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ABSTRACT 
 

Diabetes poses a significant global health challenge, with approximately 537 million adults living 
with the condition in 2021, a number expected to rise to 783 million by 2045. To enhance predictive 
accuracy and gain deeper insights into the factors contributing to diabetes, this study employed 
machine learning algorithms to predict diabetes risk factors using a dataset encompassing health 
and lifestyle variables. Six supervised machine learning algorithms, including Gradient Boosting, 
Logistic Regression, and Random Forest, among others, were assessed for their effectiveness in 
classifying diabetes status into two categories: diabetes and no diabetes. The study found that 
Gradient Boosting achieved the highest overall accuracy at 85%, demonstrating the best recall for 
diabetic cases at 57%. Meanwhile, Logistic Regression excelled in precision for non-diabetic cases 
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at 94%. Key risk factors identified include general health status, blood pressure, body mass index, 
cholesterol levels, and age. Notably, the study uncovered that higher income and education levels 
were associated with increased diabetes risk, contradicting some existing literature and indicating 
the potential impact of lifestyle factors. 
 

 
Keywords: Insulin; machine learning analysis in health; DIABETES; lifestyle. 
 

1. INTRODUCTION 
 
The pancreas in the human body produces a 
hormone called insulin when it senses a rise in 
blood sugar [1]. Insulin helps the body cells 
convert the blood sugar to energy and stores the 
unused blood sugar as glycogen in the liver and 
muscles [2]. By doing this, the blood sugar level 
is reduced and maintained between 70 and 100 
mg/dL [3]. Hence, when there is an impairment in 
insulin regulation, the blood glucose rises 
significantly, leading to the situation referred to 
as diabetes. Diabetes can be of two types: Type 
1 and Type 2 [4]. Type 1 diabetes is an 
autoimmune condition typically diagnosed in 
childhood or adolescence, destroying insulin-
producing beta cells in the pancreas. Conversely, 
Type 2 diabetes, which accounts for about 90-
95% of diabetes cases, is largely influenced by 
lifestyle choices and is often diagnosed in 
adulthood. Diabetes has emerged as a 
significant global health challenge. Statistics by 
the International Diabetes Federation (IDF) show 
that approximately 537 million adults were living 
with diabetes globally in 2021, with an estimated 
value of 783 million by 2045 [5]. This escalating 
prevalence emphasises the critical need to 
understand the disease and its underlying risk 
factors.  
 
Management of diabetes starts with a proper 
understanding of the health and lifestyle of the 
individuals, which includes diet, physical activity, 
and mental health. Salvia and Quatromoni [6] 
argued that a balanced diet rich in whole grains, 
lean proteins, healthy fats, and ample fruits and 
vegetables can significantly improve glycemic 
control. Research by Dominguez et al. [7] 
indicates that dietary patterns such as the 
Mediterranean diet, which emphasises whole 
foods and healthy fats, can lower blood glucose 
levels and improve overall metabolic health. 
Furthermore, regular exercise enhances insulin 
sensitivity and aids in weight control [8]. The 
American Diabetes Association recommends at 
least 150 minutes of moderate-intensity aerobic 
activity per week for adults with diabetes [9]. 
Diabetic conditions can lead to psychological 
stress, anxiety, and depression, all of which can 

negatively impact blood sugar control. Research 
has shown that individuals who receive mental 
health support alongside diabetes management 
exhibit better adherence to treatment plans and 
improved glycemic control [10,11]. 
 
The integration of machine learning (ML) into 
health analytics represents a transformative shift 
in the way healthcare data is utilised [12,13]. 
Mathematical modelling using the deterministic 
approach has been found to have the limitation 
of not being able to predict accurately unless it is 
fitted with existing data [14,15]. With the 
exponential growth of health-related data, 
traditional analytical methods often fall short in 
addressing the complexities of diseases such as 
diabetes. Machine learning algorithms are 
capable of identifying patterns, predicting 
outcomes, and personalising treatment 
approaches based on individual patient data. 
Rajula et al. [16] demonstrated that ML models 
can outperform traditional statistical methods in 
accuracy and predictive power, making them 
invaluable tools in preventive healthcare. 
Machine learning has been applied to risk 
assessment, diagnosis and treatment of 
diabetes.  
 
