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Abstract
Data-driven machine learning methods have the potential to dramatically accelerate the rate of
materials design over conventional human-guided approaches. These methods would help identify
or, in the case of generative models, even create novel crystal structures of materials with a set of
specified functional properties to then be synthesized or isolated in the laboratory. For crystal
structure generation, a key bottleneck lies in developing suitable atomic structure fingerprints or
representations for the machine learning model, analogous to the graph-based or SMILES
representations used in molecular generation. However, finding data-efficient representations that
are invariant to translations, rotations, and permutations, while remaining invertible to the
Cartesian atomic coordinates remains an ongoing challenge. Here, we propose an alternative
approach to this problem by taking existing non-invertible representations with the desired
invariances and developing an algorithm to reconstruct the atomic coordinates through
gradient-based optimization using automatic differentiation. This can then be coupled to a
generative machine learning model which generates new materials within the representation space,
rather than in the data-inefficient Cartesian space. In this work, we implement this end-to-end
structure generation approach using atom-centered symmetry functions as the representation and
conditional variational autoencoders as the generative model. We are able to successfully generate
novel and valid atomic structures of sub-nanometer Pt nanoparticles as a proof of concept.
Furthermore, this method can be readily extended to any suitable structural representation,
thereby providing a powerful, generalizable framework towards structure-based generation.

1. Introduction

Finding materials with specified functional properties is a central goal in materials discovery and design,
with important scientific and economic implications [1–3]. However, exhaustively evaluating materials
within the accessible chemical space is often impractical, whether it is through experiments or computational
simulations [4]. As an alternative to this high-throughput screening [5], another tactic has been to design
materials from the ground up with an explicit goal of meeting a target functionality [6–9]. This ‘inverse
design’ approach has the capability of greatly speeding up materials design by significantly reducing the
candidates to test to only those which are likely to exhibit the desired properties.

In developing methods to generate new solid-state materials, it is not sufficient for the method to only
provide the chemical composition of the material, but it should also specify its three-dimensional atomic
structure as defined by their Cartesian coordinates [10, 11]. The structure plays a key role in the property of a
material, determining whether is it biologically viable as a drug, if it can catalyze a certain reaction, or if it
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Figure 1. Scheme comparing direct generation of Cartesian coordinates versus a two-stage approach of generating within the
representation space.

can become superconducting, for example [12, 13]. Traditionally, a host of algorithms have been developed
for crystal structure prediction for a given composition by evaluating the atomic positions sampled through
Bayesian optimization [14], genetic algorithms [15], swarm-based optimization [16], and others [17].
However, efficiently finding global minimum solutions to the atomic structure remains difficult for high
dimensional problems. Here, generative models [18–23] provide an attractive data-driven solution for
inverse design due to their ability to learn the distribution of the chemical space that underlies a given
functionality and then to efficiently sample from this distribution to predict new compounds.

While machine learning approaches can potentially offer a clear advantage, the problem of generating
atomic structures with machine learning remains a challenging one, due to the Cartesian coordinates lacking
the necessary rotational, translational, and permutational invariances for both efficient training and
generation (figure 1) [8, 24, 25]. Consequently, a number of approaches have been implemented to
circumvent this limitation by sequentially building structures atom-by-atom [26, 27], applying an
optimization process on pre-initialized positions through learned gradients [28–30], or by generating an
intermediate representation which are then reconstructed back to their positions [20, 31–34].

We focus our discussion on the representation generation strategy as one of the most widespread
approaches currently and allows for a direct one-shot sampling strategy without the need for iterative
refinement. The most representative examples are those use in molecular generation, where the models
generate representations in the form of strings such as SMILES [21] or as molecular graphs, which are then
encoded back to the actual molecule. However, approaches using these representations do not explicitly
encode the three-dimensional structure, and so have not been used beyond molecular systems. In going
beyond molecular generation, choices remain limited as to which three-dimensional representations can be
used, as they either satisfy the requisite invariances or are invertible, but rarely at the same time. One recent
approach uses the radial distribution function as the representation to generate, however they are not directly
invertible [35]. Currently, the most common invertible examples use image or voxel-based representations
where atoms are projected onto a three-dimensional grid [20, 31, 33]. Newly generated samples are then
reconstructed from the voxel representation space back to their atomic positions. These approaches still
suffer from disadvantages due to their lack of rotational invariances, lack of periodicity, high memory costs,
and an unavoidable reconstruction loss due to the finite resolution of the grid.

