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Abstract: Airlines have launched various ancillary services to meet their passengers’ requirements
and to increase their revenue. Ancillary revenue from seat selection is an important source of revenue
for airlines and is a common type of advertisement. However, advertisements are generally delivered
to all customers, including a significant proportion of people who do not wish to pay for seat selection.
Random advertisements may thus decrease the amount of profit generated since users will tire of
useless advertising, leading to a decrease in user stickiness. To solve this problem, we propose a
Bagging in Certain Ratio Light Gradient Boosting Machine (BCR-LightGBM) to predict the willingness
of passengers to pay to choose their seats. The experimental results show that the proposed model
outperforms all 12 comparison models in terms of the area under the receiver operating characteristic
curve (ROC-AUC) and F1-score. Furthermore, we studied two typical samples to demonstrate
the decision-making phase of a decision tree in BCR-LightGBM and applied the Shapley additive
explanation (SHAP) model to analyse the important influencing factors to further enhance the
interpretability. We conclude that the customer’s values, the ticket fare, and the length of the trip are
three factors that airlines should consider in their seat selection service.

Keywords: ensemble learning; ancillary service; LightGBM

1. Introduction

With the development of airline business, ancillary services [1–7] that satisfy passen-
gers’ personal requirement are becoming increasingly important for airlines. Ancillary
revenue has already played a vital role in airline profit and greatly increases the amount
of extra financial revenue for airlines. By improving the quality of ancillary services, air-
lines increase their user satisfaction [8,9] and the adhesiveness of customers [2,7], which
enhances their competitiveness and prevents homogeneity. Due to the worldwide spread
of COVID-19, the global market for airlines has reduced dramatically [10–17]. Airline
companies are, thus, urgently seeking extra profit to reduce fiscal pressure, leading to more
serious competition based on ancillary services.

Airline ancillary revenue refers to income beyond the ticket fare and acts as a di-
rectly recommended service or implicit travel experience. Ancillary services are rapidly
growing due to the fast-growing airline market (2007∼2018) and the impact of COVID-19
(2019∼2021). Ancillary revenue [18] greatly increased from $2.1 billion to $35.2 billion for
the top 10 airlines within 12 years (2007∼2018). The significant growth in airline business
in these years brings a great potential market for ancillary service.

Owing to the impact of the pandemic, the airline market faced a dramatic regression
(2019∼2021), compelling airlines to seek revenue other than from flight tickets [12,14].
Therefore, establishing ancillary services is significantly important for airlines due to the
ability to increase the airline’s revenue. This also serves as an approach to solving the
problem of customer churn and ensuring the resources are adequately utilized.

Aerospace 2022, 9, 47. https://doi.org/10.3390/aerospace9020047 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9020047
https://doi.org/10.3390/aerospace9020047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0003-0464-9205
https://doi.org/10.3390/aerospace9020047
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9020047?type=check_update&version=1


Aerospace 2022, 9, 47 2 of 17

According to [19], the airline ancillary service is divided into five categories: (1) a la
carte features, (2) commission-based products, (3) frequent flier activities, (4) advertising
sold by the airline, and (5) the a la carte components associated with a fare or product
bundle. From all of them, a la carte is the most general service that increases the revenue
of airlines dramatically. A la carte features consist of multiple services that improve
the travel experience, including onboard sales, extra baggage allowance, onboard Wi-Fi,
and seat selection.

Seat selection [2,5,20,21] is one of the most common ancillary services chosen by
passengers. This service refers to passengers choosing their preferred seats and paying for
them willingly. For example, if passengers want to sit in the first row of the economy class
for more legroom, they can spend extra money to reserve those seats in advance. Many
reputable airlines around the world already provide this service and obtain revenue based
on this service.

However, it is difficult for airlines to identify which passengers are willing to pay for
seat selection since passengers who choose this service make up only a small part of all pas-
sengers. If the service is recommended to all customers, not only will advertising resources
be wasted but passengers may also tire of useless advertisements, leading to a negative
impact on customer satisfaction. Thus, how to precisely predict passengers’ willingness to
pay for seat selection must be urgently solved for airlines to save in advertisement resources
and to increase their ancillary profits.

In this paper, we apply the air passenger seat selection dataset provided by Neusoft as
the research object to analyse important factors in the willingness to pay for a seat selection
service. In particular, we propose a machine-learning-based model named Bagging in
Certain Ratio Light Gradient Boosting Machine (BCR-LightGBM) to predict the willingness
of passengers to pay for such services. We conduct extensive experiments to demonstrate
the effectiveness of BCR-LightGBM, showing the ability to capture rules between features.
Then, we visual a decision tree in BCR-LightGBM and study two typical samples based on
the visualization. To further enhance the interpretability, we use a Shapley additive expla-
nation (SHAP) [22] model to analyse the feature importance and give our recommendations.
Our contributions are summarized as follows:

1. We study the seat selection service from the perspective of passengers’ willingness to
pay, create new features from the original dataset, and propose an ensemble model,
named BCR-LightGBM, to predict the willingness of passengers to pay for seat selection.

2. The experimental results show that BCR-LightGBM outperformed all 12 comparison
models in terms of the AUC and F1-score.