Predictive models in diabetes have focused on 
isolated risk factors, such as obesity [17] or 
sedentary behaviour [18] without considering the 
multifaceted interactions between various health 
and lifestyle elements. Li et al. [18] and many 
other studies utilise linear regression models that 
fail to capture the non-linear relationships 
inherent in these factors. Meanwhile, even 
though obesity is a well-established risk factor, 
its impact may vary significantly based on 
physical activity levels, dietary habits, and 
psychological well-being. This necessitates a 
more integrative approach to understanding 
diabetes risk. Another critical gap is the reliance 
on homogeneous datasets that lack demographic 
diversity, primarily concentrating on specific 
populations. This homogeneity can lead to 
models that are not generalisable, particularly for 
underrepresented groups. A comprehensive 
analysis of how lifestyle factors affect diabetes 
risk across different demographics, such as age, 
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gender, and socioeconomic status, remains 
underexplored. 
 
This study aims to address these specific gaps 
by employing machine learning algorithms that 
integrate a wide range of health and lifestyle 
factors. By utilising a dataset from over 250,000 
records from various demographic backgrounds, 
the study analyses interactions among variables, 
such as the combined effects of BMI, physical 
activity, and dietary intake on diabetes status. A 
key novelty of this research lies in its focus on 
identifying features that significantly contribute to 
diabetes risk, as well as those that can 
potentially reduce it. This study aims to answer 
the following questions; 
 

1. Can machine learning algorithms 
effectively classify diabetes status, and 
which algorithms perform best in this 
context? 

2. How does demographic diversity impact 
the relationship between health and 
lifestyle factors and diabetes status? 

3. Which health and lifestyle factors are most 
significantly associated with diabetes 
status? 

4. How do interactions between different 
health and lifestyle factors influence 
diabetes risk? 

 

2. METHODOLOGY 
 
This section begins with the collection and 
preparation of the dataset, followed by 
exploratory data analysis (EDA) to understand 
the distribution of variables and identify any 
underlying patterns. Once the dataset is 
prepared, six machine learning algorithms are 
applied to classify diabetes status based on 
health and lifestyle factors. The selected 
algorithms include Logistic Regression, Decision 
Tree Classifier, Random Forest Classifier, and 
Gradient Boosting. Each of these algorithms is 
chosen for its ability to handle binary 
classification and to provide insights into the 
importance of different features. 
 

2.1 Dataset Description 
 
The dataset used in this study is derived from a 
comprehensive health and lifestyle survey from 
253,680 patients, providing a diverse 
representation of individuals across various 
demographic backgrounds. This dataset includes 
multiple features that capture critical aspects 
related to diabetes, including demographic 

information, lifestyle choices, and health 
indicators. The dataset was obtained from the 
UCI repository titled “CDC Diabetes Health 
Indicators” 
(https://archive.ics.uci.edu/dataset/891/cdc+diab
etes+health+indicators). The dataset consists of 
21 features and one target variable and is 
described as follows; 
 

2.2 Target Variable 
 
The target variable is diabetes. The dataset 
classifies individuals into three categories based 
on their diabetes status: 0 = no diabetes, 1 = 
Prediabetes, and 2 = Diabetes. 
 

2.3 Features of the Dataset 
 

1. HighBP: This is a binary variable 
representing whether the individual has 
high blood pressure: 0 = no, 1 = yes. 

2. HighChol: This is a binary variable 
representing whether the individual has 
high cholesterol: 0 = no, 1 = yes. 

3. CholCheck: Indicates if the individual has 
had a cholesterol check in the last five 
years. It is a binary variable: 0 = no, 1 = 
yes. 

4. BMI: The Body Mass Index (BMI) is a 
variable obtained using the formula 

 

𝐵𝑀𝐼 =
weight

(height)2
(𝑘𝑔/𝑚2)  

 

The result is approximated to the nearest 
whole number to keep it as an integer 
variable. 

5. Smoker: This variable answers the 
question of whether the individual has 
smoked at least 100 cigarettes in their 
lifetime. It is a binary variable: 0 = no, 1 = 
yes. 