Meanwhile, a large family of non-invertible structure representations satisfying these invariances have
been developed over the years for use in machine learning potentials, such as the Behler-Parinello
atom-centered symmetry functions (ACSF) [36], the smooth overlap of atomic positions (SOAP) [37], and
others [24, 38]. While they can be extremely effective in capturing structural information for regression
(i.e. the prediction of energy and forces), the lack of a closed-form solution to compute the Cartesian
positions back from the representation had precluded its use in generative models up to this point. In this
work we propose to use an iterative approach to solving for the positions which can be applied to any
differentiable structure representation, thereby enabling them for use as the outputs of generative models.
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A recent work has also adopted a similar concept towards treating inversion as an iterative optimization
problem [39]. The central appeal in this approach lies in leveraging existing and highly efficient
representations for structure generation, rather than attempting to design new representations which are
often limited in effectiveness due to the condition of invertibility.

2. Methods

2.1. Reconstruction algorithm
To reconstruct the atomic structure from a given representation, we treat it as a global optimization problem
where the Cartesian positions of the atoms are the variables to be optimized and the objective is to minimize
the difference or the loss function between the representation of the target structure and the ground truth
solution (figure 2). This is often a challenging problem where the global minimum cannot be easily found,
especially for cases with many local minima. To significantly reduce the number of evaluations, we accelerate
the optimization using gradients obtained from automatic differentiation, where the derivative of the loss
function is taken with respect to the atomic positions. This assumes the representation is a function of the
positions and is differentiable, which is almost universally true for these classes of structure representations.
This yields a structure reconstruction workflow as follows. Given a representation R (to be reconstructed into
Cartesian positions), the number of atoms N and the cell lattice parameters C, a separate set of atomic
positions x are first randomly initialized with the same N and C. From the initialized positions, its
representation R∗(x) is computed, and the loss L between R and R∗ can be obtained. Here, both R∗(x) and
L(R∗, R) are auto-differentiable functions, which allows us to obtain the derivative of L(R∗, R) with respect
to x. The positions x are then updated as x’ with an optimizer using the gradients sx calculated via
auto-differentiation. The procedure is repeated with R∗(x) until a convergence criterion is met. The overall
process is outlined in algorithm 1 and figure 2.

2.2. Representation of chemical environment
For a demonstration, we choose the classic ACSF [36] to compute the representation R. In this work, R is a
concatenation of the outputs of the radial ACSF function G [2] and the angular ACSF function G [5]:

G2
i =

∑
j
e−η(Dij−Ds)

2

· fc
(
Dij

)
(1)
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all∑
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Here, Dij refer to the distances between atoms i and j, and θijk refer to the angles between atoms i, j, and k.
A cutoff function f c is used where values become zero beyond the cutoff radius. The parameters, η, Ds, λ,
and ζ , for the symmetry functions used in this work are provided in the supplementary information.

The ACSFs are able to provide local representations of each atomic environment, however a
permutationally invariant global representation is desired for use in the generative model. To address this
limitation, we then aggregate the representations over each atom in the system using max and min pooling.
This method was chosen over simple averages to allow for greater variations in the values of R between
structures, though other aggregation methods may also be used which are not exhaustively explored in this
work. The final expression for R is then:

R=
[
maxNi=1G

2
i ,maxNi=1G

5
i ,minNi=1G

2
i ,minNi=1G

5
i

]
. (3)

The ACSF functions were written in Pytorch [40] to calculate the gradients via auto-differentiation,
which was based on an existing python implementation [41]. For the loss function L(R∗, R), we use the
mean absolute error (MAE) loss. We then use a gradient descent optimizer, Adam, to update x using sx. The
Adam optimizer [42], which implements adaptive learning rates for each variable being optimized, has been
highly effective in training neural network models and was found to be similarly effective for our problem.

It is important to note that with gradient descent alone, it is likely that converged solutions for x may fall
into one of many local minima rather than the global optimum solution. Therefore, we incorporate multiple
initializations with several ‘hops’ within each initialization to more effectively sample through the local
minima. Finally, the solution with the lowest loss is chosen, and the reconstructed atomic structure is then
defined using the optimized x, and the constant C.
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Algorithm 1. Structure reconstruction from its representation via gradient-based optimization.

