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Anesthetics inhibit 
phosphorylation of the ribosomal 
protein S6 in mouse cultured 
cortical cells and developing brain
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Introduction: The development and maintenance of neural circuits is highly 
sensitive to neural activity. General anesthetics have profound effects on neural 
activity and, as such, there is concern that these agents may alter cellular 
integrity and interfere with brain wiring, such as when exposure occurs during 
the vulnerable period of brain development. Under those conditions, exposure 
to anesthetics in clinical use today causes changes in synaptic strength and 
number, widespread apoptosis, and long-lasting cognitive impairment in a 
variety of animal models. Remarkably, most anesthetics produce these effects 
despite having differing receptor mechanisms of action. We hypothesized 
that anesthetic agents mediate these effects by inducing a shared signaling 
pathway.

Methods: We exposed cultured cortical cells to propofol, etomidate, or 
dexmedetomidine and assessed the protein levels of dozens of signaling 
molecules and post-translational modifications using reverse phase protein 
arrays. To probe the role of neural activity, we performed separate control 
experiments to alter neural activity with non-anesthetics. Having identified 
anesthetic-induced changes in vitro, we investigated expression of the target 
proteins in the cortex of sevoflurane anesthetized postnatal day 7 mice by 
Western blotting.

Results: All the anesthetic agents tested in vitro reduced phosphorylation of the 
ribosomal protein S6, an important member of the mTOR signaling pathway. 
We found a comparable decrease in cortical S6 phosphorylation by Western 
blotting in sevoflurane anesthetized neonatal mice. Using a systems approach, 
we determined that propofol, etomidate, dexmedetomidine, and APV/TTX all 
similarly modulate a signaling module that includes pS6 and other cell mediators 
of the mTOR-signaling pathway.

Discussion: Reduction in S6 phosphorylation and subsequent suppression of the 
mTOR pathway may be a common and novel signaling event that mediates the 
impact of general anesthetics on neural circuit development.
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1. Introduction

The development and maintenance of neural circuits is highly 
sensitive to neural activity. General anesthetics, as befits their 
ability to produce unconsciousness, have profound effects on 
neural activity. As such, there is concern that these agents, by 
disrupting neural homeostasis, may alter cellular integrity and 
interfere with brain wiring, such as when exposure occurs during 
the vulnerable period of brain development (Perouansky and 
Hemmings, 2009; Lei et al., 2014). Thus, data from a variety of 
animal models including rats, mice, C. elegans, guinea pigs, pigs, 
sheep, and non-human primates indicate that anesthetic exposure 
during early neurodevelopment is associated with widespread 
apoptosis, changes in dendritic spine density, synaptic strength, 
and number, and long-lasting cognitive impairment (Rizzi et al., 
2008; Liang et al., 2010; Gentry et al., 2013; Olutoye et al., 2015; 
Whitaker et al., 2016; Coleman et al., 2017; Walters and Paule, 
2017). The implications of these data for use of anesthetics in 
children is a matter of debate (Sun et al., 2016; McCann et al., 
2019) but concerns remain that long or multiple general 
anesthetics may have deleterious long-term consequences 
(Davidson and Sun, 2018).

One of the most striking and consistent observations of 
studies thus far is that the deleterious effects of anesthesia on the 
developing brain do not appear to be limited to specific agents or 
agents of a particular class. Most general anesthetics work, at least 
in part, through γ-Aminobutyric acid A (GABAA) receptor 
agonism or NMDA receptor antagonism but agents that act on 
either or neither of these systems induce neurodevelopmental 
effects. For instance, agents with strong GABAA receptor agonist 
properties such as isoflurane, sevoflurane, desflurane, propofol, 
etomidate, and midazolam cause neuroapoptosis and/or 
alterations in synapse number, morphology or strength in animals, 
but so too does ketamine, an agent with only minor effects on 
GABAA receptors that acts mainly by antagonizing NMDA 
receptor-mediated neural excitation (Young et al., 2005; Slikker 
et  al., 2007; Brambrink et  al., 2010, 2012; Liang et  al., 2010; 
Kodama et  al., 2011; Creeley et  al., 2013; Zheng et  al., 2013; 
Coleman et al., 2017). While controversial, dexmedetomidine, an 
α2-adrenergic receptor agonist with little or no effect on either 
GABAA or NMDA receptors, has also been shown to cause 
neuroapoptosis in developing neurons (Liu et al., 2016). The fact 
that these neurodevelopmental effects occur across a broad range 
of anesthetic/sedative agents with diverse receptor mechanisms of 
action implies they are mediated by a common, but unidentified, 
intracellular signaling pathway.

