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Abstract
Graph neural networks (GNN) are very popular methods in machine learning and have been
applied very successfully to the prediction of the properties of molecules and materials. First-order
GNNs are well known to be incomplete, i.e. there exist graphs that are distinct but appear identical
when seen through the lens of the GNN. More complicated schemes have thus been designed to
increase their resolving power. Applications to molecules (and more generally, point clouds),
however, add a geometric dimension to the problem. The most straightforward and prevalent
approach to construct graph representation for molecules regards atoms as vertices in a graph and
draws a bond between each pair of atoms within a chosen cutoff. Bonds can be decorated with the
distance between atoms, and the resulting ‘distance graph NNs’ (dGNN) have empirically
demonstrated excellent resolving power and are widely used in chemical ML, with all known
indistinguishable configurations being resolved in the fully-connected limit, which is equivalent to
infinite or sufficiently large cutoff. Here we present a counterexample that proves that dGNNs are
not complete even for the restricted case of fully-connected graphs induced by 3D atom clouds. We
construct pairs of distinct point clouds whose associated graphs are, for any cutoff radius,
equivalent based on a first-order Weisfeiler-Lehman (WL) test. This class of degenerate structures
includes chemically-plausible configurations, both for isolated structures and for infinite structures
that are periodic in 1, 2, and 3 dimensions. The existence of indistinguishable configurations sets
an ultimate limit to the expressive power of some of the well-established GNN architectures for
atomistic machine learning. Models that explicitly use angular or directional information in the
description of atomic environments can resolve this class of degeneracies.

1. Introduction

Point clouds can be used to provide an abstract description of shapes, and objects across different length
scales [1, 2], and have been widely used in the construction of machine-learning models for computer vision
[3], remote sensing [4] and autonomous driving [5]. A description in terms of an unordered set of points is
relevant also at the atomic scale, where molecules and materials are most naturally characterized in terms of
the position and nature of their atomic constituents. The list of Cartesian coordinates of points, however,
does not reflect the fact that the properties associated with a given structure are usually invariant, or
equivariant, to symmetry operations such as rigid translations, rotations, or permutation of the ordering of
the points. In the context of atomistic simulations, the problem of describing a structure in a
symmetry-adapted manner has been a central concern in early applications of machine-learning models
[6–8], and has since given rise to the development of a large number of representations that attempt to
characterize fully a structure while simultaneously fulfilling the requirements of symmetry [9].

In fact, deep connections are present between most of the existing frameworks [10], that differ in
implementation details but can be understood as describing structures in terms of unordered lists of
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Figure 1. Examples of structures (a), (b), or environments (c), (d) that are distinct but cannot be discriminated by the unordered
list of distances or distances and angles between the points. (a) The two tetrahedra share the same list of pair distances {rij}i,j∈A,
as per color coding. (b) The two structure share the same list of pair distances, and in addition the list of distances of each atom
relative to its neighbors {{rij}j∈A}i∈A. (c) The two environments share the same list of distances and angles relative to the central
(gray) atom, {(r1j, r1j ′ ,r1j · r1j ′ )}j,j ′∈A. (d) The two environments share the same list of distances, angles and tetrahedra
{(r1j, r1j ′ , r1j ′ ′ ,r1j · r1j ′ ,r1j · r1j ′ ′ ,r1j ′ · r1j ′ ′ )}j,j ′,j ′ ′∈A around the central (gray) atom. The example (a) is taken from [13], while
(b)–(d) are from [11] .

distances, angles, tetrahedra, etc within atom-centered environments, corresponding to correlations between
2, 3, 4, ν neighbors of the central atom. This systematic study has revealed that—at least for low values of
ν—atom-centered representations are incomplete, i.e. there are pairs of structures that are distinct, but
contain environments that are indistinguishable based on the unordered list of distances and angles [11],
affecting also the ability of the representation to resolve local deformations of certain structures [12].

This issue is also closely related to classical problems in invariant theory [14], that aim to determine
under which conditions two point clouds can be unequivocally identified by the unordered list of distances,
or distances and angles. If a set of features cannot discriminate two structures, any metric [15, 16] built on
those features will not be able to distinguish them. Furthermore any model built on those features—no
matter how sophisticated—will be unable to learn their properties or to classify them in different categories,
and will be limited in its expressive power. The actual impact of these degeneracies on machine-learning
models of atomic and materials properties is mitigated by the fact that structures that contain problematic
environments usually also contain others that are not degenerate, and so a model that simultaneously uses
information on all centers can still distinguish the structures [17]. For instance, all structures in figure 1
except for (b) can be discriminated by knowledge of the set of unordered lists of distances rij = |ri − rj|
around each point (i.e. taking {{rij}j∈A}i∈A). Still, there is evidence that the incompleteness of atom-density
representations does affect the ultimate performance of the machine-learning models built on them [11].
This is therefore an issue of practical, and not only theoretical, relevance, which is one of the factors driving a
transition towards systematically-improvable features with higher correlation order [10, 18–20].

