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Abstract

The chief object of this work is to create an exact and consistent arithmetic of zero, denoted 0,
and infinity (zero divisor), written as 1/0 and denoted ∞, based on the conventional division by
zero

0

0
= 1.
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1 Introduction

The beginners in mathematics, on passing from the rudimentary operations of addition, subtraction,
and multiplication involving zero to the operation of division by zero find themselves in a completely
alien department of reasoning [1]. They have not ascended by painless and gentle steps. They are
excruciatingly stamped with the established opinion that the continuity of arithmetic and algebra
has been broken by the very stern commandment: Thou shalt not divide by zero [2], [3], [4].

They find themselves required to skip the approach that has hitherto guided their calculations and
to put in its stead a notion that is utterly repugnant to their preconceived idea of numbers. When
they are told that they cannot divide by zero, they restrict themselves to only division by finite
quantities. They are instructed that the ratio of two zeros is indeterminate [5], [6], [3].

In the study of indeterminate forms, the beginners are drawn far away from their beloved faculty
of arithmetic and algebra to the dreadful department of limit. For it seems very unfortunate that
we should teach the beginners that limx→0 x = 0, suggesting that x reaches its limit 0, and then in
the case

lim
x→0

x

x
= 1

which suggests the conventional division by zero [7],[8]

0

0
= 1,

instruct them that “it does not matter if x does not reach its limit 0 ”.

Many mathematicians and scientists all over the world seek a renewal of the idea of division by zero.
Therefore, the notion of division by zero has been revisited by such excellent modern scholars as the
German father and son, I. Barukcic and J. Barukcic [6], the Indian mathematian A. Sathaye [4], the
American mathematics educationist J. Czajko [7], [9], [10], the Japanese mathematician S. Saitoh
[11] [12], the British computer scientist J. Anderson [5], the African mathematician and computer
scientist W. P. Mwangi [8], J. Bergstra [13], H. Okumura [12], T. Matsuura [12], H. Michiwaki [11],
M. Yamada [11], and many others.

The chief aim of this paper is to create a precise and consistent arithmetic of zero and infinity,
based on the conventional division by zero 0/0 = 1 which has its root from the famous identity
a× 0/0 = a associated with the immortal Indian mathematician and astronomer Bhaskara II [14],
[3].

Now I have taken this work as thinking it will appear useful to all the mathematicians and scientists
worthy of their study, for it will contain the solutions to some of our questions which often arise
in the arithmetic of zero and infinity. Because this work would take up a great compass for a full
justification of division by zero, I separated it into sections, subsections, and subsubsections but in
the process of time, as usually happens to such as undertake great things, I grew weary, and went
on slowly, it being a profuse and cumbersome subject, and a difficult thing to complete. Having
been encouraged to go on by Mr. Agun Ikhile, I was ashamed to permit any laziness of disposition
to have a greater influence upon me than the delight of taking pains in such studies as were very
useful; I therefore stirred up myself, and went on more cheerfully.

The order in which the work is developed and many of the explanations offered, though novel in
many respects, are believed to be well calculated to meet the difficulties and secure the interest of
the reader.

The remainder of this paper is divided into 5 sections. Section 2 deals with the concept of zero,
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the number standing for absolute nothing. Section 3 is concerned with the multiplicative inverse
of zero, the number called infinity. The true meaning of the operation of division is furnished in
section 4. Section 5 discusses the indeterminate forms of the calculus. Section 6, the last section,
gives undeniable applications of the arithmetic of zero and infinity.

2 Zero

For the consummate comprehension of the arithmetic of zero and infinity (zero divisor), it is
expedient to fathom the profundity of the notion of zero, a concept which has been wrapped
in obscurity by so many writers. Here, I shall do my utmost to set forth an ingenuous and non-
perplexing theory of zero, leaving controversy as far as possible on one side. To start with, it may
be well to point out that I shall use the word zero to mean generally nothing so that no number
will be called zero unless it is truly absolute nothing.

2.1 Basic Rules of Zero

In attempting to reach a precise arithmetic of zero and infinity, it is useful to establish two rules of
zero–reflexive and substitution.

2.1.1 Reflexive Rule

This rule is stated as follows. Let A be any quantity whatsoever–constant, variable or function. If
A = A, then A−A = 0 or −A+A = 0 where 0 stands for absence of the quantity A. We shall name
the zero 0 the intuitive zero. The elimination expression A − A or −A + A is a take–away
subtraction [15] and means the removal or taking away of the quantity A completely from A [3].

The reflexive rule applies whenever we come across a number, variable or function being subtracted
from itself in the process of simplifying a mathematical expression or solving a mathematical
equation. Thus the expression

(x+ 1)2 − x2 − 1

which equals
x2 + 2x+ 1− x2 − 1,

becomes, collecting like terms, the expression

x2 − x2 + 2x+ 1− 1.

This expression is rewritten as
0 + 2x+ 0.

This is irreversibly equal to 2x; the omission of the sign 0 is justified because 0 merely represents
the absence of the quantity cancelled or removed.

Consider the problem of solving the equation

2x− 10 = x.

To remove x from the right–hand side of the equation, add −x to both sides. The equation becomes

2x− 10− x = x− x

which becomes
x− 10 = 0.

To remove −10 from the left–hand side, add +10 to both sides of the equation. Thus, we have

x− 10 + 10 = 0 + 10

3



Ufuoma; ARJOM, 13(1): 1-40, 2019; Article no.ARJOM.46281

which becomes
x+ 0 = 0 + 10.

Omitting the symbol 0 as it merely represents absence of the quantity cancelled or removed, we get
x = 10.

2.1.2 Substitution Rule

This rule goes thus. Let c be a constant and x a variable. If c is put in place of x in the expression
x − c, the result is c − c = 0 or if −c is substituted for x in the expression x + c, the answer is
−c+ c = 0. The bold–faced c, that is c, is used to indicate an evaluation process. The bold–faced
form of 0, namely 0, is used to represent the absence of the quantitative difference of the two different
species of quantities x and c when x = c. We shall call 0 the numerical zero. The evaluation
expression c − c is a comparison subtraction [15] and means that there is no quantitative
difference x− c when x = c [3].

Let it be noted that the expression c− c and f(x)− f(x) signify the elimination or removal or
cancellation of the constant c and the function f(x) from a mathematical expression or one side of
an equation respectively. On the other hand, the expression c − c signifies that the quantitative
difference x − c has been made absolutely nothing when x has been made equal to c. It does not
imply the removal or elimination or cancellation of x or c.

Since it is easy to differentiate an elimination expression from an evaluation expression, we shall
soon drop the use of the bold–faced c. We shall however maintain throughout this work the use of
the bold–faced 0.

2.2 Zero in Concrete Arithmetic

The zero 0 is the sign associated, as already noted, with the removal of a quantity from an expression
or one side of an equation. In concrete arithmetic, it is the symbol for the emptiness of a group of
objects when all the objects are removed from the group.

On the other hand, 0, represents the absence of the difference of the variable quantity x and
the constant quantity c when the variable is made equal to the constant. In concrete arithmetic,
it is the symbol for the no difference of the numbers of objects in two different groups of objects
when the variable number of objects in one group is made equal to the fixed number of objects in
the other group.

2.3 Equality of the Two Species of Zero

The zero 0 can be shown to be equal to the zero 0. For if we start with the equation x = c, and
subtract c from both sides, we shall have x− c = c− c which becomes x− c = 0. For the equation
x− c = 0 to hold good, x must equal c. Putting c in place of x in the equation furnishes c− c = 0
which becomes 0 = 0.

Whatever weight is given to the sign ‘=’ in the result 0 = 0, it is clear that it comes close
to identifying 0 with 0. But one should not speak merely of 0 playing the role of 0 or of 0 only
representing 0.

Again, we consider the equation x2 = 1. If we remove 1 from the right-hand side by adding −1
to both sides, we have

x2 − 1 = 0

which becomes
(x+ 1)(x− 1) = 0.
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If we set x = 1, we obtain
(1+ 1)(1− 1) = 0

which becomes 2 ·0 = 0. Similar arguments show that for any finite number a and positive number
n,

a · 0n = 0.

Our inability to distinguish between the two different species of zero, 0 (numerical zero) and
0 (intuitive zero), is the reason why mathematicians have to complain that there are paradoxes in
the analysis of the infinite. This is not to be wondered at, for if only we comprehend the difference
between these two species of zero, we shall be in the position to resolve all the paradoxes and
contradictions which reveal themselves in the analysis of zero and infinity.

2.4 Properties of the Intuitive Zero

Here we provide the properties of 0, the symbol we have used to represent the absolute nothing
which arises from the cancellation of a quantity by itself in a take-away subtraction. If a is a finite
quantity and n is a positive number, then

a+ 0 = 0 + a = a

a− 0 = a

0− a = −a

a× 0 = 0× a = 0

a÷ 0 = ∞
0n = 0

where ∞ represents infinity (the endless).

