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Abstract 

 
In this paper, a class of three-step implicit second order hybrid block methods for the solutions of Volterra 

integral equation of the second kind has been developed, using the interpolation and collocation approach. 

The discrete block methods were recovered when the continuous block methods were evaluated at all step 

points. The block methods used to implement the main method guaranteed that each discrete scheme 

obtained from the simultaneous solution of the block has the same order of accuracy as the main 

continuous method. Hence, the new class of k-step methods gives high order of accuracy with very low 

error. The basic properties of the methods were investigated and the methods were found to be consistent, 

zero-stable and convergent. 
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1 Introduction 
 

Volterra integral equation is a special kind of integral equation which is classified into three: the first, second 

and third kind. In this research, we developed two off-grid points of hybrid block methods for the solution of 

second kind Volterra integral equation due to its characteristics and uniqueness. In this literature, the second 

kind Volterra integral equation (VIE) according to [1] is considered and is of the form: 

                             

    𝑦(𝑥) = 𝑓(𝑥) + ∫ 𝜑(𝑥, 𝑠)𝑦(𝑠))𝑑𝑠
𝑥𝑛

𝑥0
                                                                                        (1.0)  

             

Where 𝑓(𝑥)  is a given function and 𝜑(𝑥, 𝑠) is called the kernel of integral equation. Volterra integral 

equation (VIE) appears especially when we try to transform an initial value problem into integral form, so 

that, the solution of the equation can be easily obtained than the original initial value problem [2]. Solving 

(1.0) is equivalent to solving the following initial value problem of the first order ordinary differential 

equations; 

 

𝑦′(𝑥) = 𝑓′(𝑥) + 𝜑(𝑥, 𝑦(𝑥)), 𝑦(𝑥0) = 𝑓(𝑥0)                             (1.1) 

 

In the domains of engineering and applied research, the analytical and approximate techniques of solving the 

integral equations play a significant role. Some of these integral equations cannot be solved explicitly; hence 

approximation or numerical methods must frequently be used [3]. However, the collocation approach in this 

paper refers to a point at which the derivative is being evaluated. 

 

In recent years, many strategies for resolving Volterra integral equations have been devised. Volterra-

Fredholm integral equation solutions have recently been estimated using a variety of fundamental functions, 

including orthonormal bases and wavelets [4]. In an overview of integrators for the Volterra integral 

equations, methods like the Taylor method, transform method, method of variation, numerical techniques, 

direct quadrature method, Adomian decomposition method, homotopy Perturbation method, Galerkin and 

Finite Element method, collocation and spectral method, expansion method, and so on are discussed. 

 

Lately, researchers such as: [5,6,7,8,9], and much recently, [10,11,12,13] suggested methods for solving 

Volterra integral equations. 

 

2 Methodology of the Scheme 
 

2.1 Derivation of the Proposed Method 

 

Here, we derive three-step with two off-grid points of hybrid block method for the integration of Volterra 

Integral equation of second kind by carefully selecting 
3

4
=p  and 

3

5
=q  for 𝒑, 𝒒 ∈  [𝟏, 𝟐] 

 

Let the approximate series solution and trigonometrically fitted function of the Eq. (1.0) be in the form of  

( ) 
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j xxxxz                                                       (1.2)    

     

Where ∅𝑗and 𝜆𝑗 are the coefficients to be determined. 

 

Consider the ordinary differential equation 
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                 ( ) ( ) ( ) 000 '',,',,'' zazzazzzxfz ===                                                                (1.3)   

                                                                                                                                          

Subject to 

 

        
( ) ( ) ( )xfxyxz −=                                      (1.4) 

 

The second derivative of Eq. (1.2) is given as; 

 

          ( ) ( ) ( )
3 2 2

2

0 1 1

'' 1 (sin ) cos
j

j j
j

j j j

z x j j x xx  
−

= = =

= − − −                                      (1.5)    

                      

Substituting Eq. (1.3) into (1.0) gives 
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Interpolating (1.2) at  2,1, =
+

k
x kn

 and collocating (1.5) at  }3,2
3

5
,

3

4
,1,0{, =+ lx ln  leads to the system of 

nonlinear equations written in the form  

 