In the broader context of models based on point clouds, graph neural networks (GNN) have been used
extensively to describe the relative arrangement of points, mapping the cloud onto a graph [3, 21]. In the case
of atomistic models, most well-established GNN frameworks treat atoms as the vertices of the graph, labeled
by their chemical identity, and the edges are associated with the distances between them [22–24]. Even
though this class of ‘distance graph’ NN (dGNN) only uses information on the distances between points, the
way this is combined in the subsequent steps of the network allows for very flexible models with considerable
descriptive power. One simple but compelling example is given in figure 2. By applying a dGNN to a set of
triangular configurations, one can predict the angles even though the network uses only distance
information. As we shall see, this is not generally true: for configurations with many points it is not always
possible to infer angular information using a dGNN.

It is well-known that for general discrete graphs it is possible to build pairs of items that are distinct, and
yet indistinguishable by most traditional GNN [25]. This has triggered the development of higher-order
graph networks [26, 27]. Examples of actual chemical structures that cannot be distinguished by a dGNN can
also be obtained if one considers a finite cutoff [28, 29]. To the best of our knowledge, however, no examples
have been shown of 3D point clouds whose fully-connected, distance-labeled graphs cannot be resolved by a
dGNN. In fact, with a sufficiently long cutoff in the construction of the graph, dGNNs can discriminate
between all examples of environments that are degenerate under ν = 1,2,3 atom-centered descriptors shown
in figure 1, as well as those in [28, 29], suggesting a higher descriptive power than atom-centered descriptors.
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Figure 2. A simple demonstration of the ability of dGNN to encode information beyond interatomic distances. The parity plot
demonstrates that SchNet can learn the angles associated with the vertices of triangles with variable shape, despite using only
distances as inputs.

Here we present a class of point clouds involving pairs of structures that are not distinguishable by dGNN,
irrespective of the cutoff chosen in the construction of the molecular graph. We show that this construction
includes also configurations that correspond to realistic chemical structures, and demonstrate how for these
configurations there is a limit to the accuracy that can be reached by this class of models.

2. Weisfeiler-Lehman test for geometric GNNs

The Weisfeiler-Lehman (WL) test is a well-known graph-theoretical procedure [30, 31] that provides a
sufficient condition for two graphs being distinct, and that has been shown to be equivalent to an assessment
of the resolving power of several classes of GNNs [25, 32, 33]. Here we use a version of the test that
incorporates explicitly the distances between nodes in the construction of the edge identifiers, and is similar
in spirit to the construction of graph kernels in [34]. Given a set of n nodes with labels, {li}i=1...n, and
distances between them and their neighbors {rij}, we construct fingerprints of each node as the multiset of
label/distance pairs, supplemented with a label for the node

hi = hash(li,{{(lj, rij)}}j=1...n). (1)

The hash function assigns a unique identifier to distinct multisets. The values of the hashes are then used to
re-label the nodes, and the procedure is iterated: the process of encoding in the node labels the structure of
the neighborhood and then iterating the procedure has a clear analogy with message passing constructs.
Returning to the example in figure 2, it should now be clear how, for a triangle, a dGNN can learn angular
information. After two iterations, the node descriptors for each of the vertices contain information not only
on the two distances to the first neighbors (e.g. for vertex A, rAB and rAC), but also on the fact that the
neighbors have a further neighbor at a certain distance (e.g. rBC), which is all the information needed to
reconstruct the angles. Usually (but not always) the iterative procedure converges to fixed values of the vertex
labels; if the multisets of hashes that characterize two graphs are identical, the graphs cannot be distinguished
by this distance-decorated WL test, and will not be discriminated by a geometric dGNN that uses only point
labels and pair distances to characterize graph neighborhoods.

Figure 3 shows an example, adapted from [25], of a pair of configurations whose distance-decorated
graphs cannot be distinguished by a WL test provided that the graph only includes first-neighbor distances.
Several analogous examples have been shown for different types of CNNs [28, 29], where the use of a finite
cutoff in the construction of the molecular graph affects the resolving power of the network. As shown in the
figure, however, increasing the cutoff distance to include further nodes in the definition of the graph is
usually sufficient to distinguish the structures. In what follows, we will discuss a counterexample that cannot
be resolved by simply using a bigger cutoff: a family of structures that fail the WL test even when considering
their fully-connected molecular graph.
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Figure 3. An example of a pair of point clouds which are clearly different, but have a graph that is indistinguishable by the
Weisfeiler-Lehman test, if the graph is built based on a first-neighbor cutoff (full red lines). Increasing the cutoff to include the
second neighbors (dashed orange lines) clearly allows discriminating between the two configurations.