To test that hypothesis, we exposed cortical cells in vitro to 
anesthetics with differing mechanisms of action and quantified 
signaling pathway responses with a semi-hi-throughput protein 
quantification assay. The most consistent signaling event was a 
reduction in phosphorylation of the ribosomal protein S6, which 
we  confirmed also occurs in the brain of neonatal mice 
anesthetized with sevoflurane. pS6 is a well-known member of the 
mTOR pathway, and mTOR signaling plays many important roles 
in brain development and neural homeostasis. Therefore, 
suppression of this pathway is a potential mechanism for the 
adverse effects of anesthetics on the developing brain.

2. Materials and methods

2.1. Mice and anesthesia

The Harvard/BWH Institutional Animal Care and Use Committee 
approved the protocol and all experiments were conducted according 
to regulations set forth by the Harvard Medical School and Brigham 
and Women’s Hospital Standing Committee on Animals.

For in vitro experiments, E16 timed pregnant female C57BL/6 mice 
were purchased from Charles River Laboratory (Wilmington, MA, 
United States), and cortical cells were isolated as described by others 
(Kim et al., 2010). Briefly, we grossly dissected the cortex and incubated 
it for 4 min at 37°C in a solution of 1x Hanks Balanced Salt Solution 
(HBSS) supplemented with papain (Worthington, NJ, United States) and 
cysteine (0.3 mg/mL). Protease digestion with papain was terminated 
with 2x washes in 1x HBSS supplemented with trypsin inhibitor (Sigma, 
MO, United States) and the cells were then mechanically triturated using 
a sterile pipette. The cells were counted with a Countess Cell Counter 
(Invitrogen, CA, United States) and diluted to 1 × 106 cells/mL. 5 × 105 
cells were plated in each well of a 24-well culture dish pre-coated with 
poly-ornithine (Sigma; 30 μg/mL). The cortical cell cultures were 
maintained in Neurobasal media (ThermoFisher) supplemented with 
B27 (1:50; ThermoFisher), GlutaMax (1:100; ThermoFisher) and 
penicillin–streptomycin (1:100; ThermoFisher) and fed with fresh 
media on the fourth and sixth days in vitro.

For in vivo experiments, timed pregnant female C57BL/6 mice 
were purchased from Charles River Laboratory (Wilmington, MA) and 
housed in individual cages until delivery. A total of 12 neonatal mice 
(both sexes) remained with their mother until postnatal day 7 (P7) at 
which time 6 randomly assigned neonatal mice underwent general 
anesthesia in three independent experiments, with 2 animals 
undergoing anesthesia and 2 control animals per experiment. The 
anesthesia exposure consisted of 2.0% sevoflurane in 30% oxygen (2 L/
min) for 6 h, mirroring clinically relevant conditions and comparable 
to other preclinical rodent experiments where developmental 
neurotoxicity was observed (Zheng et al., 2013). The mice were kept at 
37–38°C by placing the anesthetizing chamber in a warm water bath, 
and skin temperature and sevoflurane concentration were measured at 
5-min increments. The remaining six mice served as controls and were 
treated identically except that they received only 30% oxygen for 6 h. 
Animals were sacrificed by decapitation at the end of the experiment, 
with control mice anesthetized briefly prior to sacrifice. We then grossly 
dissected the cortex and homogenized it at room temperature in a 
solution containing 1 mL of RPPA buffer [2% sodium dodecyl sulfate 
(SDS), 50 mM Tris–HCl, 5% glycerol, 5 mM ethylenediaminetetraacetic 
acid (EDTA), 1 mM sodium fluoride, 10 mM β-glycerol phosphate, 
1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium 
orthovanadate (Na3VO4), and 1 mM dithiothreitol (DTT)] and 
supplemented with protease and phosphatase inhibitor cocktail 
(ThermoFisher, MA, United States). After homogenization, the samples 
were centrifuged and the supernatants frozen at −80°C.