3. We demonstrate the rules learned by BCR-LightGBM by visualizing the decision-
making phase of two typical samples and analyse the important factors based on the
SHAP model.

2. Related Work
2.1. Airline Ancillary Service

As the representative of high-level transportation, airlines are expected to acquire extra
revenue from ancillary services and to satisfy passengers’ personal requirements. How to
increase their ancillary revenue has become a research hotspot for airlines. Chen et al. [23]
studied passenger value on the air market between the Taiwan region and China’s mainland.
The results demonstrated that business travellers are less likely to perceive a trade-off
compared with non-business travellers. Correia et al. [24] studied customers’ preferences
for ancillary services provided by low-cost airlines.

The research found that low-cost passengers are sensitive to the price of ancillary
services. O’Connell et al. [1] employed an online survey to research the preference of
travellers to ancillary service. They found that airport car parking and checked baggage
charges were the most acceptable services. Wittmer et al. [20] studied the customer value
and ancillary services based on a European network carrier’s economy class.
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The research revealed that the key point of passengers’ willingness to pay for ancillary
services is their perception of the importance of these services. Warnock-Smith et al. [2]
investigated the relation between the willingness of passengers to pay for ancillary services
and the pricing of the service. The work found that passengers prefer to choose necessary
services that enhance the travel experience, e.g., seat selection, instead of optional services.

These studies examined ancillary services overall instead of focusing on a particular
service. Han et al. [25] analysed the role of in-flight food and beverage in re-flying intention.
Specifically, the quality of food and beverage, the reasonableness of the price, the airline
image, and satisfaction were positive factors that influence re-flying intention. Klisli-
nar et al. [4] analysed the relation between four main factors and the revenue generated
from ancillary services based on a survey for Garuda Indonesia customers.

The results showed that passengers valued unbundled products more.
Chiambaretto et al. [5] researched the willingness to choose ancillary services for air passen-
gers on long-haul airlines. Five ancillary services, i.e., checked baggage, in-flight meal, seat
selection, priority boarding, and onboard Wi-Fi, were analysed and revealed that leisure
passengers were more likely to pay for extra services.

Influenced by the COVID-19 pandemic, the strategies for ancillary services by airlines
have greatly changed. Various dynamic pricing strategies on airline ancillary services have
been proposed to further increase the amount of extra revenue, mitigating the shortage
of funds [15]. Vinod et al. [12] proposed an airline revenue planning method, including
scheduling, airline pricing, and revenue management, to mitigate the volatility of airline
revenue due to COVID-19.

Shukla et al. [26] proposed a dynamic, customer-specific pricing recommendation
framework to increase the revenue of airline ancillary services. Compared with human
rule-based approaches, the framework dramatically improved the expected revenue in
online testing, showing the great potential of machine learning in decision-making.

Kolbeinsson et al. [7] proposed a dynamic and personalized pricing strategy based on
flight characteristics and customer needs. The system greatly surpassed human-curated
rules over a six-month live-implementation testing. Zhao et al. [6] analysed the passenger’s
willingness to pay for ancillary services through pricing strategies. By analysing the
relationship between the pricing of services and the willingness to pay, that paper further
proposed a dynamic pricing model for ancillary services to increase the extra revenue.
Moreover, Shaw et al. [27] studied how to increase revenue from third-party ancillary
services further increasing the number of sources of ancillary revenue.

2.2. Seat Selection

Profit from payable seat selection occupies a great proportion of ancillary profit.
Rouncivell et al. [3] utilized UK domestic flights to study the willingness to pay for airline
seat selection. They found that ticket fare was an important factor for both business and
non-business travel and that passengers who chose the service in the past were more likely
to choose it again.

Shao et al. [28] analysed five intercontinental routes from major European airlines
to propose a statistical model for advanced seat reservation. The results showed that
passengers generally avoid middle seats and prefer to sit in the first row, which provided
an empirical foundation for seat selection services.

Zhou et al. [29] focused on the Chinese market to analyse the influencing factors
for seat selection in economy class. They concluded that the length of the trip, the seat
comfort and convenience, and payment and consumption situations greatly influenced the
willingness of passengers to pay.

Yoon et al. [30] focused on customers’ demands being uncertain and analysed how
to maximize airline revenue by providing payable upgrade options, especially for seat
assignment problems. This work analysed the willingness of passengers to pay and
proposed some suggestions for airlines. However, to the best of our knowledge, no research
has focused on the prediction of passengers’ willingness to pay for seat selection.
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If passengers who are willing to pay cannot be precisely predicted and targeted by ad-
vertisements, airline profits may decrease since customers may tire of random advertising.
To solve this problem, in this paper, we propose a model to predict passengers who are
willing to pay for seat selection and provide corresponding recommended services to them.

2.3. LightGBM

LightGBM (Light Gradient Boosting Machine) [31] is an improved Gradient Boosting
Decision Tree (GBDT) [32] combining the decision tree and boosting methods. The essence
of GBDT is to take the value of the negative gradient of the loss function in the current
model as the approximation of the residual and to iteratively train multiple decision trees
according to that value. However, the traditional GBDT model has some shortcomings,
e.g., difficult parallelization, high computational cost, and not being suitable for high-
dimensional sparse data.