3. A counterexample

Consider the construction in figure 4(a). Six points, with labels that are identical in pairs, are arranged
following the pattern in the figure, forming two structures, A+ and A− with

C± = (p/4, cy,±cz)
W= (p/2,wy,wz)
V= (vx,vy,0)
□ ′ = (p/2+□x,□y,−□z)

(2)

where the last definition indicates the relation between plain and primed points. The structures are periodic
along the x axis, with a period p, and have open boundary conditions along y and z. After one iteration of the
modified WL procedure discussed in section 2, one sees that the unordered set of distances for V/V ′,W/W ′,
C/C ′ pairs are identical, so that the plain and primed points will receive the same hash value, and the two
graphs cannot be discriminated by the test despite being different (figure 4(b)). The essential
ingredient to induce a degeneracy is the swapping of the distances between C andW points, i.e. that
d(C+,W) = d(C−,W ′) and d(C+,W ′) = d(C−,W), which changes the geometry of the structures but does
not affect the outcome of the WL test, that relies only on the unordered set of distances. This swap, which can
be clearly seen by plotting the distance matrix, is a consequence of the regular spacing of the points along the
x axis and the periodic boundary conditions. Distances between the C points and theW points to their left in
the A+ structure correspond to distances between the C points and theW points to their right in the A−

configuration. A more thorough discussion of the role of periodicity is also given in appendix A, which deals
with the 3D-periodic case.

It is important to stress that even though we only show minimum-image distances in the figure, the
graphs generated by the periodic structure are degenerate even when considering a fully-connected graph,
including all distances between periodic replicas. Thus, the effectiveness of the counterexample is
independent on the details of the definition of the graph neighborhoods, and it equally affects cases in which
one only considers the neighbors within a fixed cutoff distance, or just the first k neighbors. The WL
procedure is a very powerful test to differentiate graphs based on first-order connectivity information.
Failure in distinguishing graphs based on the WL test indicates that the pairs are equivalent for a broad class
of pair-distance GNNs [22], that includes SchNet [23], convolutional-networks molecular fingerprints [35],
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Figure 4. (a) Two structures, A+, A− that generate pair-distance graphs that are indistinguishable based on a WL test. Both
structures are periodic along x, and the coordinates of the six points are given in the figure and in equation (2): the points have
the same label in pairs; V andW points are identical in the two structures, while C points are reflected relative to the xy plane.
Distances involving the C± points are highlighted, using a minimum image convention along the periodic direction. (b) Euclidean
adjacency matrices between the points in the A+ and A− structures. The two matrices differ only by the order of the C−W

distances. V and V
′
have the same set of edge distances, and so theW/W ′ and C±/C± ′ pairs: thus, from the point of view of the

WL test, there are only three types of nodes and the graphs are indistinguishable. (c) A pair of finite-dimensional degenerate
structures can be obtained by wrapping the period around the z axis and embedding the periodic structure in Euclidean 3D space.

molecular graphs convolutions [36], graph networks [37], and many others, which from a graph theoretical
perspective form a hierarchy of tests, all less powerful than the WL analysis [38]. As a special case, the A±

structures in figure 4(a) are also degenerate with respect to the full set of neighbor-distances multisets, which
means they are an example for which ν= 1 atom-centered features cannot discriminate globally between the
two structures. In this sense, this is a a much more difficult case than the degenerate tetrahedra in figure 1(a),
which have the same set of distances but can be easily distinguished when considering the triplets of distances
associated with the vertices, and of that in figure 1(b), which is globally undistinguishable by ν= 1
representations, but can be resolved by a dGNN.

This construction produces a pair of continuous manifolds of dimension 7 (and co-dimension 8,
discarding translations), and can be further generalized in several different ways. Arbitrarily many pairs of V
andW atoms, possibly with different labels, can be added to the two structures without breaking the
degeneracy. Each pair increases the dimension of the manifold by two and the codimension by four.
Structures of any size and complexity can be generated with this construction, even though the increase in
co-dimension suggests that they become less ‘dense’. One should keep in mind that the presence of
degenerate configurations affects the accuracy and numerical stability of ML models even for other
structures [39, 40]. From the point of view of the input features (or more broadly, the hidden representation
of a deep-learning framework), an overlap of two structures that should be distinct determines a distortion
that brings close together structures that should be far apart (figure 5(a)). From the point of view of
predicting properties, e.g. the potential energy of a molecule, the smoothness of the approximation is a key
requirement to ensure stability and transferability of the model, which is fulfilled by all practical
implementations. Thus, small deformations of a molecule should result in small changes of the target, and so
a degenerate model will predict similar values for all structures that are close to a pair of degenerate
configurations, even though they are not exactly degenerate (figure 5(b)).