2.2. Cortical cell anesthesia exposure

Starting on DIV7 and continuing through DIV8, cortical cultures 
were exposed to propofol, etomidate, or dexmedetomidine. The initial 
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dose in the screening experiments were selected to be supratherapeutic 
in order to maximize the chance of detecting a signal and then 
conducted a dose–response study to confirm the results at clinically 
relevant concentrations of the agents. In brief, neurobasal media was 
removed and replaced with conditioned media (from sister cultures) 
that contained one of the following: propofol (2–6 diisopropylphenol; 
100 μM; Sigma), etomidate (100 μm; Tocris, MS, United  States), or 
dexmedetomidine (1 μM; Tocris) dissolved to a final concentration of 
0.1% dimethyl sulfoxide (DMSO; Sigma). As anesthetics cause 
profound changes in neural activity, we performed separate experiments 
to alter neural activity with non-anesthetics. Thus, we treated cells with 
bicuculline (10 μM; Tocris), a GABAA antagonist that blocks inhibitory 
signaling and increases neural activity, or a combination of tetrodotoxin 
(TTX, 1 μM; Tocris), an inhibitor of voltage-gated sodium channels, 
and 2-amino-5-phosphonopentanoic acid (APV, 100 μM; Tocris), an 
NMDA receptor antagonist, that completely block action potentials and 
reduce neural activity. All drugs were dissolved in 0.1% DMSO and cells 
treated with DMSO alone served as a vehicle control. Cells were treated 
with each agent for 1, 6, or 24 h, after which they were washed twice 
with PBS at 4°C, lysed in RPPA buffer, and stored at 
−80°C. Experimental results are from a total of at least four independent 
biological replicates (i.e., independent dissections performed on 
different days). For dose response experiments, cortical cells were 
treated for 6 h but the dose of etomidate and propofol were varied from 
2 to 100 μM (N = 4, as indicated), and otherwise treated as above. For 
all agents, the final concentration of DMSO was 0.1%.

2.3. Reverse phase protein arrays

To measure the state of signaling proteins in cultured cortical 
cells exposed to various IV anesthetics and sedatives, whole cell 

lysates were subjected to reverse phase protein arrays analysis as 
described previously (Luckert et al., 2012). Reverse-phase protein 
arrays are an automated and miniaturized dot-blot assay for protein 
quantification (Figure  1B). As the system requires only small 
amounts of protein sample it can be easily scaled up, to test multiple 
protein samples in a high throughput manner. Briefly, cells were 
lysed in RPPA buffer. Protein lysates were filter cleared using 
AcroPrep™ Advance 96-Well Filter Plates (Pall Corporation, NY, 
United  States) by centrifuging at 1,962 × g for 4–6 h at room 
temperature. Total protein amount in lysates was quantified using 
BCA protein assay kit (ThermoFisher) using 
manufacturer’s instructions.

Protein microarrays were printed and processed as described in 
detail previously (Luckert et al., 2012). Protein lysates were printed 
onto 16-pad nitrocellulose-coated slides (Grace Biolabs, OR, 
United States) using Aushon 2470 microarrayer (Aushon BioSystems, 
MA, United States). A total of 6 slides were printed allowing probing 
with 96 previously validated antibodies (Supplementary Table S1). 
Slides were stored at −20°C until processing.