2.5 Properties of the Numerical Zero

We have seen the properties of 0; let us now ascend to see some properties of 0. From the equality
0 = 0, it follows that all the properties of 0 are also the properties of 0. Thus

a+ 0 = a+ 0 = a

a− 0 = a− 0 = a

0− a = 0− a = −a

a× 0 = a× 0 = 0

a÷ 0 = a÷ 0 = ∞
0n = 0n = 0

where ∞ represents infinity (the endless).

2.6 The Numerical Zero as an Integer

Consider the sequence of variables

. . . , n− 4, n− 3, n− 2, n− 1, n, n+ 1, n+ 2, . . . .

If we let n = 1, we obtain the sequence of integers

. . . , −3, −2, −1, 0, 1, 2, 3, . . . .

From this it follows that 0 is an integer.
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2.7 Additive Inverse of the Numerical Zero

Consider the sequence of variables

. . . , −2− n, −1− n, −n, −(n− 1), 2− n, 3− n, 4− n, . . . .

If we set n = 1, we get the sequence of integers

. . . , −3, −2, −1, −0, 1, 2, 3, . . . .

Matching the sequence of integers in the previous subsection with the above sequence, we see at once
that 0 and its additive inverse −0 coincide as they occupy the same position in both sequences.
It logically follows that since 0’s position in the first sequence is that of magnitude of absolute
nothing, its additive inverse −0 must be of magnitude of absolute nothing.

2.8 The Numerical Zero as an Infinitely Small Quantity

The term quantity refers to how many or how much of something is present. It may be zero
(nothing), finite (definite) or infinite (endless).

The numerical zero 0 is an infinitely small quantity. This is so because 0 is the reciprocal of
an infinitely large quantity.

Consider the recursive formula of the factorial of n+ 1:

(n+ 1)! = (n+ 1) · n!.

If we set n = −1, we get 0! = 0 · (−1)! which we rewrite as

0 =
0!

(−1)!
.

Taking 0! = 1 we write

0 =
1

(−1)!
.

Now,
(−1)! = (−1) · (−2)! = (−1) · (−2) · (−3)! = · · · = (−1) · (−2) · (−3) · · · .

It follows immediately that

0 =
1

(−1) · (−2) · (−3) · · · ;

that is, 0 is the ratio of unity to the infinite product (−1) · (−2) · (−3) · · · .
But though it is not my objective to treat the infinitely small, yet because it ought to be pellucid

and incontrovertible to all, that infinitely small quantities are genuinely zeros, that is absolute
nothing, it seems apt to advert to that identity which unfold the link between infinitesimals and
zeros.

The quotient of the fraction
1

(−1) · (−2) · (−3) · · ·
may be taken as an infinitely small quantity as it is the ratio of two other quantities in which the
numerator is finite and denominator is infinite. If we want the product of all the numbers that make
up the product (−1) · (−2) · (−3) · · · , since these numbers progress with no end, and the product
increases, it certainly cannot be finite. By this fact it becomes an infinitely large quantity. Indeed,
the larger the denominator of a fraction with a fixed and finite numerator becomes, the smaller the
value of the fraction becomes, and if the denominator becomes an infinitely large quantity, then
necessarily the value of the fraction becomes an infinitely small quantity.
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A strong proof of the fact that the infinitely small are zeros is the already adduced identity

1

(−1) · (−2) · (−3) · · · = 0.

For though the fraction
1

(−1) · (−2) · (−3) · · ·
is a number infinitely small as it is the ratio of unity to an infinitely large quantity, the infinite
product of all negative integers, we are forced somewhat to assert that the infinitely small quantity
is equal to the zero 0. For philosophical mathematicians, being unacquainted with results of this
sort, which clearly betoken that infinitesimals are all zeros, erroneously confound infinitesimals with
zeros. Let us, therefore, hold, for the intent of the present work, that every infinitesimal number is
a zero or absolute nothing.

The great Euler was the first to notice this essence of the infinitesimals. In his famous book
[16], we read his most quoted statement:

To anyone who asks what an infinitely small quantity in mathematics is, we can
respond that it is really equal to zero.

I give few remarks on the zeros 0 and 0, and close this subsection. The zero 0 cannot be
expressed as a ratio of two numbers and therefore unrelated to infinite quantities and hence infinitely
small quantities. This is so because the mathematical expression which gives rise to it is not related
to any other mathematical expression. For instance, the expression x − x which equals 0 is not
equal to any other expression.

On the other hand, the expression x− c which gives rise to the zero 0 when we let x = c [17],
[18] is equal to and hence related to another expression [19], viz

x− c =
(x− c)!

(x− c− 1)!
.

So if we set x = c, we get

0 =
0!

(0− 1)!
=

1

(−1)!
.

This relation makes the zero 0 acquire the following unique properties:

• The zero 0 divided by itself equals unity.

• The zero 0 obeys the principle of impending operation on zero, discussed in subsection (2.10).

2.9 Conventional Division of Zero by Itself

The infinitesimal quantity
1

(−1) · (−2) · (−3) · · ·
is really equal to the zero 0. Since this is true, nothing hinders us from dividing 0 by 0; for

0

0
=

(−1) · (−2) · (−3) · · ·
(−1) · (−2) · (−3) · · · = 1.

The equation
0

0
= 1
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is the conventional division of zero by zero in the framework of Bhaskara II. This idea is nowadays
vehemently promoted by Czajko and the Barukcics. In the paper [10] Czajko introduces integer
infinity ∞ to his number system and proposes

0

0
=

∞
∞ = 1.

The Barukcics claim in the paper [6] that

+0

+0
= 1.

2.10 Principle of Impending Operation on the Numerical Zero

The problem with which we shall be occupied in the present talk is that of a closer investigation of
the principle of impending operation on the numerical zero 0. Here we shall give a perfect discussion
of this principle and in doing so, shall endeavour to confine our remarks on what strictly relates to it.

The idea of treating 0 as an infinitely small quantity in calculations was first moved by the
excellent wisdom of the illustrious Indian mathematician and astronomer, Bhaskara II [14]. In his
Lilavati we read his principle of impending operation on 0 [20], [21], [22]:

The product of zero is nought, but it must be retained as a multiple of zero if any
operation impend. Zero having become a multiplier, should nought afterward become
a divisor, the definite (finite) quantity must be understood to be unchanged.

Bhaskara says that
a · 0 = 0.

Suppose, after the operation a·0, there is an approaching operation in which 0 is a divisor. According
to Bhaskara, we should use the form a·0 (and not merely 0 to which a·0 equals) in this new operation
such that when it is divided by 0, the result gives a, that is

a · 0
0

= a.

The above equation is often called Bhaskara’s identity.
Here is a simple demonstration of the above point. If we set x = 1 in the expression

x2 − 1

x− 1
,

we get
12 − 1

1− 1

which is written as
0

0

and termed indeterminate. The mystery is easily resolved with a little algebra:

x2 − 1

x− 1
=

(x+ 1)(x− 1)

x− 1
.

Setting x = 1 gives
12 − 1

1− 1
=

(1 + 1)(1− 1)

1− 1
=

2 · 0
0

= 2.
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The evaluation of
x2 − 1

x− 1

at x = 1 is so obvious as not to need technical definition. If x is nearly 1, then x− 1 is nearly 0 and
x2−1 is nearly 2 ·0 as can be seen in Table 1. Eventually, when x = 1, x−1 = 0 and x2−1 = 2 ·0.

Table 1: Table of values
x x− 1 x2 − 1

1.1 0.1 2.1×0.1
1.01 0.01 2.01×0.01
1.001 0.001 2.001×0.001

...
...

...

This simple example shows that Bhaskara’s identity holds true.
Now we take up the discussion of an example from Bhaskara’s Lilavati to illustrate how the

Principle gives answers which accord with algebra.

A certain (finite) number is multiplied by 0 and added to half of result. If the sum
so obtained is first multiplied by 3 and then divided by 0, the result is 63. Find the
original number.

If the number is x, then we write (
x · 0+

1

2
x · 0

)
3

0
= 63

which becomes

3x · 0+
3

2
x · 0

0
= 63. (2.1)

Now 3x · 0 = 0 and 3
2
x · 0 = 0. However, we must retain the multiples of 0, 3x · 0 and 3

2
x · 0, in the

further operations because of the upcoming operation of division by 0. Moreover, the expression

3x · 0+
3

2
x · 0 = 0.

But we must retain the expression for the reason just mentioned. Thus the equation (5.1) becomes

6x · 0+ 3x · 0
2 · 0 = 63.

This is simplified to
9x · 0
2 · 0 = 63

which, canceling out the two zeros, becomes

9x

2
= 63

which finally gives x = 14. This is the answer Bhaskara would expect.

2.11 Differences between the Numerical and the Intuitive Zeros

The differences between the intuitive zero 0 and the numerical zero 0 are given in Table 2.
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Table 2: Differences between 0 and 0
0 0

It is a result of take–away
subtraction.

It is a result of comparison
subtraction.

It is obtained when simplifying
expressions or solving equations.

It is obtained when evaluating
functions or substituting a value
for a letter or symbol.

In the take–away subtraction
which gives 0, both the minued
and subtrahend are removed.

In the comparison subtraction
which gives 0, both the minued
and subtrahend remain.

0 does not obey the Principle of
Impending Operation on Zero.