1: Input: representation R, the number of atoms N and (optionally) the dimensions
of the periodic cell lattice parameters C

2. while initializations < max_ initializations do
3: Randomly initialize a set of Cartesian positions {xi}Ni=1 within C
4. while hops < max_hops do
5: while iterations < max_iterations do
6: calculate R∗(x)
7: calculate L (R∗, R)
8: obtain gradients sx from L (R∗, R) using automatic differentiation
9: use sx to update x to x’ with optimizer
10. Add noise to x’ to push positions out of local minima
11. Select x’ with the lowest L (R∗, R)
12: Construct crystal structure with x’ and C

Figure 2. Scheme of the optimization algorithm for reconstructing Cartesian positions x from representation R.

2.3. Generative model
For the generative model (figure 3), we use a conditional variational autoencoder (cVAE), which learns a
Gaussian distributed latent representation z conditioned on y, following the approach by Sohn et al [43]. A
loss function containing a reconstruction loss and a Kullback–Leibler loss is minimized in the training. Note
this is not the same reconstruction loss referenced elsewhere in the work, which is associated with mapping
the positions back from the representation. An additional parameter, beta, is used to adjust the weight of the
two loss values [44], which was set to be 0.75 with respect to the Kullback–Leibler loss. Here we use a cVAE
with three hidden layers, a hidden dimension of 128, and a latent dimension of 25. The model was trained
with the Adam optimizer with an initial learning rate of 0.001 for 2000 epochs and with a batch size of 64.

To quickly evaluate the generated samples for their formation energy, a surrogate model is trained which
takes in R as the input, avoiding the need to first perform reconstruction to obtain x. The model is a
feed-forward neural network with five layers and a hidden dimension of 256. The model was trained with the
Adam optimizer with an initial learning rate of 5× 10−4 for 2000 epochs and with a batch size of 256. The
training dataset was comprised of 100 000 structures described below, and the model obtains a MAE of
0.0028 eV/atom on the test split. We find this accuracy to be sufficiently high to provide initial estimates of
the quality of the generated samples.

The training data for the cVAE consists of a set of Pt10 nanoclusters with various structural
configurations. The structures are obtained from density functional theory (DFT) optimizations of
randomly initialized geometries; both the local minima as well as intermediate structures in the optimization
are used in the dataset. The target property for this dataset is formation energy in units of eV/atom, which
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Figure 3. Overall scheme of the process, training, and generation steps for the end-to-end generation of new structures.

are also obtained from the DFT calculations. Structures with a formation energy from 0 to 3.7 eV/atom were
chosen. The formation energy is defined as

Eform = (Etotal −N · Ebulk)/N (4)

where Ebulk is the energy per atom of Pt in the bulk state and Etotal is the total energy of the Pt10 system. From
this overall dataset of approximately 100 000 structures, three sub-datasets are created by sampling from the
total dataset using furthest point sampling based on their computed R to yield datasets containing 30 000,
3000, and 300 structures (see figures S1–S3 in supplementary information). An 80:20 training to validation
ratio is used.

The DFT calculations were performed using the Vienna Ab Initio Simulation Package [45, 46]. The
Perdew–Burke–Ernzerhof [47] functional was used for electron exchange and correlation energies. The
projector-augmented wave method was used to describe the electron-core interaction [45, 48]. A kinetic
energy cutoff of 450 eV was used. The electronic convergence criterion was set to 1× 10−6 eV. All
calculations were performed without spin polarization. The Brillouin zone was sampled at the Gamma point
only. A cubic cell of 17 Å was used to prevent interactions between periodic images.