2.4. Array processing and probing

RPPA slides were washed with 1 M Tris–HCl (pH 9.0) for 2–4 days 
to remove SDS. Slides were then washed 2–3 times with phosphate-
buffered saline (PBS) for 5 min each and blocked with Odyssey 
Blocking Buffer (OBB, Licor, NE, United States) for 1 h at RT. After 
blocking, arrays were incubated with primary antibodies in OBB at 
4°C overnight. The following day, arrays were washed three times with 
PBS and incubated with IRDye labeled secondary antibodies in OBB 
for 1 h at room temperature. Arrays were washed again three times in 
PBS and once in ddH2O and spun dry.

FIGURE 1

(A) Schematic of experimental design. We dissected the brains from pups of timed pregnant C57BL/6 mice at E16.5. The cortical neurons from all pups 
were pooled and 5 × 105 cells were plated at a density of 1 × 106 cells/mL on 24 well dishes. On DIV4 and DIV6 the media was replenished. On DIV7 
we began the 24-h pharmacological exposures, and subsequently began the 6 and 1 h treatments on DIV8. All cells were simultaneously lysed in RPPA 
buffer on DIV8. (B) Outline of RPPA experiments. Each glass microscope slide is embedded with 16 approximately 1 cm × 1 cm nitrocellulose squares. A 
small amount of protein lysate is dot blotted, or “printed,” onto each of the nitrocellulose squares in replicate, and each nitrocellulose square has the 
capacity for 225 separate protein lysate dots. Each nitrocellulose square is then blotted with antibodies to the protein of interest, as well as antibodies 
to actin, which serves as a loading control (Gujral and MacBeath, 2009).
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2.5. Signal quantification and data analysis

The RPPA slides treated with IR-labeled secondary antibodies 
were scanned using Licor Odyssey CLX Scanner (LiCOR, NE, 
United States). Total signal intensity from each spot was quantified 
using Array-Pro analyzer software package (Media Cybernetics, MD, 
United States). The measurement of a specific protein from individual 
sample was then normalized to total β-actin (Sigma).

2.6. Western blots

Protein samples were thawed to room temperature and amount of 
total protein quantified using a BCA protein assay (ThermoFisher). Fifty 
microgram of total protein was separated by SDS-PAGE (Bio-Rad, CA, 
United States) and transferred to polyvinylidene difluoride membranes 
(Bio-Rad) using a semi-dry electrotransfer system (Bio-Rad). The 
chemiluminescence (ECL) HRP substrate membranes were then 
blocked in 3% bovine serum albumin (BSA; Sigma) in 0.1% Tween-20 in 
TBS (TBS-T) for 1 h at room temperature. The blot was then cut into 
separate pieces based upon the size distribution and the appropriate gel 
section blotted overnight at 4°C in 3% BSA in TBS-T with the following 
antibodies: beta-actin (Cell Signaling Technology, MA, United States; 
Cat #13E5; 1:1,000), pS6 Ser 235/236 (Cell Signaling Technology; Cat 
#2211; 1:1,000) and cleaved caspase 3 (CC3; Cell Signaling Technology; 
Cat # 5A1E; 1:200). The following day the blots were washed 3 × 5 min 
in TBS-T and subsequently blotted with anti-rabbit secondary (Jackson 
Immuno Research Laboratories, PA, United States; 1:5,000) in 3% BSA 
in TBS-T for 1 h at room temperature. The blots were washed 3 × 5 min 
in TBS-T and incubated with SuperSignal West Dura chemiluminescence 
substrate (ThermoFisher), imaged on ChemiDoc XRS+ imager (Bio-
Rad) and analyzed using the Quantity One software package (Bio-Rad).