0 obeys the Principle of Impending
Operation on Zero.

0 is not associated with any
quantity.

0 is associated with the variable
quantity (letter or symbol) for
which a number is substituted to
give rise to 0.

2.12 The Unit Zero

By definition, the unit zero, denoted 0 and called the numerical zero, is the result of the evaluation
of x− c at x = c or x+ c at x = −c.

2.13 Powers of the Unit Zero

The mth power of the unit zero is written as

0m.

Thus, 02,03,04 and so on are integral powers of zero while 01/2,01/3,02/3 and so forth are fractional
powers of zero.

2.14 Orders of Zeros

Any expression of the form
a · 0m,

where a is a finite number and m is a positive number, is called a zero of mth order. The number
a is called the finite part of the zero and the number m is the order part. The zero −5 · 03 is a 3rd
order zero with a finite part of −5 and an order part of 3.

2.15 Operations on Zeros

To create an exact and consistent arithmetic of zero has obtained an unusual celebrity from the
fact that none has been created, but there is no reason to doubt that it is possible.

2.15.1 Equality of Zeros

The zeros a · 0m and b · 0n are equal if and only if a = b and m = n.

10
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2.15.2 Addition and subtraction of Zeros

For the zeros a · 0m and b · 0m of the same order m,

a · 0m + b · 0m = (a+ b) · 0m = 0

and

a · 0m − b · 0m = (a− b) · 0m = 0.

For instance, take the third order zeros 2 · 03 and 7 · 03. Then,

2 · 03 + 7 · 03 = 9 · 03 = 0

and

2 · 03 − 7 · 03 = −5 · 03 = 0.

The addition or subtraction of zeros of different orders cannot be reduced to any simpler form,
and the combination is therefore called compound zeros. For example,

2 · 03 + 7 · 05

consists of zeros of different orders. All we know of this compound zero is that it is equal to the
zero 0, that is

2 · 03 + 7 · 05 = 0.

2.15.3 Scalar multiplication

The product of any zero, say a · 0m, and any scalar c (number c), is the zero ca · 0m obtained by
multiplying c by the finite part of the zero. For instance, 7 · 05 multiplied by 2 is 14 · 05.

2.15.4 Multiplication of Zeros

For the zeros a · 0m and b · 0n, we get the multiplication operation

a · 0m × b · 0n = ab · 0m+n = 0.

For instance,

2 · 03 × 7 · 04 = 14 · 07 = 0.

Addition, subtraction and multiplication of zeros give a zero.

2.15.5 Division of Zeros

For the zeros a · 0m and b · 0n, we have the division operation

a · 0m ÷ b · 0n =
a

b
· 0m−n.

If m > n, the quotient is a zero and if m < n, the quotient is infinity. If, however, m = n, the
quotient is the finite number a/b.

11



Ufuoma; ARJOM, 13(1): 1-40, 2019; Article no.ARJOM.46281

2.16 Factorial of Unit Zero Equals Unity

Here we demonstrate that 0! = 1. We start with

n! = n · (n− 1) · (n− 2) · · · 3!
= n · (n− 1) · (n− 2) · · · 3 · 2!
= n · (n− 1) · (n− 2) · · · 3 · 2 · 1!
= n · (n− 1) · (n− 2) · · · 3 · 2 · 1 · 0!
= n · (n− 1) · (n− 2) · · · 3 · 2 · 1 · 0 · (−1)!

= n · (n− 1) · (n− 2) · · · 3 · 2 · 1 · 0 · (−1) · (−2)!

= · · ·
= n · (n− 1) · (n− 2) · · · 3 · 2 · 1 · 0 · (−1) · (−2) · (−3) · · ·

Comparing the case
n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1 · 0!

with the ultimate case

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1 · 0 · (−1) · (−2) · (−3) · · ·

we see at once that
0! = 0 · (−1) · (−2) · (−3) · · · .

Thus 0! is equal to the product of 0 and the infinite product of all negative integers. Since the
infinite product of all negative integers equals an infinite quantity, we conclude that 0! = 1 because
it is the product of zero and an infinite number.

2.16.1 Improved Principle of Impending Operation on Zero

Here, we improve the principle of impending operation on zero: “If in some mathematical calculations,
the zero 0 is likely to occur frequently, then, though a · 0n = 0 where a is a finite number and n
is any positive number, one should maintain the form a · 0n in the rest of the operations until the
final operation with 0 is reached.”.

3 On Infinity

In the previous section we discussed zero in detail. Here, however, it is with infinity we are concerned,
and while zero is frequently mentioned, yet we do not pause on every page to insist on it; instead, we
have sought to stress that part of mathematics which is not usually considered. We grant that the
discussion is one–sided, for it only seek to deal with one side of analysis, the neglected side–infinity
as a number.

There are many mathematicians who protest violently against division by zero being a number
and heap up arguments against it; for they see in it only a sort of meaninglessness. Very interestingly,
they seldom present arguments that show the ratio of a finite number to zero is infinity. This is a
very poor way to study mathematics. I say this because if we are to present an honest study of any
subject, then we must present all arguments relevant to what we are studying and not just some of
them.

In the face of these misunderstandings, I should like to discuss this number with the readers,
not in conformity with what is known of modern mathematics and even less with philosophical
objections; not as an adversary of the theory of zero and infinity, but as one who wishes to submit

12
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himself to the school of the arithmetic of zero and infinity, and learn from it all that it is necessary
to know.

3.1 Infinity as a Number

Infinity is larger than any finite number [23]. It is a number which counts endless number of things
or measures magnitudes larger than finite magnitudes. To put it simply, infinity counts things
whose number is without end or measures things whose magnitudes or sizes are without bound.
Though infinity is a number, it is not the same sort of number as a finite number. Georg Cantor
formalized many ideas related to infinity and infinite sets during the late 19th and early 20th
centuries.

Even though infinities signify without end, they are, nevertheless, numbers of which we can
form an accurate idea, since, however, hidden the meaning of the fraction 2

0
, for instance, we are

not ignorant that it must be truly a number, when multiplied by 0 would exactly produce 2; and
this property is sufficient to give us an idea of the number 2

0
.

Take the mirror problem of finding the number n of images of an object placed between two
plane mirrors inclined at an angle θ to each other. In Physics, the number is obtained from the
experimental formula

n =
360

θ
− 1.

If the two mirrors face each other i.e if they are parallel to each other, one sees an endless (infinite)
number of images fading into the distance. Since the two mirrors are facing each other, θ = 0.
Using the already mentioned experimental formula, we get the theoretical number of images in the
mirrors as

n =
360

0
− 1 =

360− 0

0
.

Thus, the number n of images in the mirrors equals the ratio of the finite result of 360 − 0 to the
zero 0. We, therefore, say that infinity must be a number and is the ratio of a finite number to
zero.

There is no better way to sum up the whole discussion than to say with the acute Bhaskara,
“This fraction (zero divisor) is termed anantha rashi (infinite number)”.

3.2 The Unit Infinity

By definition, the unit infinity, denoted ∞, is the result of the evaluation of

1

x− c

at x = c or
1

x+ c
at x = −c. It is, therefore, the reciprocal of zero 0 viz.

∞ =
1

0
.

The above identity shows a connection among the three classes of numbers–zeros, finite numbers
and infinite numbers– for the head of zeros is 0, of finite numbers is 1, and of infinite numbers is
∞. We can switch from any two given classes to the third by employing the switching formulas:

1

0
= ∞, ∞ · 0 = 1,

1

∞ = 0.

13
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3.3 Unit Infinity as a Limit

It is well known that the limit of the sequence of the multiplicative inverses of the natural numbers

1,
1

2
,

1

3
,

1

4
, . . .

is the number 0. In as far as this is true, one is inevitably by way of correspondence as in

1

1
↔ 1

1

2
↔ 2

1

3
↔ 3

1

4
↔ 4

...

to suppose that the limit of the sequence of the natural numbers

1, 2, 3, 4, . . .

is the unit infinity
∞.

These limits, 0 and ∞, can be placed respectively at the two extremities of the sequence of numbers
with whole numbers and their multiplicative inverses extending endlessly in opposite directions:

0, . . . ,
1

3
,

1

2
, 1, 2, 3, . . . , ∞.

Any two numbers in the sequence that are equidistant from the number 1 are multiplicative inverses
of each other, thus producing 1 when multiplied together:

n · 1
n

= 1,

such that for the two limits or extremities or final terms, 0 and ∞, one could have as well

0 · 1
0

= 1

or simply
0 ·∞ = 1.

3.4 Additive Inverse of Infinity

We have shown that 0 and −0 coincide at the same place in the sequence of integers. It logically
follows that their respective multiplicative inverses

∞ and −∞

are reached simultaneously in calculations.
The fact that the negative infinity −∞ is reached at the same time with the positive infinity

∞ in calculations can be used to explain the graph the function

f(x) =
1

x− 1
.

14
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...

..

−10

.

−5

.

5

.

10

.

−10

.

−5

.

5

.

10

Figure 1: Graph of f(x) = 1/(x− 1)

See Figure 1.