6. Stroke: Indicates whether the individual 
has ever been told they had a stroke (0 = 
no, 1 = yes). 

7. HeartDiseaseorAttack: Indicates the 
presence of coronary heart disease or 
myocardial infarction (0 = no, 1 = yes). 

8. PhysActivity: Indicates the participation in 
physical activity in the past 30 days (0 = 
no, 1 = yes). 

9. Fruits: Indicates daily consumption of fruit 
(0 = no, 1 = yes). 

10. Veggies: Indicates daily consumption of 
vegetables (0 = no, 1 = yes). 

11. HvyAlcoholConsump: Indicates heavy 
alcohol consumption based on defined 
thresholds (0 = no, 1 = yes). 

https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
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12. AnyHealthcare: Indicates whether the 
individual has any form of health care 
coverage (0 = no, 1 = yes). 

13. NoDocbcCost: Indicates whether cost 
prevented the individual from seeing a 
doctor in the past year (0 = no, 1 = yes). 

14. GenHlth: Self-reported general health on a 
scale of 1 to 5 (1 = excellent, 5 = poor). 

15. MentHlth: Number of days in the past 30 
that mental health was not good (scale 1-
30). 

16. PhysHlth: Number of days in the past 30 
that physical health was not good (scale 1-
30). 

17. DiffWalk: Indicates serious difficulty in 
walking or climbing stairs (0 = no, 1 = yes). 

18. Sex: Gender of the individual (0 = female, 
1 = male). 

19. Age: Age category based on a 13-level 
scale (1 = 18-24 years old; 2 = 25-29 years 
old; 3 = 30-34 years old; 4 = 35-39 years 
old; 5 = 40-44 years old; 6 = 45-49 years 
old; 7 = 50-54 years old; 8 = 55-59 years 
old; 9 = 60-64 years old; 10 = 65-69 years 
old; 11 = 70-74 years old; 12 = 75-79 years 
old; 13 = 80 or older). 

20. Education: Education level based on a 6-
point scale (1 = Never attended school; 2 = 
Some primary education; 3 = Completed 
primary education; 4 = Some secondary 

education; 5 = Completed secondary 
education; 6 = College graduate). 

21. Income: Income level based on an 8-point 
scale (1 = Less than $10,000; 2 = $10,000 
- $24,999; 3 = $25,000 - $39,999; 4 = 
$40,000 - $49,999; 5 = $50,000 - $59,999; 
6 = $60,000 - $74,999; 7 = $75,000 - 
$99,999; 8 = $100,000 or more). 

 

2.4 Data Preprocessing 
 
This section outlines the steps taken to clean   
and prepare the dataset. To ensure data 
integrity, the dataset was checked for                  
missing values (using the code snippet in Fig. 1), 
and no missing data was found (as shown in    
Fig. 2). 
 
To convert all variables to a similar scale, three 
features –BMI, MentHlth and PhysHlth– are 
standardised using the code snippet in Fig. 3. 
The standardisation is carried out using the 
formula 
 

𝑧 =
𝑥 − 𝜇

𝜎
, 

 
where 𝑥  is the original feature value, 𝜇  is the 
mean of the feature, and 𝜎  is the standard 
deviation of the feature. 

 

 
 

Fig. 1. Python code for checking for missing values 
 

 
 

Fig. 2. Output for missing values 
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Fig. 3. Standardisation of the features 
 
Machine learning algorithms require numerical 
inputs for learning. Hence, we transform the 
categorical variables into numeric variables by 
encoding them using the code snippet in Fig. 4. 
The categorical variables are Sex, Age, 
Education, and Income. 
 
The target variable was originally classified into 
three classes (0-no diabetes, 1-prediabetes, 2-
diabetes), but it is safe to consider both the 
diabetic and the prediabetic cases as diabetic 
together. Using the code snippet in Fig. 5, the 
prediabetes class and the diabetic class are 
combined into a single diabetic class due to the 
imbalance in the dataset. This means the target 
variable is now a binary variable that can take 
only 0 or 1. 
 
Finally, the dataset is split into Features and 
Target variables using the code snippet in Fig. 6. 
 

2.5 Data Distribution 
 
The dataset consists of 22 features and 1 target 
variable of 253,680 patients’ records with no 
missing value. There are 213703 non-diabetic 
patients and 39977 diabetic patients. The 
summary statistics are shown in Table 1, and the 
mean for diabetics is 0.15788, which contributes 
to 15.79% of the dataset. Hence, 15.79% of the 
dataset are diabetic, while the remaining 84.21% 
represent non-diabetic cases. 
 