2.7. Data analysis and statistics

Raw data were imported and processed in R (v3.5.1)1 or Excel 
(Mircosoft, WA, United States). In brief, for each pharmacological 
condition we  calculated the log2 of the fold-change compared to 
controls (baseline, unstimulated cortical cells). We then calculated 
p-values using a one-sample t-test and subsequently adjusted for the 
false-discovery rate using the method of Benjamini and Hochberg 
(1995). Western blot quantification was performed using a 2-sample 
t-test in Excel. Correlation matrix plots were made using the corrplot 
package for R.

3. Results

After correcting for the false discovery rate, we identified signaling 
events in the in vitro experiments that were significantly altered by 
agent exposure; 6 of these involved changes in phosphorylation of the 
ribosomal protein S6 (pS6). Propofol and dexmedetomidine reduced 
pS6 at 6 h (p = 0.002 and 0.049, respectively; N = 4; Figures 2B, 3A). 
Likewise, etomidate (p = 0.027; N = 4) and APV/TTX (noted with two 
separate antibodies to distinct phosphorylation sites; p = 0.033 and 
0.040; N = 4; Figures 2B, 3A), caused a significant reduction in pS6 at 
24 h. In contrast, bicuculline, which increases neural activity (Arnold 
et al., 2005), increased both pS6 and pyruvate dehydrogenase after 1 
and 24 h of treatment (p = 0.032 and 0.032, respectively; N = 4; 
Figures 2B, 3A). Given that anesthetics suppress pS6 similar to APV/
TTX, whereas bicuculline increases it, these data suggest that 
anesthetics might be inhibiting pS6 levels by reducing neural activity.

1 cran.r-project.org

FIGURE 2

(A) Heatmap of raw data from RPPA experiment showing log2(fold change) of protein in comparison to baseline after 1, 6, and 24 h of pharmacological 
exposure. (B) Volcano plot of −log10(p-value) as a function of the log2(fold change). Solid line indicates an adjusted p = 0.1, and dashed line indicates 
and adjusted p = 0.05 (Benjamini and Hochberg, 1995). There are seven data points that reach the level of significance, six of which are phosphorylation 
of the ribosomal protein S6.
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We intentionally used supra-therapeutic anesthetic 
concentrations in these initial experiments to demonstrate proof-of-
concept. Therefore, we  next tested a range of clinically relevant 
concentrations of propofol and etomidate, ranging from 2 to 100 μM 
propofol or etomidate for 6 h. Propofol produced a significant 
reduction in pS6 at 2 μM (p = 0.005; N = 4), 10 μM (p = 0.006; N = 4), 
and 20 μM (p = 0.047; N = 4), and etomidate produced a significant 
reduction in pS6 at 5 μM (p = 0.002; N = 4), 10 μM (p = 0.002; N = 4), 
20 μM (p = 0.01; N = 4), 50 μM (p = 0.002; N = 4), and 100 μM 
(p = 0.006; N = 4) indicating that the decrease in pS6 occurs at brain 
concentrations of these agents reported to cause clinical effect 
(Gredell et al., 2004; Benkwitz et al., 2007).

To determine if similar changes in pS6 occur in vivo during 
anesthesia, we  anesthetized postnatal day 7 (P7) mice with 2% 
sevoflurane for 6 h and measured pS6 in the brain by Western blot. 
Sevoflurane is a commonly used volatile anesthetic in children and 
is reported to produce neuroapoptosis and synaptic abnormalities 
in neonatal rodents. Compared to control animals that received 
only oxygen, there was a significant decrease in pS6 in the brain of 
the sevoflurane anesthetized mice (p = 0.00015, N = 6 animals per 

group; Figure 4). Furthermore, there was a significant increase in 
cleaved caspase 3  in the brain of the anesthetized mice 
(p = 3.21 × 10−6, N = 6; Figure 4). These data indicate an anesthetic-
induced decrease in pS6 occurs in the brain of neonatal animals at 
a concentration of sevoflurane that also triggers an increase in a 
marker of apoptosis.