3. Results

3.1. Validation of reconstruction algorithm
We first validate the effectiveness of the proposed reconstruction method outlined in algorithm 1 for the
ACSF representation on a wide range of artificial and realistic atomic structures. Here, the aim is to obtain
atomic positions which are as close to the ground truth material using only their ACSF representation.
Starting with examples of reconstructing non-periodic geometric structures (figure 4), we find the
reconstruction algorithm is generally able to find solutions which are nearly identical to the ground truth. In
certain cases, the reconstruction loss can be reduced to within numerical error, while in others, minor
distortions can still be perceptible (structure (D) in figure 4). Next, we move to reconstruction for periodic
and multi-elemental structures. Periodicity is incorporated in the ACSF representation by following the
minimum image convention when calculating distances and angles. For systems with more than one
element, the canonical ACSF treats each atomic pair and triplet separately, and the system is then initialized
with the same unit cell chemical formula as the ground truth structure. Here, we find the algorithm can
obtain a nearly identical crystal structure (albeit translated in space) for the six examples in figure 5, ranging
from simple binary and ternary compounds to more complex cases containing molecular species
(structure (E)) and layered materials (structure (F)). As the algorithm cannot guarantee finding the global
minimum solution, ten trials with five hops each were performed for each structure, and the solution with
the lowest L(R∗, R) was selected. We note that while for more complex structures containing large numbers
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Figure 4. Reconstruction performance for examples of geometric structures, with the ground truth structure on the left and the
reconstruction on the right. Examples shown for a (A) cube, (B) icosahedron, (C) dodecahedron, (D) humanoid, (E) decagon,
and a (F) hexagonal sheet.

Figure 5. Reconstruction performance for examples of realistic crystal structures, with the ground truth structure on the left and
the reconstruction on the right. Examples shown for (A) rutile TiO2, (B) cubic NaCl, (C) Heusler MnAlCu2, (D) pyrite FeS2,
(E) perovskite CH3NH3PbBr3, and (F) layered Ni(HO)2. Supercells are displayed to ease visual comparisons.

of atoms, more trials may be necessary, in practice these settings were sufficient for all the examples shown in
figures 4 and 5.

3.2. End-to-end generation
To demonstrate a fully end-to-end generation process, we formulate a task of generating structures of Pt10
nanoparticles based on a property metric of formation energy, a measure of their thermodynamic stability.
Sub-nanometer Pt nanoparticles have been studied extensively and are known to exhibit a high degree of
structural fluxionality with important implications for catalysis. The formation energy of these systems is
highly sensitive to even minor changes in structure and is quantum mechanical in nature, which cannot be
captured by simple pair-wise interaction models resulting in complex potential energy surfaces. This
therefore serves as a challenging benchmark task for structure generation due to their complex
structure-property relationship and high sensitivity to errors in the generation or reconstruction process.
Three training datasets of 30 000, 3000 and 300 data points are compiled from a larger dataset containing
various Pt configurations and their DFT-computed formation energies.

A cVAE is then trained to serve as a generative model for new samples within the representation space R,
conditional on y, the formation energy. The generated samples are then evaluated with a surrogate model
trained directly on R to predict y. Table 1 shows the MAE and percent within range performance of the cVAE
over 10 000 generated samples for the three training dataset sizes. Starting with the largest 30 000 dataset, the
cVAE does particularly well for generation, with nearly 100% of the samples being within±0.1 eV/atom of
the targeted formation energies ranging from 1.9 to 3.7 eV/atom. To investigate the data efficiency of this
approach, smaller datasets of 3000 and 300 data points are also used to train the model and compared.
Remarkably, the generation performance remains strong even using only 300 training samples, and on
average 80% of the generated samples falls within±0.1 eV/atom of the target value with respect to the
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Table 1. Performance of the generated R for different training data sizes compared to a surrogate model.

n= 30 000 Training data n= 3000 Training data n= 300 Training data

Target Value
(eV/atom)

Mean
absolute error
(eV/atom)

Percent within
±0.1 eV/atom

Mean
absolute error
(eV/atom)

Percent within
±0.1 eV/atom

Mean
absolute error
(eV/atom)

Percent within
±0.1 eV/atom

1.90 0.05 96.78 0.07 75.68 0.06 87.68
2.20 0.02 99.98 0.03 99.24 0.05 89.75
2.50 0.01 99.91 0.03 98.77 0.05 88.94
2.80 0.03 99.72 0.04 96.39 0.06 82.23
3.10 0.03 99.20 0.04 94.92 0.07 73.32
3.40 0.03 99.00 0.05 89.93 0.08 64.53
3.70 0.08 84.50 0.09 70.19 0.08 75.72

Figure 6. Principal component analysis of R for the dataset and generated samples at (A) y = 1.9, (B) y = 2.8 and (C) y = 3.7.

surrogate model. This performance suggests ACSFs to be an effective and efficient representation for
generative models, which can likely be attributed to the inclusion of the translational, rotational and
permutational invariances within the representation.