LightGBM overcomes the shortcomings of traditional GBDT by supporting paral-
lelized training to achieve fast speeds and low memory consumption when processing
huge amounts of data. The biggest difference between LightGBM and other GBDT models
is that the other models pre-sort the feature values and find the optimal division point
according to the sorting result. The implementation is simple but difficult to be optimized.
When the dataset is large, the training process occupies a great deal of memory, which
leads to a waste of CPU cycles and reduces the training speed. To solve this problem,
LightGBM applies a histogram-based algorithm to discretize the numerical features into K
discrete values and to pick the value that achieves the highest accumulated number as the
split point.

LightGBM utilizes a sampling algorithm named Gradient-based One-side Sampling
(GOSS) to reduce the number of instances. The algorithm excludes most low-gradient
samples and calculates the information gained by the other samples, maintaining the
performance of the model when the training dataset is reduced. To further improve the
computational speed, LightGBM applies a bundle method, Exclusive Feature Bundling
(EFB), to combine features that have small conflicts or are totally exclusive to reduce
the number of features. Although the algorithms mentioned above greatly reduce the
computational consumption, the performance of the model is also decreased. To handle
this issue, LightGBM introduces a leaf-wise splitting mechanism, which effectively reduces
the loss and increases the precision.

3. Methodology

How to predict the willingness to pay for airline seat selection is an urgent problem
that needs to be solved. We utilize real air passenger history provided by Neusoft (described
in Section 4.1) to predict their willingness since the corresponding dataset is hard to collect
from individuals rather than from airlines. First, we construct and select new features to
overcome the data sparsity and the curse of dimensionality. Then, we propose Bagging in
Certain Ratio LightGBM (BCR-LightGBM) to solve the issue of imbalance.

3.1. Feature Construction

To overcome the problem of data sparsity, we construct new features on the basis
of the original dataset. There are three types of data in the dataset, i.e., date, numeral,
and category; we apply different transformations on each. For the date and time, e.g., “16
December 2018 20:00”, we construct two features to indicate the season (month-wise) and
time period (hour-wise), shown as follows:

seg_dep_month =


a, x ∈ {1, 2, 12}
b, x ∈ {3, 4, 5}
c, x ∈ {6, 7, 8}
d, x ∈ {9, 10, 11}

(1)

where x is the month of the flight.
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seg_dep_hour =


a, x ∈ {6, 7, 8, 9, 10, 11}
b, x ∈ {12, 13, 14, 15, 16, 17}
c, x ∈ {18, 19, 20, 21, 22, 23}
d, x ∈ {24, 0, 1, 2, 3, 4, 5}

(2)

where x is the hour of the flight.
For numerical and categorical features, the names of the features are divided into two

parts, i.e., characteristic (prefix) and time interval (suffix). The characteristic denotes the
history of the passenger or the inherent property of the flight. For instance, “dist_all_cnt”
indicates the total mileage of a passenger and “pax_fcny” indicates the fare of the flight
ticket. The time interval denotes the time scope of the characteristic, e.g., “dist_all_cnt_m3”
represents the total mileage of a specific passenger collected from three months ago to the
current time. The time interval includes five scopes, i.e., 3 months, 6 months, 1 year, 2 years,
and 3 years. For simplicity, we call the characteristics prefixes and time intervals suffixes in
the following.

We observe that the issue of sparsity is severe for both numerical and categorical
features. To overcome the sparsity for the numerical features, we directly conduct statistics-
based transformation on the original numerical features, i.e., maximum, minimum, mean,
and variance. On the basis of the transformation, we improve the interpretability of each
numerical feature. The features newly formed are named “prefix_max”, “prefix_min”,
“prefix_mean”, and “prefix_std” for each prefix.

pre f ix_max = max( f eatures_with_same_pre f ix) (3)

pre f ix_min = min( f eatures_with_same_pre f ix) (4)

pre f ix_mean = mean( f eatures_with_same_pre f ix) (5)

pre f ix_std = std( f eatures_with_same_pre f ix) (6)

For each categorical feature, we define two sub-flags, named secondary indexes,
to indicate the relationship between the target and the feature. The secondary indexes are
represented as “prefix_T” and “prefix_F”, where “T” denotes a passenger paying for seat
selection services and “F” is a passenger who does not. The constructional rule is shown
as follows:

1. According to the target, all values are divided into two sets for each categorical feature.
These two sets are denoted as S0 and S1, which contain values {x|x ∈ {0, 1}}.

2. If S0 or S1 contains 0, delete it from the set.
3. Construct two new features, “prefix_T” and “prefix_F”, based on the transformation

rule followed:

pre f ix_T =


T, ∃x ∈ S1
U, ∀x = 0
F, others

(7)

pre f ix_F =


T, ∃x ∈ S0
U, ∀x = 0
F, others

(8)

where x represents the values of a sub-label, and pre f ix is the prefix of the feature.

3.2. Feature Selection

In addition to sparsity, the dataset suffers from dimensionality. In this section, we apply
Pearson correlation coefficient-based [33] and chi-square test-based [34] feature selection
techniques to reduce the dimension of numerical and categorical features, respectively.
To select the numerical features, we perform the process below:

1. Calculate the Pearson correlation coefficient between any two features and sort them
in descending order.



Aerospace 2022, 9, 47 6 of 17

2. Set a preserve threshold and delete the threshold to indicate the state of features.
3. For each feature set (a, b), if the correlation coefficient is less than the preserve thresh-

old, we set a as a preserve state; if the correlation coefficient is greater than the delete
threshold, we set a as a delete state.

