color, Size, 
Energy, Contrast

SVM 85.32%

(Ortiz-Ramón et al. 2020) MRI brain, GLCM, GLRLM, GSSZM NGTDM, LBP. Linear SVM 89.6%
(Gupta and Sasidhar 2020) MRI brain, SFTA based texture features SVM 87%
(Zacharaki et al. 2009) MRI brain, Statistical & Shape Based, Intensity 

based, Gabor.
KNN, SVM 90.6%

(Ullah, Batool, and Gilanie 2018) RD-BVH Brain MRI, Intensity, shape, Texture 
Features

SVM 97%

(Selvaraj et al. 2007) MRI brain, Statistical, GLCM SVM, MPL, 77 to 98%
(Gilanie et al. 2019) RD-BVH Brain MRI, Texture Features ANN 86% to 

92%
(Tiwari et al. 2017) MRI brain, Textural Features, GLCM, GLRLM, 

Gabor, LTEM, FOS
ANN 92.43%

(George and Manuel 2019) MRI brain, Histogram, First order statistics, 
GLCM

DNN 91.92%

(Mohsen et al. 2018) MRI brain, DWT, PCA, DNN 96.97%
(Bhanumathi and Sangeetha 2019) MRI brain, Shape, Intensity, Color, Statistics CNN 97.10%
(Gumaei et al. 2019) MRI brain, Gabor, GWT, GIST-descriptor, N-GIST 

(normalized)
RELM 94.233%

Proposed Methodology HBTC framework MLP 98.3%
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a better result of 95.8% as it reduces variance and uses a strong aggregate 
prediction scheme, but still, it does not grasp dataset bias properly (Aslam 
et al. 2020; Witten 2017). Since J48 applies pruning on the target dataset, non- 
critical sections of the generated tree are removed, and the over-fitting pro
blem is overcome (Zhou, Rueckert, Daniel,, Fichtinger, Gabor,, 2020). For this 
reason, J48 produced an average performance of 96.8%. Finally, MLP out
matched others because it provides a strong neural network train-test layered 
model. It also yields non-linear activations and outperforms on datasets that 
are linearly non-separable (Asha Kiranmai and Jaya Laxmi 2018; Gonzalez and 
Rafael 2018; Mohan and Subashini 2018).

It is concluded that the proposed HBTC framework outperformed in the 
brain tumors classification. A comparison between our proposed framework 
and other streamed classification techniques is given in Table 11.

Conclusion

The main objective of this research study was to classify four brain tumor 
types using a novel machine vision-based HBTC framework. The proposed 
framework input MRIs and applied histogram equalization to normalize 
brain images, and the hybrid K-S-L scheme reduced the image noise. To 
segment the tumor region, we carried out the TACS scheme. Following 
that multiple feature extraction approaches were used to extract texture 
characteristics of brain tumors. The multi-features dataset included COM, 
RLM, and Gradient texture features. Next, our framework applied a hybrid 
multi-features optimization method on the feature vector, which produced 
a fully optimized feature dataset. In the end, MV classifiers, namely RT, 
MB, J48, and MLP, were evaluated on the dataset. All classifiers provide 
splendid results, but MLP showed outstanding accuracy of 98.3% to clas
sify four brain tumors. The average accuracy of J48, MB, and RT was 
96.8%, 95.8%, and 94.8%, respectively. The framework will help radiolo
gists and doctors to diagnose brain tumors correctly. The framework is 
robust and will surely minimize human error in diagnosing brain tumors.
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