As we discuss in appendix A, periodic boundary conditions can be added to the y and z axis without
lifting the degeneracy of the pairs. Intriguingly, it is also possible to ‘fold’ an arbitrary number P of repeat
units of the structure around the z axis, to obtain a pair of finite structures embedded in 3D Euclidean space
(figure 4(c)). If the coordinates in the x-periodic structure are {(xi,yi,zi)}, the position of the finite-size
structure are

ri = Pp/2π+ yi
θi = 2πxi/pP
zi = zi

(3)

in a cylindrical coordinate system. This coordinate transformation works because it maps equal distances in
the periodic structures to equal Euclidean distances in the finite configurations, and so it does not affect the
nature of the graphs, and their signature when subject to the WL test.
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Figure 5. (a) A cartoon depicting a representative path in coordinate space that joins a degenerate pair A± (left) and the
deformation it induces in the space of features/hidden representation of an incomplete model. (b) The geometric degeneracy
implies that the model makes the same prediction for ỹ(A+) and ỹ(A+). Smoothness implies that also structures that are not
strictly degenerate are affected.

4. Beyond distance-based GNNs

All of these structures are easily distinguished by incorporating information on the angles, so that any
scheme that contains at least 3-body descriptors, such as the smooth overlap of atomic positions (SOAP)
features [13], or atom-centered symmetry functions [6], are not affected by this counterexample. As a
consequence, higher-order GNNs [26], as well as many other deep learning approaches that incorporate
angular information (such as DimeNET [41] GemNET [42], REANN [43], ALIGNN [44], etc) are also
immune to these counterexamples, even though one cannot exclude that 3D counterexamples may be found
also for some of these architectures, given that it is known that general graphs that defy higher-order versions
of the WL test exist. Frameworks that can generate systematically arbitrary high-order correlation features
[10] (such as MTP [18], ACE [19], NICE [20], etc) can be shown to be provide a complete description of
interatomic correlations [9, 45] and are therefore, in the appropriate limit, symmetry-adapted universal
approximators [46]. Similarly, equivariant neural networks (such as Tensor Field networks [27], Cormorant
[47], etc) incorporate high-order correlation information by combining information on the interatomic
distance vectors, constraining the functional form of the messages in a way that preserves equivariance, and
achieve completeness in a very similar way as for the high-order correlation features [48].

The emergence of models which, in theory, have universal interpolating properties does not make the
search for this kind of pathological configurations less important. For example, they can help verify whether
the practical implementation of a ML scheme is consistent with its theoretical properties. Take for instance
the universal scalar framework of [49]. A universal approximator for vectorial functions of the coordinates of
natoms particles, that are equivariant in O(3) and invariant with respect to atom index permutations is
proposed in the form (equation 11 in the reference)

natoms∑
t=1

f(xt,x1, . . .xt−1,xt+1, . . . ,xnatoms)xt, (4)

where f is an arbitrary scalar function that is O(3) invariant, and invariant to the permutation of its
arguments past the first. The crux of problem, however, is how to implement in practice such a universal
symmetric scalar function. The example that is provided in section 7 of [49] uses a functional form that is
suitable to learn a restricted class of targets, but is not a universal approximator. The proof for the full
functional form is rather cumbersome, and we report it in appendix B, but the key problem is that the scalar
functions are written in terms of the multi-set of the elements of the Gram matrix, e.g. f({xi · xj}natoms

i,j=1 ), and
therefore cannot distinguish between the degenerate structures we introduce here, and neither between the
planar configurations in figure 1(c), that only differ by the order of the entries of their Gram matrix.
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Furthermore, provably universal equivariant frameworks are such in the limit in which they generate
high-order correlations—either explicitly or as a consequence of the stacking of equivariant layers [48]. It is
an interesting, and open, question whether a given order suffices to guarantee complete resolving power.
There is no reason to believe that the present family of degenerate structures is the only one that could be
realized, based on a similar idea of generating configurations in which some distance pairs are swapped. It
remains to be seen if a combination of the ideas we introduce here with those that underlie the
counterexamples [11] for atom-centered descriptors of order ν = 2,3 could allow constructing
configurations that are indistinguishable to convolutional schemes that also use angular (and possibly
dihedral) information.