4. If feature a is in the delete state, delete it unless b is in the delete state.
5. If feature a is in the preserve state, delete feature b unless b is in the preserve state.
6. If features a and b are in neither the delete state nor the preserve state, delete the

feature with the smaller variance.

For each categorical feature, we validate the mutual independence between it and the
target through a chi-square test. If the feature is independent from the target, we directly
delete the feature.

3.3. BCR-LightGBM

Predicting whether air passengers are willing to pay for seat selection is a binary
task. In this section, we illustrate the structure of Bagging in Certain Ratio LightGBM
(BCR-LightGBM). To ensure the robustness, multiple LightGBMs are assembled through a
bagging method [35]. Bagging ensembles are multiple models that were trained by subsets
extracted from the original dataset through bootstrap sampling. The result is obtained by
applying an average or voting strategy. By utilizing bagging, the effectiveness and stability
are improved and the variety of the model is lowered. However, the bootstrap sampling
does not change the data distribution; thus, it cannot overcome the data imbalance in the
original dataset.

To mitigate the imbalance of the original dataset, we only sample the negative samples
in the sampling phase and then combine them with the positive samples to create the subset.
Note that the ratio between positive and negative needs to be pre-assigned since different
ratios lead to different results. Then, each LightGBM is trained through the subsets sampled,
and the prediction is the average of their results. The training process of BCR-LightGBM is
shown in Algorithm 1.

Algorithm 1: The training process of BCR-LightGBM.
Input :Data, Numsubset, Ratio
Output :BCR-LightGBM classifier
Step 1: Clean the original dataset
Data = Remove_null(Data) # Remove all samples with null value
Data = Translate(Data, 0) # Translate all values above 0
Step 2: Construct new features
Data = Transform(Data, Datetime) # Construct date time features
Data = Transform(Data, Int, Float) # Construct numerical features
Data = Transform(Data, Object) # Construct categorical features
Step 3: Select features
Data = Select(Data, Pearson) # Select numerical features
Data = Select(Data, Chi-square) # Select categorical features
Step 4: Split dataset
Datapos, Dataneg ← Data.split() # Split the dataset into postive and negative
Step 5: Create subsets
for i← 1 to Numsubset do

Numpos ← Num(Datapos) # Count the number of positive instances
Sampledneg ← Sampling(Dataneg, Ratio× Numpos) # Sample negative instances
Subseti ← Combine(Datapos, Sampledneg) # Create subset

end
Step 6: Train LightGBM
for i← 1 to Numsubset do

cl fi ← LightGBM.train(Subseti) # Train multiple LightGBMs through subsets
end
Step 7: Ensemble the prediction
BCR-LightGBM← Bagging({cl fi}n

i=0) # Ensemble LightGBMs throught Bagging
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4. Experimental Results

In this section, we compare the proposed BCR-LightGBM against various machine
learning algorithms and sampling-based methods. Then, we illustrate the decision-making
procedure of a decision tree in BCR-LightGBM on two real samples to demonstrate the
learned mode of the model. Furthermore, we analyse the feature importance through a
SHAP model to improve the interpretability. Extensive experiments are conducted on a
64-bit Ubuntu 16.04 operating system. The setting environment is as follows: CPU: Intel
(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz, memeory: 64 RAM, and graphics: GeForce GTX
1080 Ti.

4.1. Data Description

This paper uses the dataset of air passenger willingness to pay for seat selection
provided by Neusoft http://fwwb.org.cn/attached/file/20201211/20201211132638_47
.zip (accessed on 29 November 2021), consisting of flight information, passenger history,
and customer characteristics, which are shown in Table 1. The dataset comprises 23,432
samples, and the feature dimension is 657, which increases the risk of dimensionality [36].
Note that the dataset contains features with the same prefix.

For example, there are five features prefixed with “cabin_f_cnt”, i.e., “cabin_f_cnt_m3”,
“cabin_f_cnt_m6”, “cabin_f_cnt_y1”, “cabin_f_cnt_y2”, and “cabin_f_c-nt_y3”, which repre-
sents the number of people who took first-class flights in the last x months/years, where m3,
m6, y1, y2, and y3 represents 3 months, 6 months, 1 year, 2 years, and 3 years, respectively.
Moreover, the dataset is especially sparse, where nearly 70% of the values are zero.

Positive samples in the dataset indicate the people who paid for seat selection, and neg-
ative samples represent the people who did not. Note that the dataset is extremely im-
balanced [37,38], where the ratio between positive and negative is 1 : 15. The situation is
common for ancillary services since the majority of people do not choose extra services
even though ancillary profits dramatically aid airlines.

Table 1. Description of the dataset provided by Neusoft.