3.3. Visualization of generated representations
In addition to being able to generate samples which are accurate with respect to the target property, the
samples must also be sufficiently unique and diverse. In our present work for Pt nanoparticles, as they all
share the same composition and number of atoms, the diversity should be evaluated solely from the
variations in atomic structures. Since it is difficult to define a specific threshold for which two structures are
considered unique from one another, we instead adopt a visual approach for qualitatively determining
diversity using dimensionality reduction. Samples which are less diverse would appear to be localized in the
same region of the reduced dimensional space, but be spread out for more diverse samples. We plot the
generated R at several selected formation energy values, taking the first two principal components from a
principal component analysis (PCA). We perform this analysis for the smallest dataset with 300 training
data. As shown in figure 6, there is a large spread in the principal components of the generated samples (red
squares) for y = 1.9, 2.8 and 3.7 eV/atom targets, demonstrating a high degree of diversity. These samples are
also unique with respect to the training data (green circles), which only sparsely covers the space of the full
100 000 dataset (black circles). This suggests the cVAE model, having learned a continuous, low-dimensional
latent representation of the chemical space, can now successfully populate that space with novel samples. We
note for y = 1.9 many generated samples fall outside of the distribution of both the training data and the full
dataset within the range of 1.8⩽ y ⩽ 2.0 (blue circles). These we hypothesize will result in ‘invalid’
representations and are likely due to the low number and proportion of training samples available in that
range of y, which will be discussed further. Here, we define ‘invalid’ representations as those which cannot
encode back into a structure in the Cartesian space; in other words no solution for the atomic positions exists
which results in a zero, or sufficiently low, reconstruction loss.

The generated representations are then reconstructed back to Cartesian positions using algorithm 1. The
reconstructed atomic structures are subsequently validated with DFT to obtain their true formation energy
(y) values. No further optimization, screening or down-sampling is applied here to provide the raw
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Table 2. Performance of the reconstructed samples compared to DFT.

n= 30 000 Training data n= 3000 Training data n= 300 Training data

Target value
(eV/atom)

Mean
absolute error
(eV/atom)

Percent within
±0.1 eV/atom

Mean
absolute error
(eV/atom)

Percent within
±0.1 eV/atom

Mean
absolute error
(eV/atom)

Percent within
±0.1 eV/atom

1.90 0.30 0.0 0.43 0.0 0.54 0.0
2.80 0.14 36.00 0.12 49.00 0.18 22.00
3.70 0.15 36.00 0.13 50.00 0.15 49.00

Figure 7. Randomly selected samples of real structures and generated structures for y = 1.9.

performance of this generation and reconstruction process. We perform this process on 100 generated
samples for y = 1.9, 2.8 and 3.7 eV/atom for each of the three models, with the results shown in table 2. We
find mean absolute errors for the structures to be consistently higher once reconstructed back to their
positions, as compared to table 1. This discrepancy is likely a combination of several key factors. First, there is
an inherent error or reconstruction loss when going from the representation to the structure due to finding
the exact global minimum solution. Second, the MAEs obtained in table 1 are calculated from a surrogate
model trained on R, which has its own inaccuracies. Third, it is possible to generate ‘invalid’ representations
which do not encode into a valid structure. Of these factors, we hypothesize the third one to have the
strongest impact, given the strong reconstruction performance (figures 4 and 5) and the reasonable accuracy
of the surrogate model (figure S8). This was observed earlier in figure 6 where some of the generated samples
fall outside of the range of principal component values of the full dataset of valid representations (black
circles). A much higher proportion of generated samples fall outside this range for y = 1.9, and
unsurprisingly the post-reconstruction performance is also much lower for y = 1.9 than the other two target
values. We also find a convergence in performance from 3000 to 30 000 training data, where the MAE and
percentage within range are roughly similar, or even slightly worse for the larger training data case. As the
model, ACSF, and training hyperparameters are fixed for all three dataset sizes with an emphasis on the
n= 300 case, it is likely that a better performance could be obtained. However, we leave this to a future study
given the current focus on data efficiency in this work.