5. Significance for chemical ML

The construction in figure 4 might seem somewhat contrived, but it is not difficult to use it to generate point
clouds that correspond to realistic targets for machine learning. Consider for example the case of predicting
the stability of molecular structures. Figure 6 demonstrates three pairs of degenerate configurations
corresponding to a water tetramer, that we obtained based on the expression for a finite structure (3) with
two repeat units. Structure A+

1 , in particular, is a mildly distorted version of the ground state configuration
of (H2O)4 [51], that we label as A0. The energies of these structures (which we computed at the B3LYP [52]
level, using PySCF [53]) are not absurd: the cohesive energies relative to four isolated H2Omolecules are
E+1 =− 0.92 eV, E−1 = 2.43 eV, E+2 = 0.39 eV, E−2 = 2.07 eV. These structures are part of a continuous
manifold of degenerate pairs: as shown in figure 7, simply modifying the parameters in the construction (2)
around these specific values generates hundreds of configurations with energies comparable with the
dissociation energy of the tetramer. In particular, one can also obtain pairs for which both structures are
below the cluster dissociation energy: we consider as an example the A±

3 structures, which have
E+3 =−0.65 eV, E−3 =−0.04 eV.

Thus, in the best-case scenario a distance-based GNN can only predict the energies of A±
1,2,3 with a root

mean square error (RMSE) of≈1.1 eV. For reference, the cohesive energy of the ground-state structure is
E0 =−1.45 eV, and the typical thermal energy at room temperature is 0.025 eV. Water oligomers have been
extensively studied as a way to understand the properties of the hydrogen bond network in water [54, 55],
that in turn influence the behavior of all chemical and biochemical phenomena that take place in solution.
From a modeling point of view, an accurate estimation of the energetics of two and three-molecule clusters is
important because it underlies the construction of very accurate interatomic models of the energetics of bulk
water, such as the MB-pol potential [56, 57] that adds to a polarizable baseline that captures long-range
interactions a series of short-range corrections based on fitting to high-end quantum calculations of dimers
and trimers. These terms are then computed by summing over all pairs or triplets of water molecules in the
system, so that even for a bulk configuration, one has to evaluate cluster energies.

In this context, the example we present is very relevant, in view of the growing interest in incorporating
explicitly four-molecule terms [58]. With this application in mind, we chose the data set used in training the
MB-pol potential [56, 57] to train models of the cluster cohesive energy, selecting 10 000 water dimers and
5000 water trimers by farthest-point sampling (FPS) [59], combined with 2000 water tetramers
configurations (FPS selected from a high-temperature Hamiltonian replica exchange simulation with a
confining potential, performed using i-PI [60] and the q-TIP4P/f forcefield [61]). Energies of all structures
were then computed with the same B3LYP setup as for the degenerate structures.

We show a comparison between a simple kernel model based on SOAP features [13] and the SchNet
framework [24], a GNN that has been very successfully applied to several chemical ML problems [62–66]. In
SchNet [24], each atomic environment Ai is associated with a feature vector ξ(Ai), that is initialized to values
that depend only on the chemical nature of the ith atom. These are updated with on-site operations, and
with interaction blocks that combine information on each of the neighbors according to

ξk+1
q (Ai) =

∑
j∈Ai

ξk
q(Aj)Wq(rij), (5)

whereWq(r) indicates a set of distance-dependent continuous filters, and ξk
q(Aj) indicates the features of the

neighbors from the previous iteration of graph convolution. This functional form incorporates only the type
of information associated with the distance-decorated WL test: the attributes of the neighbors, and scalar
attributes of the interatomic separation, that are combined in a permutation-invariant manner. SOAP
features, on the other hand, contain information on the angular relations between neighbors. Even though
we evaluate them by first computing an expansion of the neighbor density on spherical harmonics, and then
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Figure 6. A few configurations of a water tetramer that will be used as benchmarks. A0 is the ground state structure for the
tetramer [50]. A±

1 , A±
2 and A±

3 are three pairs of structures that correspond to two periods of the 3D motif of figure 4(c). The

geometries of the A+
1,2 structures have been obtained by a constrained minimization of the energy, while A±

3 have been obtained
by minimizing simultaneously the energies of both degenerate structures.

Figure 7. Scatter plot showing the energies (relative to the fully dissociated 4 H2O geometry) of several hundreds of cluster
geometries, obtained by finite changes of the parameters of the three structures shown in figure 6. For each pair of degenerate
conformers, a point is shown indicating the mean and the spread of the two energies. Points corresponding to A1,2,3 are shown as
black crosses, and a bar indicates the energies of the two structures in the pair. The dissociation limit and the energy of the
ground-state structure are shown as red and black dashed lines.

contracting the expansion coefficients to extract the rotationally-invariant components [13], SOAP features
can also be expressed in a form that highlights their dependence on neighbor-neighbor angles

ξq(Ai) =
∑

j,j ′∈Ai

Wq(rij, rij ′ ,rij · rij ′). (6)

We combine these features to build polynomial kernels k(Ai,Ai ′) = (ξ(Ai) ·ξ(Ai ′))
4, that are then used for

kernel ridge regression. We emphasize that we chose SchNet as a widespread GNN model, but any
distance-based GNN that has a discriminating power equivalent to (or lower than) a first-order WL test
would exhibit the same problem. Similarly, we use an SOAP-based Gaussian Approximation Potential as a
simple and well-understood scheme that incorporates explicitly angular information, but essentially any
framework that does so would be capable of resolving the A± degeneracies.