Finally, we used a systems-based approach to further evaluate 
the data from the RPPA experiments. For each signaling event 
assayed using every time point and pharmacological treatment, 
we computed a Pearson correlation coefficient for every other assay 
in a pairwise manner. These correlation coefficients were then 
clustered using a pairwise clustering algorithm to develop a 
correlation matrix (Figure 5A), where only statistically significant 
correlations are shown (p < 0.05). This correlation matrix allows us 
to identify potential signaling modules that may mediate anesthetic-
induced signaling. A highly correlated signaling module (identified 
in Figure 5A and highlighted in Figure 5B) includes pS6 and other 
cell mediators of the mTOR-signaling pathway (Figure  5C). A 
correlation matrix comparing how the module highlighted in 
Figures 5A,B is related across different pharmacological treatments, 

FIGURE 3

(A) Change in pS6 over time. The log2(fold change) vs. time is plotted for two antibodies against pS6 that recognize distinct phosphorylation sites (Ser 
240/244 and Ser325/326 respectively) and show strikingly similar profiles. Propofol, etomidate, dexmedetomidine and APV/TTX all potently suppress 
phosphorylation of S6, whereas bicuculline potentiates phosphorylation of S6 and DMSO exhibits no effect on pS6. (B) Inhibition of pS6 as a function 
of concentration for propofol and etomidate. Cortical cells were stimulated for 6 h while varying the concentration of propofol and etomidate from 2 
to 100 μM with 0.1% DMSO in neurobasal media. Both propofol and etomidate lead to maximum suppression of pS6 in the range or 2–10 μM. Error bars 
indicate standard error of mean in both figures.
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FIGURE 4

(A) Sevoflurane inhibits phosphorylation of S6 in the brains of P7 mice. P7 C57BL/6 mice were anesthetized with 2.0% sevoflurane for 6 h, while control 
animals were treated identically and received carrier gas but no sevoflurane (n = 6 per group). Whole brain lysates were analyzed via quantitative 
western blots and assayed for the amount of pS6, CC3, and b-actin. (B,C) Sevoflurane anesthesia leads to a decrease in pS6 levels and an increase in 
CC3 (p = 0.00015 for pS6 and p = 3.2e-6 for CC3; N = 6 animals per group; 2 sample t-test; error bars indicate SEM; * indicates p < 0.05).

indicates that propofol, etomidate, dexmedetomidine, and APV/
TTX all similarly modulate this pathway (Figure 5D).

4. Discussion

Using a hi-throughput protein quantification assay, 
we demonstrate that clinically relevant concentrations of propofol, 
etomidate and dexmedetomidine, agents with different mechanisms 
of action, all suppress S6 phosphorylation in early stage cultured 
cortical cells. We also extended and validated these results in an vivo 
model and show that 6 h of sevoflurane anesthesia at clinically relevant 
concentrations leads to a reduction in pS6 as well as an increase in the 
apoptosis marker cleaved caspase 3. Phosphorylation of S6 is a well-
known component of the mTOR-signaling pathway, and a systems-
based approach to analyze the RPPA results further supports our 
hypothesis by showing that many signaling molecules involved in the 
mTOR pathway function in a highly correlated signaling module. The 
activation of this module was correlated between propofol, etomidate, 
dexmedetomidine and APV/TTX, suggesting that alterations in 
neural activity level may be responsible for mediating changes in the 
mTOR pathway. Consistent with this possibility, there was a small but 
statistically significant increase in expression of pyruvate 
dehydrogenase, a component of cellular respiration, in cells exposed 
for 24 h to bicuculline, a drug that increases neural activity. The fact 
that pyruvate dehydrogenase suppression was not observed with drugs 
that reduce neural activity suggests a floor in its expression, driven 
perhaps by ongoing basal, non-activity driven cellular metabolism.