A random selection of some real and generated structures from the studies in table 2 are visualized in
figures 7–9. For y = 1.9 eV/atom, the real samples show distorted globular structures which are largely
captured in the generated structures but are also flatter with more planar motifs than the real structures. For
y = 2.8 eV/atom, the real samples are more diffuse and line-like (being less stable and thus having higher
formation energies) with partially dissociated atoms which is also found in the generated samples. For
y = 3.7, the real samples are almost completely dissociated with many isolated atoms, and the generated
samples follows a similar pattern. For all cases, the high diversity of the generated structures can be visually
observed, with little discernible overlap in structure between the randomly chosen samples, and consistent
with the PCA plots in figure 6. A limitation in the conditional generation performance can be readily seen for
y = 1.9, where the generated structures lack the same degree of globularity and deviate noticeably in their
computed energies from the target.
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Figure 8. Randomly selected samples of real structures and generated structures for y = 2.8.

Figure 9. Randomly selected samples of real structures and generated structures for y = 3.7.

4. Discussion and conclusion

Here we provide a novel demonstration of an end-to-end generation of atomic structures following a
two-step process, where materials are generated within the representation space in the first step and
reconstructed to their Cartesian positions in the second step. We developed a reconstruction algorithm
utilizing automatic differentiation which can be applied to any continuous and differentiable representation,
where gradient-based optimization is performed find the optimal solution of positions. Using this algorithm,
it is now possible, for the first time, to generate materials in the form of non-invertible representations such
as ACSFs. Consequently, many other representations with the necessary structural invariances such as SOAP,
atomic cluster expansion, Faber–Christensen–Huang–Lilienfeld, and many body tensor representation can
potentially be leveraged for generative modelling in the future. The capacity for these representations to
effectively capture structural changes in an invariant manner will likely make training the generative models
highly data-efficient, as demonstrated in this work by the ACSF example. In addition, the current approach is
also model agnostic, such that other generative models can be easily adapted for this problem, such as
generative adversarial networks, normalizing flows, energy-based models, and diffusion models which could
likely provide additional improvements in performance.

Within this general approach, samples with varying atomic sizes or elemental compositions can also be
generated together. A few potential approaches are envisioned to incorporate these additional dimensions in
future studies. One such approach is to train the generator to provide the numbers of atoms and chemical
formula in addition to the representation, and these values are then used to initialize the atoms. With this
information, the reconstruction algorithm can be performed for the positions without further changes, given
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the current approach can already work with different sizes and elements as shown in figure 5. Alternatively, a
representation which encodes the atomic number and elemental identities can be used, and the
reconstruction process can treat these quantities as variables in the optimization process
itself.

Certain weaknesses may also be present in this approach due to the need to reconstruct from the
representation to the Cartesian coordinates. First, the reconstruction may fail to yield a good solution with a
low reconstruction loss. Although there is no upper bound to the reconstruction accuracy as present in
image or voxel-based methods due to a finite grid, the optimization algorithm may still become stuck in a
local minimum, particularly for systems with larger numbers of atoms. Algorithmic improvements to the
global optimizer can help avoid these occurrences, however a simple solution to the problem would be to
simply discard the samples with high losses. Second, it is possible have ‘invalid’ representations which do not
encode a valid set of atomic positions, which is a well-known problem present in other representation
generation methods such as SMILES to molecules. Fortunately, these cases can be readily identified by having
a high reconstruction loss and can be discarded, or alternatively constraints can be placed on the generator to
avoid generating invalid samples. Finally, in the current implementation, reconstruction scales poorly with
system size both due to the difficulty in global optimization, as well as the increase in computational time
needed for automatic differentiation in each step of the optimization. For the current example of Pt10, and
for solid state materials design problems containing under approximately 100 atoms per crystal structure,
this does not present a significant problem. However, for the generation of much larger systems, further
algorithmic improvements may be needed for better scalability.

We anticipate further advancements in these directions will extend this approach to generation towards
the full chemical space containing both composition and structural changes in the materials. The
data-efficient nature of representation-based generation can also help overcome a critical data bottleneck in
solid-state materials generation, due to the sparse sampling of the chemical space (compared to molecular
systems) in existing experimental or computational datasets. Structure-based generation will also be
important for closing the loop in materials discovery, in concert with structural characterization techniques
such as x-ray and neutron spectroscopy, diffraction, and electron microscopy.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
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