Description Samples Positive Negative Features Datatime Float Int Object

Number 23,432 1475 21,952 657 1 90 444 123

4.2. Metrics

In this section, we introduce the five metrics, i.e., Accuracy, Precision, Recall, F1-score,
and ROC-AUC, used to evaluate the performance of the model. Accuracy is the simplest
metric, which is defined as the number of correct predictions divided by the total number
of predictions, indicating the proportion of correct predictions. Precision and Recall are two
mutually influencing indicators, where Precision indicates the correctness of the prediction
and Recall indicates the prediction performance for users who are willing to pay for seats.
However, there are many cases in which these metrics are not good enough to indicate of
the model performance.

A scenario is when the class distribution is imbalanced, e.g., the case in the experiment.
In this case, even if the model predicts all samples as the most frequent class, the perfor-
mance of these metrics would obtain a high accuracy rate. However, the model is not
learning anything and is simply predicting every sample as the top class. For the dataset
used in the experiment where the negative class occupies around 93.7% samples, if the
model predicts all instances as negative, it would result in a 93.7% accuracy.

To cover the shortage of these metrics and better indicate the model performance, we
further introduce the F1-score and ROC-AUC (area under the receiver operating character-
istic curve). The F1-score combines Precision and Recall into a single metric, with the cases
in which both Precision and Recall are important. The indicator is the harmonic average
of Precision and Recall, and always achieves a trade-off between them, which is generally
applied to indicate the overall performance of model when the dataset is imbalanced.

http://fwwb.org.cn/attached/file/20201211/20201211132638_47.zip
http://fwwb.org.cn/attached/file/20201211/20201211132638_47.zip
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ROC-AUC indicates the area under the ROC (receiver operating characteristic curve)
where the ROC is used to show the performance of a binary classifier. Specifically, the ROC-
AUC is an aggregated measure of performance of a binary classifier on all possible threshold
values. Thus, the indicator is not sensitive to threshold. When the ratio between positive
samples and negative samples changes, the ROC-AUC value does not change dramatically.
TP is the number of instances correctly classified as positive, TN is the number of instances
correctly classified as negative, FP is the number of instances incorrectly classified as
positive, and FN is the number of instances incorrectly classified as negative.

Accuracy =
TP + TN

TP + FP + FN + TN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1− score =
2× Precision× Recall

Precision + Recall
(12)

AUC =
∫ 1

0

TP
TP + FN

d
(

FP
TN + FP

)
(13)

4.3. Comparison Models

In this section, we introduce various comparison models used in the experiments,
including machine-learning methods and sampling-based methods.

1. LR (Logistic Regression) is a simple linear model that can be easily interpreted, where
the performance greatly relies on feature engineering.

2. KNN (K-Nearest Neighbours) is a learning-free model that classifies a sample based
on the k-nearest samples in the feature space.

3. SVM (Support Vector Machine) is not sensitive to outliers due to the inherent prop-
erties of support vectors. However, the kernal function should be dedicated and
designed to fit the input space.

4. AdaBoost (Adaptive Boosting) is a boosting method, which dynamically adjuncts the
weight of each base learner to improve the robustness.

5. GBC (Gradient Boosting) is a boosting method in which the objective is to find the
optimal solution in the parameter space by fitting the residual error of a previous
learner.

6. RF (Random Forest) adopts bagging to improve the robustness, where the decision
tree is a base learner that has been widely used in various fields.

7. XGBoost (eXtreme Gradient Boosting) [39] is an extension of GBC that achieves better
performance and scalability.

8. LightGBM (Light Gradient Boosting Machine) [31] is an extension of GBC. Compared
with XGBoost, LightGBM is faster and lighter. Note that LightGBM is the base learner
in BCR-LightGBM.

9. RUS (Random Under Sampling) randomly samples negative instances until the num-
ber is the same as that of positive instances.

10. ROS (Random Over Sampling) randomly samples positive instances until the number
is same as that of negative instances.

11. SMOTE (Synthetic Minority Over-Sampling) [40] is an over-sampling method, creating
synthetic instances for minorities based on the nearest neighbours.

12. SMOTE-ENN (Synthetic Minority Over-Sampling and Edited Nearest Neighbours) [41]
is the combination of SMOTE and ENN, which applies ENN to clean the samples
created by SMOTE.
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4.4. Comparative Analysis

To demonstrate the superiority of BCR-LightGBM, we compare the performances of
the model against existing machine-learning methods and sampling methods in this section.
For the proposed BCR-LightGBM, we set the ratio between positive samples and negative
samples to 1:3.

Table 2 shows the performance comparison between the proposed BCR-LightGBM
and machine-learning models without sampling. Note that BCR-LightGBM outperforms all
methods in terms of the F1-score and AUC, which are two widely used indicators when the
dataset is imbalanced. Furthermore, BCR-LightGBM achieves the narrowest gap between
Precision and Recall. For other compared methods, the Precision is much higher than the
Recall, indicating that these models only find a small set of passengers who are willing to
pay for seat selection when reducing the error rate.

In other words, these models only can identify instances of people who are the most
likely to pay for seat selection. However, this limitation is unnecessary for airlines as the
cost of advertising is not too unacceptable that messages cannot be advertised to a relatively
large set of people. BCR-LightGBM achieves a desired Recall and an acceptable Precision,
satisfying the requirements of airlines.