To study the behaviour of the curve, let us move gradually along the x−axis from right to left.
We notice that as we approach x = 1, the curve approaches the vertical asymptote x = 1 and the
function value which has been positive and finite approaches a positive and infinite number. When
we reach x = 1, the function value equals the positive infinite number 1

0
= ∞, the quantity beyond

which the function value will never go. At this stage, starting from any finite x, the curve is said
to have extended without bound. Since, as we already noted, the zero number +0 coincides with
the zero number −0, it turns out that the function value reaches the negative infinite number −∞
when it has reached the positive infinite number +∞ at x = 1. Hence, as we move away from
x = 1, the curve returns from the negative infinite number already mentioned and the function
value becomes negative and finite. As we move farther and farther away from x = 1, the curve
bends more and more away from the vertical asymptote x = 1.

3.5 Powers of the Unit Infinity

The mth power of unit infinity is written as

∞m.

Thus, ∞2,∞3,∞4, and so forth are integral powers of infinity and∞1/2,∞1/3,∞2/3, are fractional
powers of infinity.

3.6 Orders of Infinity

Any number written in the form
a ·∞m,

where a is a finite number and m is a positive number, is called an infinity of mth order. The
number a is called the finite part and m is the order part. Thus, 2 ·∞3, which has a finite part of
2 and an order part of 3, is a 3rd order infinity

If a be a finite constant, the expressions

a

0n
= a ·∞n and

a

∞n
= a · 0n

15
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are rigidly exact. The first asserts that if the numerator of a fraction is a constant and the
denominator is a zero of nth order, the fraction equals an infinity of nth order. The second asserts
that if the denominator is an infinity of n order, the fraction equals an nth order zero.

We shall use the usual sign ∞ (not bold–faced) to represent in general any infinite number.
Thus, for instance,

4 ·∞3 = ∞.

3.7 Infinities as Transfinite Numbers

All infinities or better still infinite numbers are suprafinites or transfinites (supra or trans=above,beyond),
that is, they are all larger than any finite number proposed. To show this, take the valid statement

a > b · 0m

where a and b are any finite numbers and m is a positive number. Since this statement holds good,
it follows logically that

a

0m
> b,

which becomes

a ·∞m > b.

Thus, the infinite number a ·∞m is suprafinite or transfinite, larger than any finite number b. It
is, therefore, a number bigger than all finite numbers no matter the greatness of their sizes.

3.8 Operations on Infinity

Though we can never count infinite (endless) number of things, we can form a true and accurate
arithmetic of it. Infinite numbers occur in mathematics, engineering and the sciences and therefore
the knowledge of the operations on them is essential. Like finite numbers, infinite numbers can be
added, subtracted, multiplied, and divided. Our desire here is, therefore, to put infinity on equal
footing as ordinary numbers. Once this has been done, infinity is a perfectly acceptable candidate
for mathematical analysis.

3.8.1 Equality of Infinities

Two infinite numbers a ·∞m and b ·∞n are equal if a = b and m = c, that is, their finite parts are
equal and their order parts are equal.

3.8.2 Addition and Subtraction of Infinite Numbers

The sum and difference of two infinite numbers a ·∞m and b ·∞m of the same order are defined
by adding or subtracting their finite parts:

a ·∞m + b ·∞m = (a+ b) ·∞m = ∞

and

a ·∞m − b ·∞m = (a− b) ·∞m = ∞.

For instance,

3 ·∞4 + 2 ·∞4 = 5 ·∞4 = ∞

and

3 ·∞4 − 2 ·∞4 = ∞4 = ∞.

16
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The sum or difference of infinite numbers of different powers can be reduced to no simpler form
and so called compound infinity. For example,

3 ·∞7 + 2 ·∞4

is a compound infinity as it consists of two infinite numbers of difference orders 7 and 4. All that
should be said of this infinity is that it is equal to ∞, that is

3 ·∞7 + 2 ·∞4 = ∞.

3.8.3 Scalar Multiplication

The product of the infinite number a ·∞m and the scalar c (number c) is obtained as follows:

c× a ·∞m = ca ·∞m = ∞.

For example,
3× 5 ·∞2 = 15 ·∞2 = ∞.

3.8.4 Multiplication of Infinite Numbers

For the infinities a ·∞m and b ·∞n, we have

a ·∞m × b ·∞n = ab ·∞m+n = ∞.

As an instance, we have
4·

3.8.5 Division of Infinite Numbers

For the infinite numbers a ·∞m and b ·∞n, we have

a ·∞m ÷ b ·∞n =
a

b
·∞m−n.

If m > n, the quotient is an infinity and it m < n, the quotient is a zero. If, however, m = n, the
quotient is a finite number (a/b). As an instance, we have

4 ·∞5 ÷ 2 ·∞6 = 8 ·∞−1 = 8 · 0 = 0.

4 The True Meaning of Division

Division, in reality, is the act of finding what the dividend is equivalent to when the divisor is made
equivalent to unity. For instance, take the division of 10 by 2. If the divisor

2 ≡ 1

then the dividend
10 = 5× 2 ≡ 5,

that is if 2 is equivalent to 1, then 10 is equivalent to 5. Thus 10÷ 2 = 5.
Again, we consider the division of −8.8 by 8. If the divisor

8 ≡ 1

then the dividend
−8.8 = −1.1× 8 ≡ −1.1,

17
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that is, if 8 is equivalent to 1, then −8.8 is equivalent to −1.1. Thus, −8.8÷ 8 = −1.1.

Take the division of 80 by −4. If the divisor

−4 ≡ 1

then the dividend

80 = (−20)× (−4) ≡ −20.

It follows that 80÷ (−4) = −20.

Consider the division of −10 by −100. If the divisor

−100 ≡ 1

then the dividend

−10 = 0.1× (−100) ≡ 0.1;

−10 is equivalent to 0.1 when −100 is made equivalent to unity. So, (−10)÷ (−100) = 0.1.

By this definition of the operation of division, zero is a sure candidate of division without
restriction. Let us, as an illustrative example, consider the division of 2 · 0 by 0. To arrive at the
quotient of this division, we apply the definition of division already adduced. If the divisor

0 ≡ 1

then the dividend

2 · 0 ≡ 2 · 1 = 2;

the zero 2 · 0 is equivalent to 2 when the zero 0 is made equivalent to 1. Thus, we get

2 · 0
0

= 2.

We take, as a further illustration, the division of the zero −6 ·03 by the zero 3 ·02. If the divisor

3 · 02 ≡ 1

then the dividend

−6 · 03 = (−2 · 0) · (3 · 02) ≡ −2 · 0.

Therefore, we write

−6 · 03

3 · 02
= −2 · 0.

Finally, we consider the division of 5 by 0. If the divisor

0 ≡ 1

then the dividend

5 = 5 · 0 ·∞ ≡ 5 ·∞.

If the zero 0 is made equivalent to the finite number 1, the finite number 5 becomes equivalent to
the infinite number 5 ·∞. Hence, we have

5

0
= 5 ·∞ = ∞.
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5 Indeterminate Forms

In the conclusion section of his paper [24], Barukcic gives an ingenious remark on the usefulness of
the conventional division of zero by itself 0/0 = 1:

In summary, +0/ + 0 = +1. Further and more detailed research is possible and
necessary to solve the problems of indeterminate forms and to enable a generally valid
mathematics without any exception. While relying on axiom I, this goal appears to
be achievable.

This section solves the problems of the indeterminate forms relying on the conventional division of
zero by itself.

Let, in the evaluation of functions, the symbols 0 and ∞ represent values wholly indeterminate.
A given function can assume the indeterminate form

0

0

for a certain value of the independent variable. It can also assume the forms:

0×∞,
∞
∞ , ∞−∞, ∞0, 00, 0∞, 1∞

These can be reduced to the form 0/0. Any of these forms can be equal to any number which is the
true value of the given function. The symbols 0 and ∞ in different members of the indeterminate
forms do not represent the same zeros and infinities as they never represent respectively definite
zeros and infinities; they are the final representations of the definite zeros and infinities.

5.1 Zero Divided by Zero

Suppose we were asked to determine the value of

f(x) =
x2 + x− 6

x+ 3

where x = −3. Direct substitution shows that both numerator and denominator must equal zero
numbers. To obtain the expressions for these, we first factor x2 + x − 6 and set x = −3. Thus,
x2 + x− 6 becomes (x− 2)(x+3) which on setting x = −3 becomes (−3− 2)(−3+ 3) = −5 · 0. We
must retain this zero number because of the further operation of division by the denominator zero
number (−3 + 3) = 0. Thus,

f(−3) =
−5 · 0

0
= −5.