The pie chart in Fig. 7 shows the age              
distribution for the diabetic class. The pie                
chart shows that 12.0% is from Group 8, 16.1% 
is from Group 9, 18.1% is from Group 10, 14.1% 
is from Group 11 and 9.6% is from Group 12. 
This accounts for 70.2% of the diabetic              
patients. Hence, diabetes is more frequent 
among people from the age of 55 and older. 
Furthermore, Fig. 8 shows that out of the diabetic 
population, 31.1% have some secondary 
education, 29.2% completed secondary 
education, and 29.7% have completed college. 
This contributes to a total of 90% of diabetic 
patients who have been to secondary school or 
higher. 
 
The histogram and pie chart of Fig. 9 shows             
that the number of diabetic patients increases 
with increasing income. By summing the 
contributions in the pie chart, 74.6% of diabetic 
patients earn at least $40,000. Finally, Fig. 10 
shows the distribution of the binary gender 
among the diabetic class. It shows that 52.6% of 
the diabetic class are female, while 47.4% are 
male. 
 
The correlation matrix in Fig. 11 shows the 
correlation between the 22 features. The figure 
shows a strong positive correlation between the 
number of days the patient’s physical health was 
not good and the patient's self-reported health 
conditions. 
 

 
 

Fig. 4. Encoding categorical features 
 

 
 

Fig. 5. Convert prediabetic cases to diabetic 
 

 
 

Fig. 6. Data Split 
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Table 1. Summary statistics 
  

Count mean min 25% 50% 75% max 

Diabetes 253680 0.157588 0 0 0 0 1 
HighBP 253680 0.429001 0 0 0 1 1 
HighChol 253680 0.424121 0 0 0 1 1 
CholCheck 253680 0.96267 0 1 1 1 1 
BMI 253680 28.38236 12 24 27 31 98 
Smoker 253680 0.443169 0 0 0 1 1 
Stroke 253680 0.040571 0 0 0 0 1 
HeartDiseaseorAttack 253680 0.094186 0 0 0 0 1 
PhysActivity 253680 0.756544 0 1 1 1 1 
Fruits 253680 0.634256 0 0 1 1 1 
Veggies 253680 0.81142 0 1 1 1 1 
HvyAlcoholConsump 253680 0.056197 0 0 0 0 1 
AnyHealthcare 253680 0.951053 0 1 1 1 1 
NoDocbcCost 253680 0.084177 0 0 0 0 1 
GenHlth 253680 2.511392 1 2 2 3 5 
MentHlth 253680 3.184772 0 0 0 2 30 
PhysHlth 253680 4.242081 0 0 0 3 30 
DiffWalk 253680 0.168224 0 0 0 0 1 
Sex 253680 0.440342 0 0 0 1 1 
Age 253680 8.032119 1 6 8 10 13 
Education 253680 5.050434 1 4 5 6 6 
Income 253680 6.053875 1 5 7 8 8 

 

 
 

Fig. 7. Age Distribution for diabetic patients 
 

 
 

Fig. 8. Education level distribution for diabetic patients 



 
 
 
 

Nilei et al.; J. Compl. Altern. Med. Res., vol. 25, no. 8, pp. 57-70, 2024; Article no.JOCAMR.121061 
 
 

 
63 

 

 
 

Fig. 9. Income distribution for diabetic patients 
 

 
 

Fig. 10. Gender distribution among diabetic patients 
 

 
 

Fig. 11. Correlation matrix 
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2.6 Machine Learning Techniques 
 
Machine learning algorithms are used to train a 
dataset so that the computer can learn from the 
dataset and formulate a model that can be used 
to predict the outcome of new inputs. In this 
study, six machine learning algorithms are 
adopted to train the dataset. The algorithms are 
Logistic Regression (LR), Decision Tree (DT), 
Random Forest (RF), Gradient Boosting 
(GBoost), 𝑘 -Nearest Neighbours ( 𝑘 NN) and 
Naive Bayes (NB) algorithms were chosen 
because they can handle binary classification. 
When compared to other algorithms, such as 
Support Vector Machines (SVM), Neural 
Networks, and AdaBoost, the chosen methods 
offer distinct benefits that make them more 
appropriate for our analysis. LR is a simple 
binary classification which is effective and easily 
interpretable. Unlike the Support Vector Method 
(SVM), which can be computationally intensive, 
especially with large datasets, LR provides 
probabilistic outputs and is less resource-
demanding, making it a practical choice for this 
study. DT algorithm was chosen for its intuitive 
and easy-to-visualize nature, which aids in 
understanding the decision-making process. 
While Neural Networks can model complex 
relationships in the data, they often act as "black 
boxes" with limited interpretability. Meanwhile, 
DT provides clear, understandable rules, making 
them valuable for this analysis. RF is an 
ensemble method that has the ability to reduce 
overfitting by averaging the results of multiple 
decision trees, resulting in improved accuracy 
and robustness. Single classifiers like SVM or a 
single Neural Network may overfit the data. 
GBoost was chosen for its high predictive 
accuracy and ability to handle complex 
relationships in the data. Compared to AdaBoost, 