Table 3 shows the comparative results between the BCR-LightGBM and sampling-
based methods. The proposed model achieves the best score in terms of Accuracy, Precision,
F1-score, and AUC. Note that sampling-based methods are generally better than machine-
learning models, which is reflected in the narrower gap between Precision and Recall.
Furthermore, the performance of under-sampling-based methods (RUS and SMOTE-ENN)
is worse than over-sampling-based methods (SMOTE and RUS) because under-sampling-
based methods drop a large number of instances in the original dataset, leading to the
model not effectively learning the characteristics of the discarded samples and increasing
the possibility of under-fitting.

The over-sampling-based methods create new samples to mitigate the issue of im-
balance, improving the performance even though noise is introduced. Although BCR-
LightGBM applies an under-sampling method, its performance is better than that of over-
sampling-based models since the ensemble strategy is utilized.

Table 2. Comparative analysis with machine-learning models. Due to the imbalance of the dataset,
we mainly compare the performances of models in terms of the F1-score and AUC.

Accuracy Precision Recall F1-Score AUC

LR 0.9371 0.5556 0.0034 0.0067 0.7170
KNN 0.9322 0.2738 0.0468 0.0799 0.6539
SVM 0.9370 0.3947 0.0102 0.0198 0.6394

AdaBoost 0.9366 0.3077 0.0054 0.0107 0.7070
GBC 0.9375 0.8235 0.0095 0.0188 0.7166
RF 0.9431 0.6972 0.1702 0.2736 0.7534

XGBoost 0.9374 0.6538 0.0115 0.0227 0.7455
LightGBM 0.9381 0.6444 0.0393 0.0741 0.7565

BCR-LightGBM 0.8926 0.2449 0.3390 0.2843 0.7732

Table 3. Comparative analysis with sampling-based methods. We note that the proposed BCR-
LightGBM surpasses existing methods in terms of the Accuracy, Precision, F1-score, and AUC.

Accuracy Precision Recall F1-Score AUC

RUS-LightGBM 0.6315 0.1125 0.7044 0.1940 0.7275
ROS-LightGBM 0.8079 0.1586 0.4766 0.2380 0.7430

SMOTE-LightGBM 0.7639 0.1372 0.5200 0.2171 0.7244
SMOTE-ENN-LightGBM 0.7226 0.1285 0.5892 0.2110 0.7357

BCR-LightGBM 0.8926 0.2449 0.3390 0.2843 0.7732
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To further illustrate the performance of BCR-LightGBM, we plot the ROC (Receiver
Operating curve) of machine-learning methods and sampling-based methods, as shown in
Figure 1. In Figure 1a, we compare the proposed model against various machine-learning
methods, and, in Figure 1b, we compare BCR-LightGBM with LightGBM based on different
sampling strategies. The ROC demonstrates the trade-off between Precision and Recall. We
note that the curve of BCR-LightGBM wraps around all other curves, indicating that the
proposed model surpasses all other methods.

Figure 1. ROC curve compared with (a) machine-learning methods and (b) sampling-based methods.
Note that BCR-LightGBM outperforms all baselines.

Note that the superiority of BCR-LightGBM is derived from the ability to correctly
learn the relationship between important factors. The relation cannot be learned by other
models. We attempted to analyse this from the perspective of model capability. A simple
linear model, i.e., LR, cannot perform feature crossing, which limits its capability to learn
the relation between features. KNN classifies samples through k-nearest neighbours in the
original feature space, and the correlation between features cannot be identified.

Although SVM is not sensitive to outliers, it also cannot perform feature crossing and
the kernel function needed to be dedicated in design. AdaBoost dynamically changes the
weight of the base learner; however, the weight is sensitive to the data distribution. GBC
finds the optimal solution through a descending gradient, which is dramatically influenced
by an imbalance in the dataset. Although RF, XGBoost, and LightGBM achieve great
performances in various fields, they are still weak when solving with data imbalances.

In summary, these models cannot solve or are weak when solving the issue of data im-
balances, mainly in learning information from negative samples, which leads these models
to not correctly find the relationship between important factors. However, the proposed
BCR-LightGBM sets the ratio between the positive samples and negative samples at a cer-
tain value, mitigating the impact of negative samples and achieving the best performance.

For sampling-based methods, RUS causes information loss by dropping existing
samples, and ROS magnifies the impact of outliers in positive samples. SMOTE creates new
samples based on the samples in the dataset but introduces noise. Although SMOTE-ENN
leverages ENN to clean the samples generated by SMOTE, the data distribution may be
further misled due to the lack of prior data. To reduce the impact of noise and to avoid
information loss, BCR-LightGBM applies random under sampling to avoid extra noise
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and uses an ensemble approach to learn all information in the dataset, thereby, improving
the robustness.

4.5. Hyperparameter Analysis

To further analyse the performance of BCR-LightGBM, we conducted experiments
to analyse two important hyperparameters, i.e., the ratio between negative samples and
positive samples, and the number of LightGBMs in the model. Figure 2 shows the perfor-
mance of BCR-LightGBM under different ratios between negative samples and positive
samples. In the figure, α is the ratio between negative samples and positive samples. When
α = 1, the number of positive samples is equal to the number of negative samples. For a
fair comparison, the number of LightGBMs is set at 100. Note that, if the ratio is too large,
the model does not learn the correct relationship between features, thus, causing serious
model degradation.