Suppose we wish to evaluate the function

f(x) =

√
x+ 1− 1

x

at x = 0. We accomplish this as follow:

f(0) =

√
0+ 1− 1

0
.
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To simplify this, we apply the method of rationalization, viz.

f(0) =

√
0+ 1− 1

0
×

√
0+ 1 + 1√
0+ 1 + 1

=
(
√
0+ 1)2 − 12

0(
√
0+ 1 + 1)

=
0+ 1− 1

0(
√
0+ 1 + 1)

=
0

0(
√
0+ 1 + 1)

=
1√

0+ 1 + 1

=
1

2

We desire to evaluate
2x7 sinx

2− x4 − 2 cosx2

at x = 0. First we evaluate the numerator at x = 0:

2 · 07 sin0 = 2 · 07

(
0− 03

3!
+

05

5!
− · · ·

)
= 2 · 08

(
1− 02

3!
+

04

5!
− · · ·

)
which is absolute nothing. Next, we evaluate the denominator at x = 0:

2− 04 − 2 cos02 = 2− 04 − 2

(
1− 04

2!
+

08

4!
− 012

6!
+ · · ·

)
= 2− 04 − 2 + 04 − 08

12
+

012

360
− · · ·

= 2− 2− 04 + 04 − 08

12
+

012

360
− · · · .

We omit 2− 2 and −04 + 04 since they are irreversibly equal to 0. Hence, we write

2− 04 − 2 cos02 = −08

12
+

012

360
− · · · = −08

12

(
1− 02

30
+ · · ·

)
which is also absolute nothing. Thus the evaluation of

2x7 sinx

2− x4 − 2 cosx2

at x = 0 is

2 · 07 sin0

2− 04 − 2 cos02
=

2 · 08

(
1− 02

3!
+

04

5!
− · · ·

)
−08

12

(
1− 02

30
+ · · ·

)
which becomes

2 · 07 sin0

2− 04 − 2 cos02
=

2 · 08

−08

12

= −24.

20



Ufuoma; ARJOM, 13(1): 1-40, 2019; Article no.ARJOM.46281

We wish to evaluate
bx − ax

x
at x = 0. This is done by first taking the series expansion of ax:

ax = 1 + x ln a+
(x ln a)2

2!
+ · · ·

Therefore the difference bx − ax is expressed as:

bx − ax = 1− 1 + (ln b− ln a)x+

(
ln2 b− ln2 a

)
x2

2!
+ · · ·

which, omitting 1− 1 as it is irreversibly equal to 0, becomes

bx − ax = (ln b− ln a)x+

(
ln2 b− ln2 a

)
x2

2!
+ · · · .

Letting x = 0 gives

b0 − a0 = (ln b− ln a)0+

(
ln2 b− ln2 a

)
02

2!
+ · · · .

Dividing both sides by 0 furnishes

b0 − a0

0
= (ln b− ln a) +

(
ln2 b− ln2 a

)
0

2!
+ · · ·

which becomes the final result
b0 − a0

0
= ln b− ln a (5.1)

since (
ln2 b− ln2 a

)
0

2!
+ · · ·

is equal to naught.

5.2 Zero Multiplied by Infinity

Suppose we wish to evaluate

(x− 1) tan
π

2
x

at x = 1.Take the identity

tan
π

2
x = − cot

(π
2
x− π

2

)
= − cot

π

2
(x− 1).

and set x = 1. This furnishes
tan

π

2
(1) = − cot

π

2
(1− 1)

which becomes
tan

π

2
(1) = − cot

(π
2
· 0
)

which becomes

tan
π

2
(1) = −

 1(π
2
· 0
) −

(π
2
· 0
)

3
−

(π
2
· 0
)3

45
− · · ·

 .

The evaluation of tan
π

2
x at x = 1 is therefore

tan
π

2
(1) = −

[
2

π · 0 − π · 0
6

− (π · 0)3

360
− · · ·

]
= − 2

π · 0 = −2∞
π
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which is an infinite number. Hence, we have the evaluation of

(x− 1) tan
π

2
x

at x = 1 as

0× tan
π

2
(1) = −0

[
2

π · 0 − π · 0
6

− (π · 0)3

360
− · · ·

]
= − 2

π
.

5.3 Infinity Divided by Infinity

Let us now evaluate
3x2 + 5x− 8

7x2 − 2x+ 1

at x = ∞. We do this as follows:

3 ·∞2 + 5 ·∞− 8

7 ·∞2 − 2 ·∞+ 1
=

3(1/0)2 + 5(1/0)− 8

7(1/0)2 − 2(1/0) + 1

=
3/02 + 5/0− 8

7/02 − 2/0+ 1

=
(3 + 5 · 0− 8 · 02)/02

(7− 2 · 0+ 02)/02

=
3− 5 · 0− 8 · 02

7− 2 · 0+ 02

=
3

7

5.4 Infinity Minus Infinity

We next take up the evaluation of
1 + x

x− x2
− 1

x+ x2

at x = 0. We perform this as follows:

1 + 0

0− 02
− 1

0+ 02
=

(1 + 0)(0+ 02)− (0− 02)

(0− 02)(0+ 02)

=
0+ 02 + 02 + 03 − 0+ 02

02 − 04

=
0− 0+ 02 + 02 + 02 + 03

02(1− 02)

=
3 · 02 + 03

02(1− 02)

=
02(3 + 0)

02(1− 02)

=
3 + 0

1− 02

= 3.

We proceed further to evaluate
1

x
− 1

ex − 1
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at x = 0. Setting x = 0 in the above expression gives the following:

1

0
− 1

e0 − 1
=

1

0
− 1

1 + 0/1! + 02/2! + 03/3! + · · · − 1

=
1

0
− 1

1− 1 + 0/1! + 02/2! + 03/3! + · · ·

=
1

0
− 1

0+ 02/2 + 03/6 + · · ·

=
(0+ 02/2 + 03/6 + · · · )− 0

0(0+ 02/2 + 03/6 + · · · )

=
0− 0+ 02/2 + 03/6 + · · ·
02 + 03/2 + 04/6 + · · ·

=
02/2 + 03/6 + · · ·

02 + 03/2 + 04/6 + · · ·

=
02(1/2 + 0/6 + · · · )

02(1 + 0/2 + 02/6 + · · · )

=
1/2 + 0/6 + · · ·

1 + 0/2 + 02/6 + · · ·

=
1

2
.

These examples suffice for the full comprehension of others.

6 Justifications of the Arithmetic of Zero and Infinity

6.1 Euler Number e

The equations 1 + 0 = 1 and 1− 0 = 1 are rigidly valid in finite arithmetic. In infinite arithmetic,
wherein infinite quantities are involved,

(1 + 0)∞ ̸= 1 and (1− 0)∞ ̸= 1

but

(1 + 0)∞ = e and (1− 0)∞ =
1

e
.

where e = 2.7182818284590452353602874713527 . . ., the Euler number. This is because of the
further operations involving the ∞ th power of the operations within the brackets.

We start with the binomial expansion(
1 +

1

n

)n

= 1 + 1 +
(1− 1/n)

2!
+

(1− 1/n)(1− 2/n)

3!
+ · · · .

Letting n = ∞ gives(
1 +

1

∞

)∞

= 1 + 1 +

(
1− 1

∞

)
2!

+

(
1− 1

∞

) (
1− 2

∞

)
3!

+ · · ·

which becomes

(1 + 0)∞ = 1 + 1 +
(1− 0)

2!
+

(1− 0)(1− 2 · 0)
3!

+ · · · = 1 + 1 +
1

2!
+

1

3!
+ · · · = e.

The second case wherein the result is 1/e can be demonstrated in a similar fashion.
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6.2 Series Expansions Involving the Natural Logarithm

We start with the expansion of ln(1 + x). Take the expansion

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · · .

Letting α = 0 gives

(1 + x)0 = 1 + 0x+
0(0− 1)

2!
x2 +

0(0− 1)(0− 2)

3!
x3 + · · · (6.1)

which actually becomes
(1 + x)0 = 1

since the rest terms are all absolute nothing. But because further operations impend, we must
strictly uphold (6.1) and use it in these operations.

Now consider the series expansion

ay = 1 + y ln a+
y2 ln2 a

2!
+ · · · .

Setting a = 1 + x gives

(1 + x)y = 1 + y ln(1 + x) +
y2 ln2(1 + x)

2!
+ · · ·

and letting y = 0 gives

(1 + x)0 = 1 + 0 ln(1 + x) +
02 ln2(1 + x)

2!
+ · · · . (6.2)

Equating (6.1) and (6.2) furnishes

1 + 0x+
0(0− 1)

2!
x2 +

0(0− 1)(0− 2)

3!
x3 + · · · = 1 + 0 ln(1 + x) +

02 ln2(1 + x)

2!
+ · · ·

which becomes

0x+
0(0− 1)

2!
x2 +

0(0− 1)(0− 2)

3!
x3 + · · · = 1− 1 + 0 ln(1 + x) +

02 ln2(1 + x)

2!
+ · · · .

The expression 1− 1 is omitted as it is irreversibly equal to 0. Thus we write

0x+
0(0− 1)

2!
x2 +

0(0− 1)(0− 2)

3!
x3 + · · · = 0 ln(1 + x) +

02 ln2(1 + x)

2!
+ · · · .

Let us now divide both sides of the above equations by 0. Accomplishing this, we have

x+
(0− 1)

2!
x2 +

(0− 1)(0− 2)

3!
x3 + · · · = ln(1 + x) +

0 ln2(1 + x)

2!
+ · · · .