( ) ( )AxXxzn =                                                                                                                            (1.7) 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )







































































































































































































+

+

+

+

+

+

=

+−+−++−−−

+−+−++−−−

+−+−++−−−

+−+−++−−−

+−+−++−−−

−−−−

+−+−+++−+−+

−−−−

3

2

3
5

3
4

1

1

3

2

3
5

3
4

1

0

1

0

5
3

15

164
3

3

83
3

2

112
3

2

17
93300

5
2

15

164
2

3

83
2

2

112
2

2

17
63300

5

3

5

15

16
4

3

5

3

8
3

3

5

2

11
2

3

5

2

17
33300

5

3

4

15

16
4

3

4

3

8
3

3

4

2

11
2

3

4

2

17
23300

5

15

164

3

83

2

112

2

17
3300

5

15

164

3

83

2

112

2

17
3300

7

315

86

45

45

40

114

24

173
)(

2

12

2

3
443

7

315

86

45

45

40

114

24

173

2

12

2

3
43

ng

ng

n
g

n
g

ng

ng

n
z

nz

hnxhnxhnxhnxhnx

hnxhnxhnxhnxhnx

hnxhnxhnxhnxhnx

hnxhnxhnxhnxhnx

hnxhnxhnxhnxhnx

nxnxnxnxnx

hnxhnxhnxhnxhnxhnxhnx

nxnxnxnxnxnxnx

















           

(1.8) 

 

Using the Gaussian elimination method to solve the equation (1.8) gives the coefficients  

32

3

5

3

41010 ,,,,,,,   which are then substituted into (1.2) and simplified to give the implicit 

second derivative hybrid block method of the form;  
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Differentiating equation (1.9) once 
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Where 
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Evaluating (1.2) at non-interpolating points  32
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                              (2.1) 

 
 

We then evaluate (2.0) at all points we have, 
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                         (2.2) 

 

This gives the following matrix equation in the form                          

 

                                                                                                                                                                                             

 

(2.3) 

   

 


















































































































































































































































































=

−

−

−−

−−

−−

−−−

−

−−

−−

−−

=====

+

+

+

+

+

+

+

+

+

+

=

−

−

−

−

−

−

−

−

−

−

=

3

2

3

5

3

4

1

3

,

2

25200

65772

1680

46192

2800

83432

5600

104492

168

89

2

10080

732

420

1072

1120

19172

35

542

1680

2563

2

2041200

155212

136080

523572

25200

366892

50400

744072

68040

102797

2

4082400

303492

34020

125592

50400

642012

1575

26122

27216

41543

2

4082400

303492

34020

125592

2800

37532

5600

107192

280

391

2

56400

6432

420

2752

6500

115832

155

4862

1680

2701

2

600

412

40

312

200

2432

400

7292
h

20

53

2

400

32

30

112

400

5672

50

812

120

181

2

87480

4392

5832

14632

360

3172

2160

24132

2916

2923

2

437400

10992

3647

4572

5400

23512

225

1362

14580

7237

2
,

2
'

h

5040

3709

h

1260

67

h

4082400

217997

h

510300

27163

h

50400

2701

h

6300

1261

-

2
h

1200

137

2
h

75

4

2
h

174960

6223

   
2

h

54675

973

-   

1
,

'
1

,

0

1

0

1

0

1

0

1

0

1

1

1

02

01

0

3

2

0

3

1

2
,

3
'

2
'

3

5
'

3

4
'

1
'

3

2

3

5

3

4

1

,

100000000

1

010000000

1

001000000

1

000100000

1

000010000

1

000000000

1

0000010003

0000001002

000000010

3

5

000000001

3

4

1

g

g

g

g

g

R

hhhhh

hhhhh

hhhhh

hhhhh

hhhhh

hhhhh

hhhh

hhhhh

hhhhh

hhhhh

B
n

gRB

n
z

n
z

R

h

h

h

h

h

h

A

n
z

n
z

n

z

n

z

n
z

n
z

n
z

n

z

n

z

n
z

Z

h

h

h

h

h

h

A

            