another boosting technique, GBoost, often yields 
better performance by minimizing loss functions 
and more effectively addressing bias and 
variance. 𝑘 -Nearest Neighbours ( 𝑘 NN) was 
included due to its non-parametric nature, 
making no assumptions about the data 
distribution. It is simple to implement and 
effective, especially in smaller datasets where 
relationships among data points are significant. 
Unlike SVM or Neural Networks, which require 
extensive parameter tuning and longer training 
times, 𝑘NN provides quick, reliable results. NB 
algorithm was chosen for its strong independent 
assumptions between features and its ability to 
perform well in real-world scenarios. While 
algorithms like Neural Networks or SVM may 
require extensive computational resources and 
complex tuning, NB is computationally efficient 
and robust. In addition to the strengths of the 
chosen algorithms, Logistic Regression,  
Decision Tree, Random Forest, and Gradient 
Boosting have the “Feature Importance” attribute 
that can be used to estimate the contribution of 
each feature to the chance of a patient being 
diabetic.  
 
The performance of the algorithms is measured 
using the confusion matrix, precision, recall, F1-
score, accuracy and cross-validation technique 
(Almushaygih et al., 2024). Fig. 12 shows the 
confusion matrix, with the items explained below; 
 

True positive: the number of non-diabetic 
classifications that are actually non-diabetic. 
False positive: the number of non-diabetic 
classifications that are not actually diabetic. 
False negative: the number of diabetic 
classifications that are not actually diabetic. 
True negative: the number of diabetic 
classifications that are actually diabetic. 

 

 
 

Fig. 12. Confusion matrix general form 
 



 
 
 
 

Nilei et al.; J. Compl. Altern. Med. Res., vol. 25, no. 8, pp. 57-70, 2024; Article no.JOCAMR.121061 
 
 

 
65 

 

Given a positive classification, the precision measures the accuracy of the classification and is defined 
as; 
 

precision =
True Positive

True Positive +  False Positive
 

 

The recall measures the ability of the model to capture all positive instances and is defined as the 
ratio of the true positive to the total positive. 
  

recall =
True Positive 

True Positive +  False Negative
. 

 

As a balance between the recall and the precision, the F1 score is defined as the harmonic mean of 
the precision and recall as  
 

F1 Score =  2 ×
precision ×  recall

precision +  recall
 

 

The accuracy is defined as  
 

accuracy =
True Positive +  True Negative

True Positive +  False Positive +  True Negative +  False Negative
 

 
and it measures the overall correctness of the algorithm. 
 
One of the challenges with machine learning 
algorithms is that it is not always very certain 
whether the accuracy, precision or recall is 
reliable. Cross-validation is a technique that 
helps to assess the performance and 
generalisation of predictive models [19]. In the 
cross-validation technique, the dataset is divided 
into several subsets, commonly referred to as 
folds [20]. In a 𝑘-fold cross-validation scenario; 

the data is split into 𝑘  equally sized folds. The 
model is then trained on 𝑘 − 1 of these folds and 
validated on the remaining one. This process is 
repeated 𝑘 times, with each fold serving as the 
validation set exactly once. The performance 
metrics from each iteration are then averaged, 
resulting in a robust estimate of the model's 
performance. 

 
3. RESULTS 
 
3.1 Analysis of Results 
 
By following the work of Almushaygih et al. [12] 
the dataset is divided it into two subsets; 80 
percent for training and 20 percent for testing. A 
total of 50736 examples were involved in the 
testing, out of which 42741 are nondiabetic and 
7995 are diabetic. Fig. 13 shows the confusion 
matrices for all the six algorithms. Gradient 
Boosting has the highest True Positive and the 
highest False Positive, while Logistic Regression 
has the lowest True Positive and the lowest 
False Positive. 