We use standard hyperparameters for both SchNet and the SOAP model (example scripts, full model
parameters and the training and test sets are provided in the Supplementary data). As shown in figure 8, the
difference in behavior between the two schemes is qualitative. Both models can reduce monotonically the
validation error on the n-mers dataset, but only the model that incorporates angular information can tell the
A± pairs apart, and can bring the errors for A±

1,2,3 below the theoretical limit that corresponds to predicting
for both structures the mean of E+ and E−. The figure also shows that the two models exhibit very different
performances, and that the SOAP-based kernel model yields a much larger error for A±

1,2,3 than for the test
set, which does contain structures with a similar energy range. It is difficult to conclusively determine the
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Figure 8. Learning curves for SchNet (red lines) and SOAP GAP (blue lines) models trained on a dataset of 2-, 3-, and 4-water
clusters. Full lines show validation error on a hold-out set of 2’000 structures, dashed lines the RMSE for the four A+

1,2 geometries.
The dotted black line corresponds to the ultimate limit for a dGNN that cannot discriminate between the degenerate pairs.

Figure 9. (a) A pair of configurations of ethene, C2H4, that cannot be distinguished by a dGNN. The structures are 1 eV less stable
than the minimum energy configuration (represented in cyan to visualize more clearly the distortion). (b) A pair of 3D-periodic
structures which cannot be distinguished by a dGNN. When interpreted as being composed by carbon atoms, their energies as
computed by DFT in the local density approximation lie about 2 eV atom−1 above the energy of cubic diamond. .

reason for these observations, that depend at least in part on the detailed setup of the two models, which we
have deliberately not optimized, because the qualitative observation of the failure of dGNNs is independent
on parameters or implementation details. One may hypothesize that structures that are only distinguishable
by angular information may be more challenging for a SOAP model—because of the higher complexity of a
three-body potential compared to pair terms. As for the dGNNs, even in the absence of structures that are
exactly degenerate, one can expect that the lack of resolving power is reflected in a slower convergence.
Structures that lie in the vicinity of a singularity can be distinguished by the dGNN, but only by sacrificing
the smoothness, and hence the data-efficiency, of the approximation (see also figure 5). This argument
provides a plausible, although not conclusive, explanation for the improvement in performance that is
observed when comparing dGNNs with frameworks that incorporate angular or directional information
[67], and is consistent with similar considerations that can be made to explain the saturation of learning
curves for SOAP-based models applied to a dataset containing structures close to two-neighbors degeneracies
(figure 1(c)) [11].

We conclude by reiterating that this is just one of many possible examples that can be realized using our
construction. Figure 9 shows a pair of ethene configurations that cannot be distinguished by a WL test. What
is more, it also shows a pair of bulk carbon structures that are indistinguishable. The existence of 3D periodic
structures that are indistinguishable even when using an infinite distance cutoff provides a clear
demonstration that the degeneracies are not simply explained by the presence of a small number of
interatomic distances. Rather, they are associated with the existence of periodicity and near-symmetries, so
that the distances that decorate the fully-connected graph contain redundant information that is not
sufficient to distinguish A+ from A−. We emphasize that we provide these structures as examples of

9
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configurations which defy dGNNs, and as a test to verify whether a given model can resolve the
counterexamples we discuss here. There is at least one continuous manifold of degenerate geometries, and it
is likely that a more thorough search, including the use of different chemical species, would lead to
conformers that are even closer in energy to the thermodynamically-stable conformations and phases.