 (2.4) 

      

3221121 RBRBRAZA ++=



 
 
 

Chuseh et al.; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 118-131, 2024; Article no.AJPAM.1499 

 

 

 

125 
 

 

Substituting (2.2) into (2.3) and multiply by the inverse 𝐴1 gives the hybrid block in the form; 
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(2.5)                                             

                                                                                                                              

By putting (1.4) in (2.5) yields the Volterra discrete scheme used in block form as 
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                                   (2.6) 

 

3.  Analysis of Three-Step Implicit Second Derivative Hybrid Method with Two Off-Grid Points  

 

The basic properties of the new implicit second derivative hybrid methods are analyzed in this section to 

establish their validity. The properties to be considered are: order, error constant, consistency, zero-stability 

and convergence. To determine these properties, we adopted the procedure given in Lambert (1991). 
 

2.2 Order and Error Constant of the Proposed Method 
 

Let the linear difference operator ℓ associated with the new method (16) be defined as  

                

    𝐿[𝑦(𝑥; ℎ)] = ∑ 𝛼𝑗𝑦(𝑥 + 𝑗ℎ) − ℎ2 ∑ (𝛽𝑗𝑦′′(𝑥 + 𝑗ℎ))𝑘
𝑗=0

𝑘
𝑗=0                                        (2.7) 

 

 Where 𝑦(𝑥) is an arbitrary test function continuously differential on [a, b]. Expanding 𝑦(𝑥 + 𝑗ℎ), 𝑦′(𝑥 + 𝑗ℎ 

and 𝑦′′(𝑥 + 𝑗ℎ of (16) in Taylor series in the form: 

 

 ℓ[𝑦(𝑥); ℎ] = 𝑐0̅𝑦(𝑥) + 𝑐1̅ℎ𝑦′(𝑥) + 𝑐2̅ℎ2𝑦′′(𝑥) + ⋯ + 𝑐𝑝̅+2ℎ𝑝+2𝑦(𝑝+2)(𝑥) + ⋯                         (2.8) 
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Similarly,    

         

                   

 

The new implicit second derivative hybrid method (3.10) is of order 𝑝 if, 
 

ℓ[𝑦(𝑥); ℎ] = 0(ℎ𝑝+2), 𝑐0̅ = 𝑐1̅ = 𝑐2̅= … = 𝑐𝑝̅+1 = 0, 𝑐𝑝̅+2 ≠ 0 
 

Therefore, the principal local truncation error 𝑥𝑛 + 𝑘 is then defined to be 

  

𝑐𝑝̅+2ℎ𝑝+2𝑦(𝑝+2)(𝑥𝑛) 
 

Where

⋮
 

 

𝐶0 = ∑ 𝛼𝑗

𝑘

𝑗=0

 

𝐶1 = ∑ 𝑗𝛼𝑗

𝑘

𝑗=1

− ∑ 𝛽𝑗

𝑘

𝑗=0

 

𝐶2 =
1

2
∑ 𝑗2𝛼𝑗

𝑘

𝑗=1

− ∑ 𝑗𝛽𝑗

𝑘

𝑗=0

 

⋮ 

𝐶𝑞 =
1

𝑞!
∑ 𝑗𝑞𝛼𝑗

𝑘
𝑗=1 −

1

(𝑞−1)!
∑ 𝑗𝑞−1𝛽𝑗

𝑘
𝑗=0 , 𝑞 = 2,3,4,5, ⋯                                 (2.9) 
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07...6543210 ======== CCCCCCCC

 and 

 







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100800
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,
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,
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,

1814400
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8c

 

𝐶8  Is the truncation error, 72 =+pc , in which its order is ( )Tp 5,5,5,5,5,5,5,5,5,5=
 

 

3 Results and Discussion 

 

The method adopted for the implementation is such that the entire discrete scheme obtained from the 

continuous schemes which have the same order of accuracy with low error constant for values of h 

are combined as simultaneous integrators. 

 

The absolute errors calculated in the code are define by 

  

YexYcERR −=  

 

  Where Yex  is the exact solution, Yc  is the computed result and ERR  is the absolute error. 

