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Abstract

We present a new algorithm by which the Adomian polynomials can be determined for scalar-valued nonlinear
polynomial functional in a Hilbert space. This algorithm calculates the Adomian polynomials without the
complicated operations such as parametrization, expansion, regrouping, differentiation, etc. The algorithm
involves only some matrix operations. Because of the simplicity in the mathematical operations, the new
algorithm is faster and more efficient than the other algorithms previously reported in the literature. We
also implement the algorithm in the MATHEMATICA code. The computing speed and efficiency of the new
algorithm are compared with some other algorithms in the one-dimensional case.
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1 Introduction

The Adomian Decomposition Method (ADM) [1, 2, 3, 4, 5] has gained huge attention in different fields of
science and engineering for solving nonlinear functional equations. In practice, many nonlinear problems do
not admit exact solutions, and in most cases, we have to find approximate solutions by employing numerical
or analytical approximation techniques. The ADM is a reliable technique for solving wide classes of nonlinear
systems, including ordinary differential, partial differential, integro-differential, algebraic, differential-algebraic,
non-integer-order differential, integral equations, and so on [6, 7, 8, 9, 10, 11, 12]). This technique can provide
an analytical approximation to the exact solutions in the series form that converge very rapidly [13, 14, 15].
The Adomian decomposition method coupled with the Laplace transform, develops a powerful method called
the Laplace Adomian decomposition method (LADM). LADM has also been used in numerous articles to find
the numerical solution of fractional-order nonlinear differential equations, as can be seen in [16, 17, 18, 19, 20].
Following [6, 7, 21], let us recall the basic ideas of the Adomian Decomposition Method. We consider a nonlinear
ODE in order p with independent variable x (real and scalar) and dependent variable u in the general form [6, 7]

Fu = g(x), (1.1)

where F is the nonlinear operator from a Hilbert space H into H. In ADM, F is assumed to be decomposed
into

Lu+Ru+Nu = g(x), (1.2)

where L is the highest-order linear differential operator L[.] = dp

dxp
[.] which is assumed to be invertible, R is

a linear differential operator containing the linear derivatives of less order than L, N is a nonlinear operator
containing all other nonlinear terms, g(x) ∈ H is a given analytic function. Here we should note that the choice
of the operator L is not generally unique [22, 23, 24]. For example, in [23], A. Wazwaz has chosen the linear
differential operator L[.] as L[.] = x−2 d

dx

(
x2 d

dx

)
for the Lane-Emden equation. It is also notable that u is a

scalar function of real variable x in Eq. (1.2). For a system of differential equations, u will be a vector-valued
function. However, in this paper, our studies are restricted to single ODE where u is a scalar-valued function.
The principle step of the decomposition method is to suppose a series solution defined by

u =

∞∑
i=0

ui, (1.3)

and then the ADM scheme corresponding to the functional equation (1.2) converges rapidly to u ∈ H which is
the unique solution to the functional equation [6, 25]. Equation (1.3) decomposes the nonlinear term Nu into
an infinite series

Nu =

∞∑
i=0

Ai, (1.4)

where Ai are the so-called Adomian polynomials which depend on the solution components u0, u1, . . . , ui. For a
given nonlinear functional Nu = F (u) (F (u) is assumed to be an analytic function of variable u in Hilbert space
H), the Adomian polynomials are determined by the following definitional formula introduced by G. Adomian
[1, 2, 3, 26]:

AM =
1

M !

dM

dλM
F

(
∞∑
k=0

ukλ
k

)∣∣∣∣∣
λ=0

, M = 0, 1, 2, . . . , (1.5)

where the analytic parameter λ is simply a grouping parameter. An important property of Adomian polynomial
AM is that it depends by construction only on the solution components (u0, u1, . . . , uM ) and does not depend
on higher-order solution components uk with k > M [27, 28]. Therefore, the higher-order terms for k > M do
not contribute in summation in Eq. (1.5).