6. Conclusions

The idea of combining a characterization of point clouds in terms of graphs, where points are vertices and
the connectivity is determined by point-to-point distances, with graph-convolution architectures has been
extraordinarily successful in a broad range of applications of geometric machine learning, and in particular
in the construction of deep models of chemical structures, that lend themselves naturally to such description.
Despite their simplicity, and despite the fact that general graphs that are indistinguishable based on
first-order GNN are known to exist, these frameworks have remarkable descriptive power for actual
molecular structures, that correspond to a special class of fully-connected graphs with edges decorated by the
distances between the atoms. For example, they are capable of discriminating between configurations that are
degenerate to widely used atom-centered representations. The previously known cases in which they fail to
distinguish two structures depended on the choice of a small, finite cutoff in the definition of the molecular
graph. The construction we present here, that generates pairs of geometries that are indistinguishable when
seen through the lens of a dGNN, regardless of the chosen cutoff, provides a counterexample that sets a limit
to the accuracy that can be attained when regressing properties associated with the 3D point cloud. For the
specific case of chemical machine learning, we show a concrete case, relevant to the chemistry of water
clusters, demonstrating that the counterexample can have direct repercussions on practical applications, such
as the training of many-body potentials for water and aqueous systems.

Atom-centered descriptors that rely on correlations with at least two neighbors, such as SOAP [13],
Behler-Parrinello symmetry functions [68], etc – as well as high-order graph convolution schemes and
equivariant neural networks—are immune to this family of counterexamples, although low-order
correlations are affected by other types of degeneracies. Atom-centered descriptors of higher order, or
equivariant network architectures, can in principle be made complete, often resulting in improved
performance on chemical learning tasks. Determining rigorously theminimal amount of information that
must be incorporated in geometric machine learning to guarantee that an architecture can resolve arbitrary
point clouds is a fascinating topic that touches upon several open problems in signal processing [69] and
invariant theory [14]. We hope that our data set will be used to test existing frameworks to determine
empirically their descriptive power, and that our construction could be taken as a basis to break some of the
angle-dependent schemes and to determine the simplest architecture that is not affected by this, or other,
degeneracies.
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Appendix A. Extension of the counterexample to 2D and 3D periodic structures

One of the reasons why the pairs of configurations (A+,A−) we introduce in this work are indistinguishable
to a WL test is the fact that each atomic environment in structure A+ has a corresponding environment in
A− with the same set of neighbor distances. Introducing additional neighbors (as one does when considering
periodicity along y and/or z) increases the size of the graph and the number of interatomic distances. This
additional information could break the degeneracy of one or more environments.

In general, the equality of a pair of distances does not ensure that the distances corresponding to periodic
replicas of the atoms involved will be the same: ∥(∆x1,∆y1,∆z1)∥2 = ∥(∆x2,∆y2,∆z2)∥2 does not
guarantee that
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Figure 10. A 2D example demonstrating that displacement vectors with opposite-sign components lead to the same sets of

distances between periodic replicas. The displacement vectors
−→
VW and

−−−→
V ′W ′ relate to each other as (∆y,∆z) = (−∆y,∆z), and

as a consequence the displacement vectors with periodic replicas along y can be put in one-to-one correspondence (specifically,

d(W,Vi) = d(W ′,V ′
−i)), and the unordered sets of all the distances to the periodic replicas of V and V

′
are the same. The same

would be true along the z direction, and (in the 3D case) along the x direction.

∥(∆x1 + nxpx,∆y1 + nypy,∆z1 + nzpz)∥2 = ∥(∆x2 + nxpx,∆y2 + nypy,∆z2 + nzpz)∥2 (A1)

for all periodicities (px,py,pz) and cell indices (nx,ny,nz). A special case for which equation (A1)
clearly holds is that in which not just the distances, but the full distance vectors are equal,
(∆x1,∆y1,∆z1) = (∆x2,∆y2,∆z2). This is the case for several distance pairs in the structures in figure 7

(e.g. the displacement vector
−−→
VC+ equals

−−−−→
V ′C− ′

) but would not suffice, alone, to ensure that the
fully-periodic structures are degenerate. We must consider an additional, more subtle case, in which the
distance vectors have one or more components which are equal in magnitude, but have opposite signs, e.g.
∆z1 =−∆z2. In this case, while it is not true that the distances corresponding to the same replica (nx,ny,nz)
will be equal, it will be possible to establish a 1-to-1 mapping between the replicas—in this case,
(nx,ny,nz)→ (nx,ny,−nz) (see figure 10), and so the unordered sets of distances will be equal.

One can then see that in the original 1D construction illustrated in figure 4(a), every time distances
between pairs of points are the same (i.e. are marked by the same color in the figure), then the corresponding
displacement vectors consist of the same Cartesian components with, possibly, opposite signs. According to
the discussion above, this implies that if some distances within the original 1D counterexample are the same,
then the unordered sets of distances associated with the replicas along the y and/or z axis are also the same.
Thus, the WL test (which operates exclusively based on the unordered sets of distances) cannot discriminate
between the 2D and 3D analogues of the 1D construction.