We observe that, when the ratio between negative samples and positive samples is 3:1,
the model achieves the best performance in terms of the F1-score and AUC. In fact, with the
increase in the ratio, the F1-score and AUC dramatically decreased and the gap between
Precision and Recall becomes large. We do not use Accuracy to indicate the performance of
the model because, even though all samples are predicted to be negative when the data
distribution is imbalanced, the indicator still maintains a high level.

Figure 3 shows the impact of the number of LightGBMs (β) on the model performance.
For simplicity, we select ROC-AUC as the indicator from the five matrices. To completely
demonstrate the impact of the number of base classifiers, i.e., LightGBM, on the BCR-
LightGBM, we conduct experiments when the ratio of negative samples and positive
samples is in {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

From the figure, we observe that the increase in the number of LightGBMs can greatly
improve the performance of the model since the model obtains a desirable performance
gain even though the number of LightGBMs is relatively small. Moreover, with the increase
in the number, the model shows strong robustness because the model rapidly converges
even though slight fluctuation occurs. Note that, the performance of BCR-LightGBM
generally converges when the number of LightGBMs is less than 50, thereby, demonstrating
the robustness and stability of the model.

Figure 2. Performance analysis under different ratios between positive and negative samples where
α indicates the ratio between negative samples and positive samples. Note that, when α is set at 3,
BCR-LightGBM achieves the best performance in terms of the F1-score and AUC.
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Figure 3. Performance analysis under a different number of base learners (LightGBM) in terms of
the AUC. α indicates the ratio between negative samples and positive samples, and β denotes the
number of LightGBMs.

4.6. Importance Analysis of Influencing Factors

In addition to comparing the performances between BCR-LightGBM and existing
models, we also attempt to explain the rules learned by the model. Figure 4 illustrates a
decision tree in the proposed model. For simplicity, we only visualize the top four layers.
We set the layers of the model to seven to improve the capability. We note that the flight
cabin (‘seg_cabin’) is located within the top of the tree, indicating that the cabin is most
discriminative factor for seat selection in terms of the Gini index. Moreover, we find
that some flight information, e.g., the tax of the ticket (pax_tax) and the month of travel
(seg_dep_month), influences their willingness to pay.

In addition to that, the history of flights shows whether the passenger values also con-
tribute to their willingness to pay, e.g., the number of paid seat selections
(select_seat_cnt_max), number of seats by the window (select_window_cnt_var), number
of international tickets (tkt_i_amt_max), point additions from airline mile accumulation
(pit_add_air_cnt_y1), number of economy class flights (cabin_y_cnt_max), number of
first-class flights (cabin_f_cnt_max), and member level (member_level).

To illustrate the rules learned by the model, we selected two typical samples from
the dataset to simulate decision-making by the model, as shown in Table 4. The positive
sample is a person who pays to select a seat, and the negative sample is one who does not.
The features in the table match the corresponding split point in Figure 4. For the positive
sample, we observe that the passenger is a frequent flyer since the value of correspond-
ing factors is high, e.g., the times of economy class (cabin_y_cnt_var), the times of first
class (cabin_f_cnt_max), and the total amount of international flight mileage accumulated
(tkt_i_amt_max, tkt_i_amt_min).

The passenger always pays to select a seat (select_seat_cnt_max) and prefers to seat
by the window (seat_window_cnt_var). Thus, the positive sample has a high customer
value. We assume that the passenger generally takes business trips due to the frequency
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of flight and their willingness to pay for seat selection. Intuitively, a business traveller is
generally willing to pay for seat selection to acquire seats that provide them with better
rest. The model learns this mode following the orange arrow presented in Figure 4.

For the negative sample, we observe that the passenger does not always take flights due to
the low number of flights in economy class (cabin_y_cnt_var) and in first class (cabin_f_cnt_max),
the slow accumulation of points (pit_add_air_cnt_y1, pit_income_avg_amt_var), and the unwill-
ingness to pay for seat selection (select_seat_cnt_max). Intuitively, these kinds of passengers are
not willing to pay for seat selection. The model can learn this mode following the blue arrows
in Figure 4.

Table 4. Two typical samples. The positive sample is a person who pays to select a seat. The negative
sample is a person who does not pay to select a seat, representing people who do not always take
flights. These two samples are used to demonstrate the learning mode of the decision tree in Figure 4.

Positive Sample Negative Sample

seg_cabin 1.0000 cabin_y_cnt_var 0.5983 seg_cabin 1.0000 cabin_y_cnt_var 0.0272
tkt_i_amt_max 0.5832 cabin_f_cnt_max 0.1921 tkt_i_amt_max 0.9280 cabin_f_cnt_max 0.0000
residence_country 0.0000 member_level 0.6000 residence_country 0.0000 member_level 0.0000
pit_add_air_cnt_y1 0.5930 seat_window_cnt_var 0.7583 pit_add_air_cnt_y1 0.0091 seat_window_cnt_var 0.0000
tkt_i_amt_min 0.0000 pit_income_avg_amt_var 0.6240 tkt_i_amt_min 0.0000 pit_income_avg_amt_var 0.0281
select_seat_cnt_max 0.6712 seg_dep_month 0.0000 select_seat_cnt_max 0.0000 seg_dep_month 0.2500
pref_orig_y3_T 0.0000 pax_tax 0.4031 pref_orig_y3_T 0.0000 pax_tax 0.1020
nation_name 0.0000 pref_orig_city_F 0.0000 nation_name 0.0000 pref_orig_city_F 0.0000