Main step of ADM is to determine the Adomian polynomials of the nonlinear term Nu. Using the definitional
formula (1.5) it is difficult to calculate higher-order Adomian terms due to the complexity in calculations of
higher-order derivatives. Later, many authors have developed several convenient algorithms for fast generation
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of the one-variable and the multi-variable Adomian polynomials. Adomian and Rach [29] produced a recurrence
rule that provides a systematic computational procedure to determine Adomian polynomials. Later, Rach in his
paper [30] established simple symmetry rules (which is called Rach’s rule) in Adomian and Rach’s algorithms,
by which Adomian’s polynomials can be determined quickly to higher orders. Using the algorithm presented
by Wazwaz in [27], we need to collect the terms from the expansion, which takes a large computational time
for higher orders. Applying the algorithm in [31], we require to compute the derivative after substitution in a
recurrence relation between the Adomian polynomials. Recently in [32], the authors modified the formula (1.5) to
determine the Adomian polynomials for nonlinear polynomial functionals. In [21, 33], Duan has developed more
efficient and fast recurrence algorithms for the rapid generation of the Adomian polynomials for one-variable
(which is the one-dimensional case in our studies) and multi-variable cases. Duan’s Corollary 1 algorithm [21]
(called index recurrence algorithm) and Duan’s Corollary 3 algorithm [33] do not involve the differentiation
operator in determining the reduced polynomials in one dimension. We only require the operations of addition
and multiplication, which make these algorithms faster and more efficient techniques.

In this work, we have presented a new algorithm for fastest computations of Adomian polynomials for scalar-
valued nonlinear polynomial functional (with index as positive integers) in a Hilbert space H with the help
of matrix formulations rather than recurrence processes. Our proposed algorithm does not require complex
mathematical operations such as parametrization, expansion, regrouping, and differentiation. In this algorithm,
the higher-order Adomian polynomials can be determined through few matrix operations, making it faster and
more efficient than the other existing algorithms in the literature. We have generalized the new algorithm in
two dimensions where the solution u depends on two-state variables such as t, x.

The paper is organized as follows: In Sec. 2 we present our algorithm to determine Adomian polynomials
for nonlinear polynomial functional. In Sec. 3, we apply our algorithms to the polynomial functions, and the
computation times are compared with some other popular algorithms previously reported in the literature. In
Sec. 4, we discuss our results and make some conclusions on our works. We list the MATHEMATICA code for
the new algorithms in Listing 3 for one-dimensional case and in Listing 6 for two-dimensional case in Appendix:
A, B respectively. We have also listed the MATHEMATICA code for some other algorithms which are Duan’s
Corollary 1 algorithm [21] and Duan’s Corollary 3 algorithm [33, 34] with the one-dimensional case in Listings
4, 5 in Appendix: A.

2 Description of Our Proposed Algorithm

In this section, we have described a new algorithm for calculating the Adomian polynomials. This algorithm is
only applicable for scalar-valued nonlinear polynomial functional (with index as positive integers) in a Hilbert
space H for the two-dimensional case. In order to increase the calculating efficiency in this algorithm, all the
mathematical operations are performed in the matrix forms.

Let us now consider a nonlinear polynomial functional F depends on two different functions u and v in H. The
functions u and v can be expanded into the following two-dimensional series

u =

∞∑
i=0

∞∑
j=0

uij and v =

∞∑
i=0

∞∑
j=0

vij . (2.1)

To illustrate our algorithm, we take the nonlinearity F in the simple form

F = uv. (2.2)

And this nonlinear function can be decomposed by a series

F =
∞∑
i=0

∞∑
j=0

Aij , (2.3)
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where Aij are called Adomian polynomials of the components uij , vij (i = 0, 1, . . . , j = 0, 1, . . .). Now, we divide
the algorithm into six main steps (labeled from Step-1 to Step-6), and to illustrate each step, we have used the
nonlinear polynomial function (2.2).

Step-1 (Express the functions u and v in the matrix forms): In this step, the functions u and v are
expressed in the matrix forms. For computations in computer, we truncate the infinite series (2.1) up to
the finite terms i = m, j = n. We can increase the accuracy in our results by increasing the values of m,n
as far as possible. The functions u, v in the Eq. (2.1) can be expressed by (m+ 1)× (n+ 1) matrices

U =



u00 u01 . . . u0l . . . u0n

...
... . . .

... . . .
...

uk0 uk1 . . . ukl . . . ukn
...

... . . .
... . . .

...
um0 um1 . . . uml . . . umn

 and V =



v00 v01 . . . v0l . . . v0n

...
... . . .

... . . .
...

vk0 vk1 . . . vkl . . . vkn
...

... . . .
... . . .