Since this is the terminus of our calculation, we make 0 display the properties of 0. Hence, the
equation above becomes

x+
(−1)

2!
x2 +

(−1)(−2)

3!
x3 + · · · = ln(1 + x)

which, being simplified and rearranged, becomes

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · .
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We now take the series expansion of ln(1 + y/x). We start with the binomial theorem

(x+ y)n = xn +
n!

1!(n− 1)!
xn−1y +

n!

2!(n− 2)!
xn−2y2 +

n!

3!(n− 3)!
xn−3y3 + . . .

which can be rewritten as

(x+ y)n − xn =
n!

1!(n− 1)!
xn−1y +

n!

2!(n− 2)!
xn−2y2 +

n!

3!(n− 3)!
xn−3y3 + · · ·

Letting n = 0 gives

(x+ y)0 − x0 =
0!

1!(0− 1)!
x0−1y +

0!

2!(0− 2)!
x0−2y2 +

0!

3!(0− 3)!
x0−3y3 + · · ·

which becomes

(x+ y)0 − x0 =
1

1!(−1)!
x−1y +

1

2!(−2)!
x−2y2 +

1

3!(−3)!
x−3y3 + · · · .

Before we proceed further let us first express the factorial of negative integers, namely (−m)!, in
terms of 0. We start with the recurrence relation:

[−(m− 1)]! = −(m− 1)(−m)!

which turns into

(−m)! = − [−(m− 1)]!

m− 1
.

Letting m = 2 gives

(−2)! = − (−1)!

1
= − 1

1! · 0 .

and letting m = 3 gives

(−3)! = − (−2)!

2
=

1

2! · 0 .

Similarly, we get

(−4)! = − 1

3! · 0 ,

(−5)! =
1

4! · 0 ,

and in general

(−m)! = (−1)m−1 1

(m− 1)! · 0 .

Applying these results, we get

(x+ y)0 − x0 =
0

1!
x−1y +

−1! · 0
2!

x−2y2 +
2! · 0
3!

x−3y3 + · · ·

which becomes

(x+ y)0 − x0 =
0

1
x−1y − 0

2
x−2y2 +

0

3
x−3y3 − · · ·

which in turn, dividing by 0, becomes

(x+ y)0 − x0

0
=

y

x
− 1

2

( y
x

)2
+

1

3

( y
x

)3
− · · · .

Thus, applying (5.1), we obtain

ln(x+ y)− lnx =
y

x
− 1

2

( y
x

)2
+

1

3

( y
x

)3
− · · ·

which becomes

ln
(x+ y

x

)
=

y

x
− 1

2

( y
x

)2
+

1

3

( y
x

)3
− · · ·

which finally becomes

ln
(
1 +

y

x

)
=

y

x
− 1

2

( y
x

)2
+

1

3

( y
x

)3
− · · · .

25



Ufuoma; ARJOM, 13(1): 1-40, 2019; Article no.ARJOM.46281

6.3 Sum of Alternating Harmonic Series

In one of his works, Euler showed that

1n − 2n + 3n − 4n + · · · = (−1)s
2n+1 − 1

n+ 1
Bn+1

where s = [(n+ 1)/2] is the integer part of (n+ 1)/2 and Bn is the nth Bernoulli number. Setting
n = −1 gives

1−1 − 2−1 + 3−1 − 4−1 + · · · = (−1)[(−1+1)/2] 2
−1+1 − 1

−1 + 1
B−1+1

which simplifies to
1

1
− 1

2
+

1

3
− 1

4
+ · · · = (−1)[(0)/2]

20 − 10

0
B0.

With the understanding that B0 = 1 and considering that

20 − 10

0
= ln 2− ln 1 = ln 2,

we get
1

1
− 1

2
+

1

3
− 1

4
+ · · · = ln 2.

6.4 Infinite Sum of the Harmonic Series

We start with the Taylor series expansion of ln(x+ 1):

ln(x+ 1) = x− x2

2
+

x3

3
− · · · ,

and let x = −1.

Accomplishing these, we obtain the following:

ln0 = −
(
1 +

1

2
+

1

3
+ · · ·

)
which becomes

− ln0 = 1 +
1

2
+

1

3
+ · · · .

Employing − ln0 = ln
(
1
0

)
= ln(−1)!, we arrived at the required result

ln(−1)! = 1 +
1

2
+

1

3
+ · · · =

∞∑
k=1

1

k
.

Let us now turn to the derivation of a famous formula in analysis in order to give the reader
an idea of the flavor of ln(−1)!. There is a very interesting formula discovered by Euler in his 1776
paper, which presents a beautiful means of computing Euler’s constant γ. This formula is

1− γ =

∞∑
k=2

ζ(k)− 1

k
.

We now proceed to derive this formula and we begin from the Maclaurin series expansion for ln(x)!
which reads

lnx! = −γx+

∞∑
k=2

(−1)k
ζ(k)

k
xk.
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If we let x = −1, we obtain the result

ln(−1)! = γ +

∞∑
k=2

ζ(k)

k
.

We have already established that the natural logarithm of (−1)! is the sum of the harmonic series∑∞
k=1

1
k
. If we then replace ln(−1)! with the sum

∑∞
k=1

1
k
, we procure for ourselves

∞∑
k=1

1

k
= γ +

∞∑
k=2

ζ(k)

k

which results in

1 +

∞∑
k=2

1

k
−

∞∑
k=2

ζ(k)

k
= γ

which in turn furnishes our required formula

1 +

∞∑
k=2

1− ζ(k)

k
= γ

or

1− γ =

∞∑
k=2

ζ(k)− 1

k
.

To be more convinced of our free use of the sum ln(−1)! of the harmonic series, we employ it
again in the derivation of this same formula by taking another pathway. We begin with the familiar
identity

Hx =

∞∑
k=1

(−1)k+1xkζ(k + 1)

and integrate both sides of it with respect to x, that is, we find∫ n

0

Hx dx =

∫ n

0

∞∑
k=1

(−1)k+1xkζ(k + 1) dx

where Hx is the xth harmonic number. We apply the familiar relation∫ n

0

Hx dx = nγ + ln(n!) (6.3)

and get

nγ + ln(n!) =

∫ n

0

∞∑
k=1

(−1)k+1xkζ(k + 1) dx

which becomes

nγ + ln(n!) =

∞∑
k=1

(−1)k+1ζ(k + 1)

∫ n

0

xk dx

=

∞∑
k=1

(−1)k+1ζ(k + 1)

[
xk+1

k + 1

]n
0

=

∞∑
k=1

(−1)k+1ζ(k + 1)nk+1

k + 1
.

Let us now set n = −1. We obtain

−γ + ln(−1)! =

∞∑
k=1

(−1)k+1ζ(k + 1) (−1)k+1

k + 1
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which furnishes

γ = ln(−1)!−
∞∑

k=1

ζ(k + 1)

k + 1
.

We set k + 1 = k and get

γ = ln(−1)!−
∞∑

k=2

ζ(k)

k
.

Finally, setting

ln(−1)! =

∞∑
k=1

1

k

, we obtain

γ =

∞∑
k=1

1

k
−

∞∑
k=2

ζ(k)

k

which, taking an easily construed step, becomes our proposed formula:

1− γ =

∞∑
k=2

ζ(k)− 1

k
.

6.5 Riemann Zeta Constants in Relation to Bernoulli Numbers

A well known functional equation is that which pertains to the famous Riemann zeta function ζ

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

where Γ is the familiar gamma function expressed in the factorial function as

Γ(s) = (s− 1)!.

From this functional equation we can, by means zero and infinity, derive the famous formula

ζ(2n) =
(−1)n+1B2n(2π)

2n

2(2n)!

where B2n is a Bernoulli number.
We start with the evaluation of

sin
(πs

2

)
at s = 2n where n is a natural number. Take the identity

sin
(π
2
s− π

2
c
)
= sin

(π
2
s
)
cos
(π
2
c
)
− cos

(π
2
s
)
sin
(π
2
c
)
.

If we let c = 2n, we get

sin
(π
2
s− π

2
(2n)

)
= sin

[π
2
s
]
cos
[π
2
(2n)

]
− cos

[π
2
sx
]
sin
[π
2
(2n)

]
which simplifies to

sin
π

2
(s− 2n) = sin

(π
2
s
)
cos (πn)− cos

(π
2
s
)
sin (πn)

which in turns becomes
sin

π

2
(s− 2n) = sin

(π
2
s
)
cos (πn).

This is rewritten as
sin
(π
2
s
)
= (−1)n sin

π

2
(s− 2n),
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noting that cos (πn) = (−1)n for n = 1, 2, 3, . . .. Setting s = 2n gives

sin
(π
2
(2n)

)
= (−1)n sin

π

2
(2n− 2n)

which turns into
sin
(π
2
(2n)

)
= (−1)n sin

(π
2
· 0
)

which finally becomes

sin
(π
2
(2n)

)
= (−1)n

[
π

2
· 0− 1

3!

(π
2
· 0
)3

+ · · ·
]
. (6.4)

We now proceed to find the expression for the function Γ(1 − 2n). First of all, we note that
Γ(1− s) = (−s)!. If p is any positive integer, setting s = p gives

Γ(1− p) = (−p)!.

Γ(1− p) = (−p)! =
1

(p− 1)!
· 1
0
.