The performance metrics used to measure the 
performance of the algorithms are the Precision, 
Recall, F1-score and Accuracy. The results are 
arranged in order to increase accuracy in Table 
2. For the classification of the nondiabetic, the 
Logistic Regression has the highest Precision 
(94%), while Gradient Boosting has the highest 
Recall (97%) and F1-score (92%). For the 
classification of diabetic, Gradient Boosting has 
the highest Recall (57%), while Logistic 
Regression has the highest Recall (76%) and F1-
score (47%). In all, the accuracy of the Gradient 
Boosting (85%) is the highest among the 
algorithms. It is also important to note that the 
performance of Random Forest and Gradient 
Boosting is close. Hence, the models from 
Logistic Regression will be used to model the 
chance of a patient being non-diabetic. At the 
same time, the Gradient Boosting and Random 
Forest will be compared to model the chance of a 
patient being diabetic. 
 
Using cross-validation of 5 folds, the         
accuracies of the models are validated, and the 
results are shown in Table 3. The results validate 
the results in Table 2, and thus, the Gradient 
Boosting and Random Forest models perform 
better than the remaining four models. Hence, 
the models from the Random Forest and 
Gradient Boosting are used for the Feature 
Importance to estimate the chance of diabetic 
condition. In contrast, the Logistic Regression 
model is used to estimate the chance of non-
diabetic conditions. 
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Fig. 13. Confusion matrices for the six algorithms 
 

Table 2. Performance Metrics for the 6 Algorithms 
 

  Precision 
(%) 

Recall 
(%) 

F1 Score (%) Accuracy 
(%) 

Logistic Regression 0 94 72 82 73 
1 34 76 47 

Naive Bayes 0 91 80 85 77 
1 35 57 44 

Decision Tree 0 87 86 87 78 
1 31 32 31 

𝑘-Nearest Neighbors 0 87 94 90 83 
1 43 24 31 

Random Forest 0 86 96 91 84 
1 49 19 28 

Gradient Boosting 0 87 97 92 85 
1 57 21 31 

 
Table 3. Cross-Validation accuracy 

 

Model Score 

Logistic Regression 72.91% 
Naive Bayes 76.63% 
Decision Tree 77.77% 
𝑘-Nearest Neighbors 83.07% 
Random Forest 83.98% 
Gradient Boosting 85.11% 

 
Finally, the Feature Importance generated from 
the three important algorithms are shown in Fig. 
14 – 16. By checking the significance of the 
features in Fig. 14, it shows that regular 
cholesterol checks, blood pressure, cholesterol 
level, general health condition and body mass 
index are important in determining that a patient 
is non-diabetic. However, Fig. 15 and 16 show 
that General Health, Blood Pressure, Body Mass 
Index, Cholesterol Level, Age, Income and 
Education are risk factors in determining the 
chance of diabetes in a patient. 
 

4. DISCUSSION  
 
The performance of the machine learning models 
varied across different metrics, revealing the 
strengths and limitations of each approach. The 

Gradient Boosting model achieved the highest 
overall accuracy at 85%, with the best recall for 
diabetic cases at 57%. This model was 
particularly effective in identifying true diabetic 
cases, although it also had a higher false positive 
rate. This suggests that while gradient boosting 
is adept at detecting diabetes, it may require 
further refinement to reduce false positives. On 
the other hand, the Logistic Regression 
demonstrated high precision at 94% for non-
diabetic cases and achieved reasonable overall 
accuracy at 73%. This model was effective in 
minimising false positives, making it a reliable 
choice for identifying non-diabetic individuals. 
However, its lower recall for diabetic cases 
indicates that it may miss some true positive 
cases, highlighting a trade-off between precision 
and recall. The Random Forest model performed 



 
 
 
 

Nilei et al.; J. Compl. Altern. Med. Res., vol. 25, no. 8, pp. 57-70, 2024; Article no.JOCAMR.121061 
 
 

 
67 

 

closely to Gradient Boosting, with high overall 
accuracy at 84% and balanced performance 
across metrics. This suggests that random forest 
is a robust model for predicting diabetes status, 
offering a good balance between identifying true 
positive and true negative cases. 
 