The highly conserved mTOR pathway is involved in many aspects 
of neural development and homeostasis, making it an intriguing 
potential target for mediating neurodevelopmental effects of anesthetics 
(Lipton and Sahin, 2014). Interestingly, the mTOR pathway is 
implicated in isoflurane and propofol-induced synaptic and behavioral 
changes, albeit via an aberrant increase in mTOR signaling (Kang et al., 

2017; Xu et al., 2018). In that work, the authors exposed older animals 
(P18) to 4 h of 1.5% isoflurane anesthesia and found 12 days after 
exposure (P30) that there was an increase in pS6 staining in the dentate 
gyrus. This increase in pS6 staining was associated with an increase in 
dendritic length, a reduction in the number of dendritic spines, and 
later spatial learning defects. Inhibiting the isoflurane-induced 
activation of the mTOR pathway with rapamycin rescued both the 
spine loss and behavioral defects, implicating the mTOR pathway in the 
neurodevelopmental effects of isoflurane, a prototypical volatile 
anesthetic. Further studies using primary cortical neurons harvested 
from E18 rats, and exposed to isoflurane between 3 and 7 DIV, showed 
a similar increase in the number of pS6 positive cells 3+ days after 
exposure to isoflurane (Kang et al., 2017; Xu et al., 2018).

Our experiments appear to be at odds with the results reported 
above, inasmuch as we  report that propofol, etomidate, and 
dexmedetomidine reduce pS6 in cultured cells and that sevoflurane 
produces a similar reduction in the developing brain. However, others 
have reported that sevoflurane reduces pS6 in the developing brain 
(Tan et al., 2015; Xu et al., 2018) and that a decrease in mTor signaling, 
as induced by the mTor inhibitor rapamycin, is associated with 
apoptosis as identified by markers such as CC3 (Bowling et al., 2018). 
In addition, there are two important differences between our study 
and the one mentioned above. First, our anesthesia exposure occurred 
in DIV8 cortical cells (isolated from E16.5 mice) or P7 animals 
whereas the prior investigators exposed mice on P18. This is 
potentially important because the effects of anesthesia on the brain 
appear to be exquisitely sensitive to developmental age. For instance, 
apoptosis is first detectable in rodents when anesthesia exposure 
occurs around birth, reaches a peak when animals are exposed at P7, 
and then rapidly declines such that it is almost non-existent when 
exposure occurs on P14 (Yon et  al., 2005). Further, others have 
reported that propofol anesthesia will lead to a loss of dendritic spines 
when exposure occurs at P5-P10 but that exposure a week later leads 
to an increase in spines, indicating that in rodents anesthesia has 
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opposite effects depending on developmental age (Briner et al., 2011). 
Taken together, these data suggest that differences in the mTOR 
signaling response may underlie some of the age-dependent effects of 
anesthetic agents on neuronal viability and dendritic spines.

Another potential reason for inhibition of pS6 in our study versus 
an increase in another may be  differences in the post-anesthetic 
interval, as we assayed pS6 immediately after anesthesia whereas 
other investigators did so 12 days after exposure in mice, or 3+ days 
after exposure in rat primary cortical cultures (Kang et al., 2017; Xu 
et al., 2018). Phosphorylation of S6 corresponds to the activity state 
of neurons; thus, like other activity-regulated immediate early genes 
such as Fos, Npas4, and Arc, a change in neuronal action potential 
firing leads to a corresponding change in phosphorylation of S6 (Kim 

et al., 2010). Indeed, pS6 is frequently used as an indirect assay for 
neural activity (Kim et al., 2010; Renier et al., 2016). As such, one 
would expect phosphorylation of S6 to be  low at the end of a 
prolonged anesthetic, when neural activity levels are generally 
reduced. Using the same logic, a decrease in pS6 following sevoflurane 
anesthesia suggests the agent is inhibiting neural activity in the cortex 
of P7 animals, whereas others have suggested that it does so by 
increasing excitation (Zhao et al., 2011). On the other hand, increased 
pS6 days or weeks later might be  secondary to, or a marker of, 
compensatory post-anesthetic neuronal hyperexcitability. Indeed, in 
the offspring of mice exposed to sevoflurane on post-natal D 16/17, 
there was an increase in mTor phosphorylation in the brain 24 h later 
(Ju, 2020). Homeostatic synaptic scaling and several other 