Letting p = 2n, we obtain

Γ(1− 2n) =
1

(2n− 1)!
· 1
0
. (6.5)

It remains to evaluate the already mentioned Riemann functional equation at s = 2n . We thus
have

ζ(2n) = 22nπ2n−1 sin
(π
2
(2n)

)
Γ(1− 2n)ζ(1− 2n)

which, applying (6.4) and (6.5), becomes

ζ(2n) = 22nπ2n−1(−1)n
[
π

2
· 0− 1

3!

(π
2
· 0
)3

+ · · ·
]
· 1/0

(2n− 1)!
ζ(1− 2n)

which becomes

ζ(2n) = 22nπ2n−1(−1)n
[
π

2
− 1

3!

(π
2

)3
· 02 + · · ·

]
· 1

(2n− 1)!
ζ(1− 2n)

which simplifies to

ζ(2n) =
22nπ2n−1(−1)nπ

2 · (2n− 1)!
ζ(1− 2n)

or

ζ(2n) =
22n−1π2n(−1)n

(2n− 1)!
ζ(1− 2n). (6.6)

One familiar result in the analysis of the Riemann zeta function is

ζ(−n) = −Bn+1

n+ 1

where n is a positive integer. If we let n = 1− 2n, we get

ζ(1− 2n) = −B2n

2n
. (6.7)

Eliminating ζ(1− 2n) from (6.6) and (6.7), we get

ζ(2n) = −22nπ2n(−1)n

(2n− 1)!
· −B2n

2n
.
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which becomes

ζ(2n) =
22nπ2n(−1)n+1

2n(2n− 1)!
B2n.

which in its turn becomes

ζ(2n) =
(−1)n+122n−1π2n

(2n)!
B2n.

This identity becomes the final and required

ζ(2n) =
(−1)n+1B2n(2π)

2n

2(2n)!
.

.

6.6 Fourier series

Here, we are concerned with the use of trigonometric Fourier series in assigning sums to infinite
series. But before we do this, it is necessary to first evaluate the function sinnx◦ as x = 180, where
n = 1, 2, 3, . . .. We begin with the identity

sin (nx− nπ) = sinnx cosnπ − sinnπ cosnx.

For n = 1, 2, 3, . . ., we have
sinn(x− π) = (−1)n sinnx.

Letting x = π gives
sinn(π − π) = (−1)n sinnπ

which becomes
sinn · 0 = (−1)n sinnπ

which in turns becomes
sinnπ = (−1)n sinn · 0.

Applying the Taylor series expansion of sinn · 0, we get

sinnπ = (−1)nn · 0
[
1− (n · 0)2

3!
+ · · ·

]
.

6.6.1 Grandi’s Series

Let us now consider a problem which utilizes the above result in its solution that we may admire
its utility. We wish to use the special Fourier series

∞∑
n=1

sinnx

n
=

π − x

2
, 0 < x < 2π (6.8)

to determine the sum of the Grandi’s series which has caused intense dispute and hot debates among
mathematicians. Grandi was the first to treat this series, and he assigned the sum 1/2 to it, but
some disagreed, asserting that the series has no sum as it is divergent. However, Leibniz and Euler
concurred with Grandi that the series in question has the sum of 1/2 as it is the value which arises
from the series expansion

1− x+ x2 − . . . =
1

1 + x

setting x = 1. Here, we shall show that the sum of the series is actually 1/2.
Let us set the variable x = π in (6.8). Performing this, we obtain

∞∑
n=1

sinnπ

n
=

π − π

2
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which becomes
∞∑

n=1

(−1)nn · 0
n

[
1− (n · 0)2

3!
+ · · ·

]
=

−0

2

which, dividing both sides by −0, turns into

∞∑
n=1

(−1)n−1

[
1− (n · 0)2

3!
+ · · ·

]
=

1

2
.

which in its own turn becomes
∞∑

n=1

(−1)n−1 =
1

2

or

1− 1 + 1− · · · = 1

2
.

6.6.2 Alternating Basel Series

For more assurance of our technique, let us use the Fourier series

∞∑
n=1

sinnt

n3
=

t(2π − t)(π − t)

12
, 0 < t < 2π

to show that the alternating Basel series

1− 1

22
+

1

32
+ · · · = π2

12
.

Setting t = π in the above Fourier series, we get

∞∑
n=1

sinnπ

n3
=

π(2π − π)(π − π)

12

which becomes
∞∑

n=1

(−1)nn · 0
n3

[
1− (n · 0)2

3!
+ · · ·

]
=

π(π)(−0)

12

which, dividing both sides by −0, becomes

∞∑
n=1

(−1)n−1

n2

[
1− (n · 0)2

3!
+ · · ·

]
=

π2

12

This equation becomes
∞∑

n=1

(−1)n−1

n2
=

π2

12

or

1− 1

22
+

1

32
+ · · · = π2

12
.

6.7 Euler’s Constant and Zeta Constants

One classical identify which relates γ to ζ(n) is exceedingly useful in deriving other fine formulas
for γ, and this is the striking relation

∞∑
k=2

xkζ(k)

k
= ln

(
πx

sin (πx)

)
− γx− ln (x!) . (6.9)
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We wish to use the analysis of zero and infinity together with this result to derive some known
results.

Let us start with the evaluation of sin (xπ) at x = 1, 2, 3, . . .. Take the identity

sin (πy − πx) = sinπy cosπx− sinπx cosπy.

For x = 1, 2, 3, . . ., we have

sinπ(y − x) = (−1)x sinπy.

Letting y = x gives

sinπ(x− x) = (−1)x sinπx.

which becomes

sinπ · 0 = (−1)x sinπx.

which in turns becomes

sinπx = (−1)x sinπ · 0.

Applying the Taylor series expansion of sinπ · 0, we get

sinπx = (−1)xπ · 0
[
1− (π · 0)2

3!
+ · · ·

]
.

We apply the result above to derive the familiar identify

Γ (n) Γ (1− n) =
π

sin (nπ)
(6.10)

where Γ (x) is the famous gamma function. A useful property of the gamma function is the recursive
relation

Γ (x+ 1) = xΓ (x) , x > 0. (6.11)

When x is a positive integer, say x = n, then the recursive relation (6.11) can be repeatedly applied
to obtain

Γ (n) = n!. (6.12)

We now apply the aforementioned formula:

(−n)! =
(−1)!

(−1)n−1 (n− 1)!
(6.13)

which can be used to express the factorial of any negative integer in terms of (−1)!. We rearrange
this result as

(n− 1)! (−n)! =
(−1)!

(−1)n−1

which, setting (−1)! = 1/0, gives us

(n− 1)! (−n)! =
1

(−1)n−1 · 0
.

Multiplying the numerator and denominator of the fraction at the right hand side of the equation
by π gives

(n− 1)! (−n)! =
π

(−1)n−1 π · 0
.

We now set

(−1)n−1π · 0 =
sin(nπ)[

1− (π · 0)2

3!
+ · · ·

]
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and obtain

(n− 1)! (−n)! =

π

[
1− (π · 0)2

3!
+ · · ·

]
sin (nπ)

,

which, transforming the factorial functions on the left-hand side of the equation to the gamma
functions, becomes the required identity

Γ (n) Γ (1− n) =
π

sin (nπ)
.

Armed with the ability to express sin(xπ) in terms of zero for positive integers x, we turn to
the derivation of notable formulas which connect γ to ζ (k) as we have aforementioned. In all the
cases we shall always begin with (6.9).

First, we set x = −1 in (6.9) and obtain

∞∑
k=2

(−1)kζ(k)

k
= ln

(
−π

sin (−π)

)
+ γ − ln (−1)!

= ln

(
−π

− sinπ

)
+ γ − ln (−1)!

= ln
( π

sinπ

)
+ γ − ln (−1)!

= ln

 π

π · 0
(
1− (π · 0)2

3!
+ · · ·

)
+ γ − ln (−1)!

= ln

(
1

0

)
− ln

(
1− (π · 0)2

3!
+ · · ·

)
+ γ − ln (−1)!

= ln (−1)! + γ − ln (−1)!

= γ.

Let now x = 1. We get

∞∑
k=2

ζ(k)

k
= ln

(
π

sin (π)

)
− γ − ln 1!

= ln

 π

π · 0
(
1− (π · 0)2

3!
+ · · ·

)
− γ − ln 1!

= ln

(
1

0

)
− ln

(
1− (π · 0)2

3!
+ · · ·

)
− γ

= ln (−1)!− γ

=

∞∑
k=1

1

k
− γ

= 1 +

∞∑
k=2

1

k
− γ.

We conclude this section with the derivation of the formula which was first derived by Euler.
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Setting x = −x, we get

∞∑
k=2

(−x)k ζ(k)

k
= ln

(
−xπ

sin (−xπ)

)
+ γx− ln (−x)!

= ln

(
−xπ

− sin (xπ)

)
+ γx− ln (−x)!

= ln

(
xπ

sin (xπ)

)
+ γx− ln (−x)!

= ln

 xπ

(−1)x−1 π · 0
(
1− (π · 0)2

3!
+ · · ·

)
+ γx− ln (−x)!