Based on the models, the risk factors were 
identified. General health status consistently 
emerged as a top predictor, indicating that 
overall well-being plays a crucial role in diabetes 

risk. General health status depends on several 
factors, such as blood pressure, body mass 
index, and cholesterol level. Perhaps this 
explains why high blood pressure, BMI, and high 
cholesterol levels also have a high contribution to 
increasing the chance of diabetes. According to 
past studies, High blood pressure [21] BMI [22] 
and cholesterol level [23] are significant 
indicators of diabetes. Hence, the outcome of the 
models in this study agrees with the existing 
literature. 

 

 
 

Fig. 14. Feature importance by logistic regression 
 

 
 

Fig. 15. Feature importance by gradient boosting 
 



 
 
 
 

Nilei et al.; J. Compl. Altern. Med. Res., vol. 25, no. 8, pp. 57-70, 2024; Article no.JOCAMR.121061 
 
 

 
68 

 

 
 

Fig. 16. Feature importance by random forest 
 
Age also emerged as a significant factor, with 
older age groups more likely to develop diabetes. 
This aligns with existing literature on age-related 
diabetes risk and suggests that age-specific 
strategies may be necessary for effective 
diabetes prevention [24]. It has been shown that 
the production of insulin declines as individuals 
grow older. Moreover, as age increases, there is 
an accumulation of lifestyle. This probably 
explains why age is a risk factor for diabetes. 

 
Higher-income levels were associated with 
higher diabetes risk, suggesting that 
socioeconomic factors play a critical role in 
health outcomes. As opposed to many 
perspectives on diabetes (such as the one held 
by Sieglie et al., [25] this study shows that 
increasing income could contribute to increasing 
chance of diabetes. People with high incomes 
are able to afford more than those with lower 
incomes can afford, and as a result, high-income 
earners may also indulge in high-sugar food due 
to the sweet tastes and satisfaction it brings. 
Increasing education levels were linked to 
increased diabetes risk. This is also against the 
popular opinion that increasing education also 
increases awareness of diabetes [25]. However, 
increasing education also promotes staying in 
the same position for a long time, either to sit 
down to read and write or to remain standing at 
the same spot in the laboratory. These activities 
do not encourage blood sugar usage; rather, 
they leave more sugar in the blood. 

5. CONCLUSION 
 

In this study, we evaluated the performance of 
six machine learning algorithms on a dataset 
containing health and lifestyle factors to predict 
diabetes status. The study identified the most 
effective models for classifying non-diabetic and 
diabetic cases. It ultimately provided insightful 
information on the features that influence the 
chance of diabetes in a patient. Gradient 
Boosting demonstrated the highest overall 
accuracy (85%) and the highest recall (97%) and 
F1-score (92%) for non-diabetic classification. It 
also showed the highest recall (57%) for diabetic 
classification. Logistic Regression excelled in 
precision (94%) for non-diabetic classification 
and had a notable F1-score (47%) for diabetic 
classification, making it suitable for modelling 
non-diabetic cases. Random Forest performed 
closely to Gradient Boosting, validating its 
robustness for diabetic predictions. Cross-
validation results confirmed the superiority of 
Gradient Boosting (85.11%) and Random Forest 
(83.98%) over the other models, reinforcing their 
reliability. For non-diabetic predictions, important 
features included regular cholesterol checks, 
high blood pressure, cholesterol level, general 
health condition, and body mass index. For 
diabetic predictions, critical risk factors were 
general health, blood pressure, body mass index, 
cholesterol level, age, income, and education. 
 

Future work can focus on further enhancing 
these models, addressing potential class 
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imbalances, and integrating additional health 
metrics to improve predictive accuracy. This 
approach offers a valuable framework for 
healthcare practitioners to identify at-risk 
individuals and tailor interventions accordingly, 
ultimately contributing to better diabetes 
management and prevention strategies. 
 

6. RECOMMENDATIONS 
 

Based on the analysis, several recommendations 
can be made to improve diabetes prevention and 
management. Regular health check-ups, 
including cholesterol and blood pressure 
monitoring, should be encouraged, as these are 
significant predictors of diabetes risk. Promotion 
of healthy lifestyle choices and weight 
management strategies is essential, given the 
impact of BMI on diabetes risk. Age-specific 
diabetes prevention programs should be 
developed to recognise the increased risk in 
older age groups. 
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