FIGURE 5

(A) Correlation matrix comparing all assays used in RPPA. For each assay on the RPPA matrix we calculated a correlation coefficient for every other 
assay against all pharmacological conditions and time points, and only significant correlations are shown (p < 0.05). The data was clustered using a non-
supervised clustering algorithm to identify potential signaling modules. (B) A higher magnification of the signaling module outlined by the dashed box 
in (A), now superimposed with the corresponding correlation coefficient. (C) mTOR signaling pathway. A diagram from the mTOR signaling pathway 
showing that multiple members of the signaling module from (A,B) are involved in the mTOR pathway (from Lipton and Sahin, 2014, with permission). 
(D) Correlation matrix comparing the signaling module indicated in (A,B) across different pharmacological treatments. Propofol, etomidate, APV/TTX 
and dexmedetomidine modulate the signaling module from (A,B) in a correlated manner. Bicuculline activity on the signaling module indicated in (A,B) 
is anti-correlated with propofol, etomidate and APV/TTX.
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well-described mechanisms predict that perturbations in neural 
activity, such as the decrease that typically occurs during general 
anesthesia, will induce compensatory synaptic changes and a period 
of neuronal hyperexcitability subsequently (Turrigiano et al., 1998; 
Turrigiano, 2012; Hengen et al., 2016). Therefore, to the extent pS6 is 
an activity-regulated immediate early gene, an increase in cortical 
pS6 days after exposure to general anesthesia with sevoflurane may 
be a homeostatic response to an earlier period of anesthetic-induced 
neuronal depression.

Strengths of our study include use of in vitro and in vivo 
models, a multiplexed assay system, several anesthetic classes, and 
non-anesthetic in vitro controls. This work also has important 
limitations. While we identified a common cell-signaling module 
that is altered similarly across a wide variety of both intravenous 
and inhalational anesthetics, we  have not directly linked this 
pathway to the central nervous system complications observed 
after early developmental exposure to these agents. As others have 
reported neurotoxicity in older animals with an increase in mTOR 
signaling, the conditions under which an acute change in pS6 is 
physiologic or detrimental remains to be determined. We did not 
investigate anesthetic-induced CC3 changes in the in vitro 
experiments because the reagent had not been validated for the 
RPPA platform, and thus we  cannot confirm that propofol, 
etomidate and dexmedetomidine produced apoptosis-like changes 
in the in vitro model. However, there was an increase in CC3 in the 
brain of neonatal mice exposed to sevoflurane, suggesting that the 
pS6 changes are associated with apoptotic events. Finally, this 
study was largely performed using soluble agents in a tissue culture 
model. This limits generalizability and requires that results 
obtained in vitro for propofol, etomidate and dexmedetomidine 
be replicated in vivo. Notably, however, we confirmed the results in 
vivo with a widely used inhalational anesthetic (sevoflurane) at a 
clinically relevant dose.

We conducted these experiments in order to determine whether 
exposure of cortical cells to anesthetics of different classes alters 
similar signaling pathways, and thus to provide insight into how 
agents with different mechanisms of action may mediate similar 
changes within developing neurons. Here, we find that at clinically 
relevant concentrations, the intravenous anesthetics propofol, 
etomidate, and dexmedetomidine suppress pS6 levels in cultured 
cortical cells, and sevoflurane has a similar effect in the developing 
mouse brain. The fact that these effects are similar to those seen with 
the neural activity blockers APV/TTX and opposite those of the 
neural activity enhancer bicuculline suggest that pS6 is changing in 
response to alterations in neural activity. Because pS6 is a well-
established member of the mTOR signaling pathway, our results 
suggest that some aspects of anesthetic actions on developing neurons 

are triggered by reductions in neural activity and subsequent 
perturbations in this important signaling pathway.
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