We further utilize a SHAP [22] model to enhance the interpretability of BCR-LightGBM.
To interpret the results of ensemble models, SHAP [22] provides an approach to explain
the prediction of ensemble models utilizing the contributions of allocation methods from
cooperative games. The model considers the contribution of features for the prediction
and calculates the feature importance based on that. Compared with feature importance
derived from LightGBM to indicate the number of times to create a split point, the SHAP
model explains the influences of each sample for the prediction and indicates the positive or
negative effects on the prediction. To obtain the influence of each feature, SHAP calculates
the Shapley value [42] of each feature.

Figure 4. Visualization of one decision tree in BCR-LightGBM. For simplicity, we only visualize the
top four layers. The willingness to pay for seat selection is denoted by the colour, where orange is
true, and blue is false. Note that the deeper the colour, the greater the likelihood.
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Figure 5 shows the feature importance based on the Shapley value. Note that aircraft
cabin (seg_cabin), ticket tax (pax_tax), ticket fare (pax_fany), the gap between current and
recent travel date (recent_gap_day), and total international flight mileage (dist_i_cnt_max)
have the greatest impacts on the willingness of passengers to pay for seat selection. Accord-
ing to the SHAP value, we note that flight information has a great influence on the prediction
since five features are important, as presented in Figure 5, i.e., aircraft cabin (seg_cabin),
ticket fare (pax_fany), ticket tax (pax_tax), and the month of flight (seg_deg_month).

We conclude that passengers who pay for better aircraft cabins with higher ticket fares
and taxes are more likely to choose the extra seat selection service and that those who
travel in fall or winter are more likely to pay for these services. Furthermore, passenger
history, which denotes the customer value, also greatly influences the prediction result,
i.e., the gap from the most recent flight (recent_gap_day), total mileage and international
mileage (dist_all_cnt_mean, dist_i_cnt_max), and average ticket fare and international
ticket fare (tkt_avg_amt_max, tkt_i_amt_max). In general, the higher the total mileage
and international mileage, the higher the average and international ticket fare, and the
more frequently a passenger travels, the more likely the passenger is to pay for a seat
selection service.

Figure 5. Feature importance analysis based on the SHAP value. For simplicity, we illustrate the top
15 most important features. If the SHAP value of a specific feature value is greater than 0, the feature
value has a positive impact on the result and vice versa.

According to the sample analysis based on a visualization of the decision tree and
SHAP-based feature importance analysis mentioned above, we conclude the following:

(1) Passengers who have a high customer value, reflected in the total fare of a ticket,
the total mileage accumulated from flights, and the frequency of flights, will pay for
seat selection. Thus, airlines can recommend seat selection services to them since they
may pay more attention to their comfort on the plane.

(2) Passengers who choose airlines with higher ticket fares are more willing to pay for
seat selection. The fare of the ticket also denotes their customer value when the
customer history is difficult to acquire. Airlines can easily identify the willingness of
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a passenger to pay for seat selection based on information from a single flight and can
recommend seat selection services to them.

(3) Passengers who make international flights are more likely to pay for seat selection.
We assume that this is because passengers like to have a more comfortable experience
in long-haul flights. Therefore, airlines can recommend these services to passengers
in long-haul flights.

5. Conclusions

Ancillary service revenue has become important for airlines in recent years. Under the
impact of COVID-19, how to precisely provide personalized ancillary services to passengers
to increase revenue and how to mitigate capital shortages are problems that need to be
urgently solved. In this paper, we analysed seat selection services from the perspective
of the prediction of the willingness of passengers to pay for seat selection and propose
a machine-learning-based method to identify their willingness to pay for seat selection.
Specifically, we proposed a model, named BCR-LightGBM, to identify passengers who are
willing to pay for seat selection as the basis of recommendation.

We first preprocessed the original dataset to overcome the data sparsity and the curse
of dimensionality inherent in the dataset. Then, the bagging method was applied, where
positive samples and negative samples were combined at a specific ratio for multiple subsets
to solve the problem of data imbalance. The experimental results demonstrated that the
proposed model achieved 0.28 and 0.77 in terms of the F1-score and AUC, outperforming
all existing machine-learning models and sampling-based methods.

Finally, we analysed two typical samples based on the visualization of a decision tree
in BCR-LightGBM and applied a SHAP model to further enhance the interpretability by
analysing feature importance. We note that customer value, ticket fare, and flight length
had positive influences on the willingness to pay for seat selection. Based on this rule,
airlines can recommend seat selection services to the corresponding passengers to increase
their revenue.

The limitation of this research is that the number of samples is relatively small and
cannot cover all situations regarding seat selection around the world. Thus, our conclusions
may only be appropriate in similar cases to those contained in the dataset. In future
research, we will collect more samples from different airlines to make the conclusions
more convincing. We will further study the intrinsic properties of these important factors
and mine knowledge from the dataset to guide the recommendation policies of airlines to
increase revenue from other ancillary services, e.g., priority boarding, checked baggage,
and onboard Wi-Fi.
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