= ln

(
x

(−1)x−1 · 0

)
− ln

(
1− (π · 0)2

3!
+ · · ·

)
+ γx− ln (−x)!

= ln

(
x(−1)!

(−1)x−1

)
+ γx− ln (−x)!

= ln

(
x(−1)!(x− 1)!

(−1)x−1 (x− 1)!

)
+ γx− ln (−x)!

= ln

(
x!(−1)!

(−1)x−1 (x− 1)!

)
+ γx− ln (−x)!

= ln (x!(−x)!) + γx− ln (−x)!

= ln (x!) + ln (−x)! + γx− ln (−x)!

= ln (x!) + γx.

6.8 Euler’s Constant

Here we use the way of zero and infinity to derive the famous identity

γ = HΩ − lnΩ

where Ω is the infinite integer for which HΩ = 1+ 1/2+ 1/3+ · · ·+1/Ω is the harmonic series and
γ = 0.57721 . . . is the Euler’s constant. We start with the sums of powers formula

n∑
k=1

km =
(B + n)m+1 −Bm+1

m+ 1

where Bm equals the mth Bernoulli number Bm. If we set m = −1, we get

n∑
k=1

k−1 =
(B + n)−1+1 −B−1+1

−1 + 1

which becomes
n∑

k=1

k−1 =
(B + n)0 −B0

0
.

If we consider (5.1), the above result becomes

n∑
k=1

1

k
= ln (B + n)− lnB = ln

(
B + n

B

)
= ln

(
1 +

n

B

)
.
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This, setting
∑n

k=1

1

k
= Hn where Hn is the nth harmonic number, becomes

Hn = ln

(
B + n

B

)
= ln

(
1 +

n

B

)
. (6.14)

The question now is, What is B? To answer this question we need to express B in terms of n and
set n = 1, 2, 3, . . . to see what would happen to B. Now B expressed as the subject is

B =
n

eHn − 1

where e is Euler’s number. Computing B for the first few values of n, we observe that B varies
with n. We conclude that B is a variable depending on n. Let now B be rewritten as the function
B(n). The above equation becomes

B(n) =
n

eHn − 1
.

It remains to compute the functional value of B(n) when Hn becomes the harmonic series HΩ =
1 + 1/2 + 1/3 + · · · + 1/Ω. To perform this we construct a table of values of B(n) as n becomes
larger and larger. From this table, we see that as n becomes larger and larger, B(n) becomes closer

Table 3: Values ofB(n)
n Hn B(n)

10 2.92896 . . . 0.62117 . . .

100 5.18737 . . . 0.56742 . . .

1000 7.48547 . . . 0.56205 . . .

10000 9.78760 . . . 0.56151 . . .

100000 12.0901 . . . 0.56146 . . .

1000000 14.3927 . . . 0.56146 . . .
...

...
...

and closer to 0.561459 . . . = e−γ where e = 2.71828 . . . . Let Ω be the value of n for which HΩ is
the harmonic series. It follows that

B(Ω) = 0.561459 . . . = e−γ .

We see immediately that, setting n = Ω in (6.14), the harmonic number becomes

HΩ = ln

(
1 +

Ω

e−γ

)
which becomes

HΩ = ln (1 + Ωeγ) .

Since Ω is an infinite quantity, it is immutable in the presence of finite addends or minuends. Thus
the above equation becomes

HΩ = ln (Ωeγ)

which becomes the required identity

γ = HΩ − lnΩ.
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6.9 Generalizing a Family of Figurate Numbers

A family of figurate numbers defined as

Pr(n) =

(
n+ r − 1

r

)
is well worthy of our attention. One enchanting feature of these figurate numbers is that if the nth
term of a sequence of any given r- figurate numbers be added to the (n+1)th term of the sequence
of the preceding r- figurate numbers, the sum will be equal to the (n+1)th term of the sequence of
the given r- figurate numbers. As an instance, let us take two sequences of the triangular numbers
and the tetrahedral numbers:

1, 3, 6, 10, 15, . . .

1, 4, 10, 20, 35, . . . .

Here, if we add to any term in the upper sequence that term in the lower which stands one place
to the left, the sum is the next term in the lower sequence. Starting with 6 sequences of 1’s, all of
the sequences of figurate numbers may be deduced in succession by the aid of this principle:

r = 0 : 1 1 1 1 1 1 1 1
r = 1 : 1 2 3 4 5 6 7 8
r = 2 : 1 3 6 10 15 21 28 36
r = 3 : 1 4 10 20 35 56 84 120
r = 4 : 1 5 15 35 70 126 210 330
r = 5 : 1 6 21 56 126 252 462 792.

By the just convention laid down that (0/0 = 1) we shall generalize these figurate numbers.
Let us consider the cases where r is a negative integer. We begin by setting r = −m, that is

P−m(n) =

(
n−m− 1

−m

)
which becomes

P−m(n) =

(
n−m− 1

−m

)
.

We now express the binomial coefficient P−m(n) in terms of 0 as follows:

P−m(n) =
(n−m− 1)!

(−m)!(n− 1)!

=
(n−m− 1)![

(−1)m−1

(m− 1)! · 0

]
· (n− 1)!

=
(−1)m−1(m− 1)!(n−m− 1)! · 0

(n− 1)!
.

Letting m = 1, we get

P−1(n) =
(−1)1−1(1− 1)!(n− 1− 1)! · 0

(n− 1)!

which becomes

P−1(n) =
0!(n− 2)! · 0

(n− 1)!

=
0

n− 1
.
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Setting n = 1, 2, 3, . . . gives

P−1(1) =
0

1− 1
=

0

0
= 1

P−1(2) =
0

2− 1
=

0

1
= 0

P−1(3) =
0

3− 1
=

0

2
= 0

P−1(4) =
0

4− 1
=

0

3
= 0

P−1(5) =
0

5− 1
=

0

4
= 0

and so on. The case where m = 1 consists of only one finite figurate number, namely, 1. The rest
numbers are all absolute nothing.

Letting m = 2, we get

P−2(n) =
(−1)2−1(2− 1)!(n− 2− 1)! · 0

(n− 1)!

which becomes

P−2(n) =
−1!(n− 3)! · 0

(n− 1)!

=
−0

(n− 1)(n− 2)
.

Setting n = 1, 2, 3, . . . gives

P−2(1) =
−0

(1− 1)(1− 2)
=

−0

(0)(−1)
= 1

P−2(2) =
−0

(2− 1)(2− 2)
=

−0

(1)(0)
= −1

P−2(3) =
−0

(3− 1)(3− 2)
=

−0

(2)(1)
=

−0

2
= 0

P−2(4) =
−0

(4− 1)(4− 2)
=

−0

(3)(2)
=

−0

6
= 0

P−2(5) =
−0

(5− 1)(5− 2)
=

−0

(4)(3)
=

−0

12
= 0

and so on. For the case where m = 2 there exists only two finite figurate numbers, namely, 1 and
−1. The other numbers are all absolute nothing.

Letting m = 3, we get

P−3(n) =
(−1)3−1(3− 1)!(n− 3− 1)! · 0

(n− 1)!

which becomes

P−3(n) =
2!(n− 4)! · 0

(n− 1)!

=
2 · 0

(n− 1)(n− 2)(n− 3)
.
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Setting n = 1, 2, 3, . . . gives

P−3(1) =
2 · 0

(1− 1)(1− 2)(1− 3)
=

2 · 0
(0)(−1)(−2)

= 1

P−3(2) =
2 · 0

(2− 1)(2− 2)(2− 3)
=

2 · 0
(1)(0)(−1)

= −2

P−3(3) =
2 · 0

(3− 1)(3− 2)(3− 3)
=

2 · 0
(2)(1)(0)

= 1

P−3(4) =
2 · 0

(4− 1)(4− 2)(4− 3)
=

2 · 0
(3)(2)(1)

=
0

3
= 0

P−3(5) =
2 · 0

(5− 1)(5− 2)(5− 3)
=

2 · 0
(4)(3)(2)

=
0

12
= 0

and so on. The case where m = 3 comprises three finite figurate numbers which are 1, −2 and 1.
The others are all naught.

The reader can apply the same approach for cases where m = 4, 5, 6, . . .. If he gathers together
all the finite figurate numbers for all the cases, he will discover that they form signed Pascal Triangle
numbers. We thus generalize the figurate numbers by combining the old and new sequences of
figurate numbers. The table below shows these sequences.

r = −6 : 1 −5 10 −10 5 −1
r = −5 : 1 −4 6 −4 1
r = −4 : 1 −3 3 −1
r = −3 : 1 −2 1
r = −2 : 1 −1
r = −1 : 1
r = 0 : 1 1 1 1 1 1 1 1
r = 1 : 1 2 3 4 5 6 7 8
r = 2 : 1 3 6 10 15 21 28 36
r = 3 : 1 4 10 20 35 56 84 120
r = 4 : 1 5 15 35 70 126 210 330
r = 5 : 1 6 21 56 126 252 462 792

7 Conclusion

In this paper we discussed the arithmetic of zero and infinity and gave numerous instances of its
applications in order to demonstrate its utility.
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