Appendix B. Counterexample for a ‘universal approximator’ implementation

Villar et al [49] proposes a general recipe to construct universal approximators on point clouds. As a specific
example, the authors propose learning a function defined for a point cloud described by N 3D coordinates ri
and a scalar node propertymi (interpreted as a point mass). The goal is to learn a rotationally covariant and
permutationally invariant tensorial function h:

h : (R×R3)N → R3×3. (B1)

The authors propose a functional form of the type

h((mi,ri)
N
i=1) =

N∑
i=1

f0
(
rTi ri,mi,{rTk rl,mk,ml}k,l̸=i

)
rir

T
i

+
N∑

i>j=1

f1
(
rTi rj,mi,mj,{rTk rl,mk,ml}k,l≠i,j

)
rir

T
j

+ f2
(
{rTi rj,mi,mj}Ni,j=1

)
1 (B2)

where 1 indicates the identity matrix and {. . .} indicates unordered multisets. We are interested in
determining whether this form provides a universal approximator for symmetric functions of the type (B1),
and present a counterexample showing that this is not the case.
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We use a simpler geometry than the general construction we present in the main text, but the
counterexample is based on similar principles. This pair of structures is shown in figure 1(b), and is also a
counterexample for two-body atom centered additive models. We chose this pair because the coordinates
take integer values, and so it is simpler to show explicit values of the various quantities. The general case
would also result in the impossibility of learning the targets. We also take allmi equal to each other, so that
themi can be dropped from the definition (B2). The coordinates of the first set of points are given by:

(r+i )
5
i=1 =

1 −1 2 −2 0
1 −1 0 0 1
0 0 2 −2 1

T

(B3)

while those of the second set of points are

(r−i )
5
i=1 =

1 −1 2 −2 0
1 −1 0 0 1
0 0 2 −2 −1

T

. (B4)

We use a simple diagonal function as target,

h((ri)
5
i=1) =

∑
k

λ3
k 1, (B5)

which is constructed by summing over the eigenvalues λk of the Gram matrix of each structure, and is clearly
rotationally covariant and invariant with respect to permutations of the points in the point cloud. The value
of the function h for the two point clouds differ by

h((r+i )
5
i=1)− h((r−i )

5
i=1) =

192 0
0 192 0
0 0 192

 . (B6)

We decompose the difference between the predictions given by the form (B2) as:

h((r+i )
5
i=1)− h((r−i )

5
i=1) = ∆0 +∆1 +∆2, (B7)

where each∆k corresponds to the difference between the values of the term that contains f k. The entries of
the Gram matrix of the two structures are the same (even though ordered differently, so that their
eigenvalues differ), and so obviously∆2 has to be zero, given that f 2 is evaluated on identical sets. The
expression for∆0 contains 10 terms, but most cancel out, leaving just

∆0 = f0(ζ)

0 0 0
0 0 2
0 2 0

=

0 0 0
0 0 2 f0(ζ)
0 2f0(ζ) 0

 ,

ζ = (2,{−8,−8,−2,−2,−2,−2,−2,−2,2,2,2,2,2,2,8,8}).

(B8)

Similarly, the expression for∆1 contains 20 terms, but most cancel out, leaving an expression of the form

∆1 =

0 −4 f1(κ1)+ 4 f1(κ2) 2 f1(κ3)− 2 f1(κ4)
0 0 2 f1(κ3)− 2 f1(κ4)
0 −4 f1(κ1)+ 4 f1(κ2) 0


κ1 = (−2,{−8,−8,−2,−2,−2,−2,−2,−2,−2,−1,−1,1,1,2,2,2,2,2,2,2,2,2,8,8})
κ2 = (2,{−8,−8,−2,−2,−2,−2,−2,−2,−2,−2,−1,−1,1,1,2,2,2,2,2,2,2,2,8,8})
κ3 = (1,{−8,−8,−2,−2,−2,−2,−2,−2,−2,−2,−1,−1,1,2,2,2,2,2,2,2,2,2,8,8})
κ4 = (−1,{−8,−8,−2,−2,−2,−2,−2,−2,−2,−2,−1,1,1,2,2,2,2,2,2,2,2,2,8,8}).

(B9)
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Combining the different parts, we obtain that

h((r+i )
5
i=1)− h((r−i )

5
i=1) =

0 4( f1(κ2)− f1(κ1)) 2( f1(κ3)− f1(κ4))
0 0 2( f1(κ3)− f1(κ4)+ f0(ζ))
0 4( f1(κ2)− f1(κ1))+ 2 f0(ζ) 0

 , (B10)

which is incompatible with the diagonal form of the actual difference between the functions. This rather
cumbersome derivation demonstrates that—even though the general form of scalar invariants discussed in
[49] does provide a framework to build universal approximators—the specific form chosen as a practical
example is not able to fit certain ground truth functional dependencies for certain types of 3D point clouds.
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