 

All computations were carried out using MALPE 2015 and MATLAB 2013 version, the computer codes are 

simply written and requiring no previous knowledge of programming before it can be used. 

 

3.1 Numerical Examples 
 

In order to study the efficiency of the developed method, two numerical examples are presented. The class of 

continuous implicit hybrid k-step methods: Case 1, Case 2 and Case 3 were applied to solve the following 

Volterra integral problems 

 

Problem 1. 

 

Consider the second kind linear volterra integral equation  
 

𝑋(𝑡) = 𝑡2 + ∫ (𝑡 − 𝑠)𝑥1(𝑠)𝑑𝑠
𝑥

0
  

    

With exact solution 

 

 𝑋(𝑡) = 2𝑐𝑜𝑠ℎ𝑡 − 2, ℎ = 0.1 

  

(Maturi et al. (2014)) 
 

Problem 2. 

 

Consider the second kind linear volterra integral equation  

 

𝑈(𝑥) = 1 + 𝑥 + ∫ (𝑥 − 𝑡)𝑈(𝑡)𝑑𝑡
𝑥

0

 

 

With exact solution: 

 

𝑈(𝑥) = 𝑒𝑥, ℎ = 0.1     
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Source: Shoukralla and Ahmed (2020) 
 

Table 1. Showing the exact solution, computed results from the propose method, error in the new 

scheme and error in Maturi et al for problem 1 

 

X Exact Solution New Scheme 

(computed result) 

Err in 

New Scheme 

Err Maturi et al 

(2014) 

0.1 0.01000833611160719800 0.01000833612444900235 1.2841e-11 1.0e-05           

0.2 0.04013351123815169260 0.04013351127106888506 3.2917e-11  3.0e-05 

0.3 0.09067702825772097000 0.09067702831817961927 6.0458e-11  8.0e-05 

0.4 0.16214474367690961860 0.16214474379236288043 1.1545e-10  1.40e-04 

0.5 0.25525193041276157040 0.25525193059208270052 1.79321e-10 2.20e-04 

0.6 0.37093043648453540760 0.37093043673733442566 2.5279e-10  3.20e-04 

0.7 0.51033801126188603640 0.51033801162114006499 3.5925e-10 4.40e-04 

0.8 0.67486989260968919600 0.67486989308802405620 4.7833e-10 5.90e-04 

0.9 0.86617277089754877560 0.86617277150895447806 6.11405e-10 7.70e-04 

1.0 1.08616126963048755700 1.08616127041789008540 7.87402e-10  9.80e-04 

 

Table 2. Showing the exact solution and computed results from the propose methods for  

problem 2  

 

X Exact Solution New Scheme  

(computed result) 

Err in  

New Scheme 

  Erro in 

Shoukralla and 

ahmed (2020) 

0.1 1.1051709180756476248 1.10517091808291651920 7.2689e-12 1.4089e-09 

0.2 1.2214027581601698339 1.22140275817880999460  1.8640e-11 9.1493e-08 

0.3 1.3498588075760031040 1.34985880761035249250  3.4349-11 1.0576e-05 

0.4 1.4918246976412703178 1.49182469770900733720 6.7737e-11 6.0309e-06 

0.5 1.6487212707001281468 1.64872127080737015330 1.0724e-10 2.3354e-05 

0.6 1.8221188003905089749 1.82211880054393309260 1.5342e-10 7.08004e-05 

0.7 2.0137527074704765216 2.01375270769501756400 2.2454e-10 1.8129e-04 

0.8 2.2255409284924676046 2.22554092879771530440 3.0525e-10 4.1026e-04 

0.9 2.4596031111569496638 2.45960311155352339510 3.9657e-10 8.4486e-04 

1 2.7182818284590452354 2.71828182898249978340 5.2345e-10 1.6151e-03 

 

4 Conclusion 
 

We observed from the above table 1 and 2 that, the numerical results obtained are more favorably, 

converged quickly and produced better approximations in comparison to other existing methods. 

 

In the tables above, the property of our proposed method showed that the scheme is consistent and also 

convergent when we compare our results obtained with [7] and [10] 
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