...
vm0 vm1 . . . vml . . . vmn

 . (2.4)

Step-2 (Extracting the submatrices from the matrices U and V ): The Adomian polynomials corresponding
to any matrix elements (let the matrix elements ukl, vkl located at row k+ 1, column l+ 1) in Eq. (2.4),
depend on the other matrix elements whose row number (r) and column number (c) are less than or
equal to k+ 1 and l+ 1 respectively, but do not depend on the matrix elements located at r > k+ 1 and
c > l + 1. In order to calculate the Adomian polynomials for the elements ukl and vkl in U and V , we
extract the submatrices formed by the elements with rows r ≤ k+1 and columns c ≤ l+1 of the matrices
U and V in Eq. (2.4). These submatrices are given by

U [0, 1, . . . , k; 0, 1, . . . , l] =

u00 u01 . . . u0l

...
... . . .

...
uk0 uk1 . . . ukl

 and

V [0, 1, . . . , k; 0, 1, . . . , l] =

v00 v01 . . . v0l

...
... . . .

...
vk0 vk1 . . . vkl

 .

(2.5)

Step-3 (Flipping the submatrix): In this step, all the matrix elements of any one of the submatrices in
Eq. (2.5) are flipped horizontally and then vertically or vice versa. Here we perform the flipping operation
on the submatrix V [0, 1, . . . , k; 0, 1, . . . , l]. The flipping operation along horizontal axis can be shown in
the following way

flipping horizontally−−−−−−−−−−−−−−−−−→v00 v01 . . . v0l

...
... . . .

...
vk0 vk1 . . . vkl

 −→
v0l v0l−1 . . . v00

...
... . . .

...
vkl vkl−1 . . . vk0

 = V [0, 1, . . . , k; l, l − 1, . . . , 0]. (2.6)

Then, the flipping operation along vertical axis is performed on the above flipped submatrix, which can
be shown as

flipping vertically

y
v0l v0l−1 . . . v00

...
... . . .

...
vkl vkl−1 . . . vk0

 −→
vkl vkl−1 . . . vk0

...
... . . .

...
v0l v0l−1 . . . v00


= V [k, k − 1, . . . , 0; l, l − 1, . . . , 0].

(2.7)

Step-4 (Element-wise matrices multiplication): In the element-wise multiplication (also known as the
Hadamard product), each element i, j in the two matrices are multiplied together. We perform the
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element-wise multiplication between two matrices U [0, 1, . . . , k; 0, 1, . . . , l] and V [k, k − 1, . . . , 0; l, l − 1, . . . , 0],
given by

U [0, 1, . . . , k; 0, 1, . . . , l] ◦ V [k, k − 1, . . . , 0; l, l − 1, . . . , 0] = W [0, 1, . . . , k; 0, 1, . . . , l] (2.8)

and in the matrix notation the above equation can be expressed byu00 u01 . . . u0l

...
... . . .

...
uk0 uk1 . . . ukl

 ◦
vkl vkl−1 . . . vk0

...
... . . .

...
v0l v0l−1 . . . v00

 =

u00vkl u01vkl−1 . . . u0lvk0

...
... . . .

...
uk0v0l uk1v0l−1 . . . uklv00

 . (2.9)

Here the symbol ◦ denotes the element-wise multiplication between two matrices.

Step-5 (Summation over matrix elements): In this step, we take summation over all the elements of the
matrix W [0, 1, . . . , k; 0, 1, . . . , l] and this summation is

Akl =

k∑
i=0

l∑
j=0

Wij = u00vkl + u01vkl−1 + . . .+ uklv00. (2.10)

Here Akl is the Adomian polynomial for the two matrix elements ukl, vkl. In the Adomian polynomial
Akl, notably, the sum of the first index at subscripts of the components of u, v in each term in Akl are
same. Similarly, the sum of the second index of the components of u, v in each term in Akl are also same
(here for the first index, the sum is k and for the second index, the sum is l), which obey the important
property of the Adomian polynomial given in [27].

Step-6 (Constructing Adomian matrix): Repeating the previous steps from Step-1 to Step-5, the Adomian
polynomials corresponding to each matrices elements in Eq. (2.4) are determined. All the calculated
Adomian polynomials are stored in a matrix and can be expressed by

A =



A00 A01 . . . A0l . . . A0n

...
... . . .

... . . .
...

Ak0 Ak1 . . . Akl . . . Akn
...

... . . .
... . . .

...
Am0 Am1 . . . Aml . . . Amn

 . (2.11)

We call the matrix A in (2.11) as Adomian matrix for the given polynomial nonlinearity (2.2).

We present the pseudo-code for the algorithms described in Step-1 to Step-6 in Listing 1 which compute the
Adomian matrix of Eq. (2.2). Here, it is worthwhile to note how a few simple matrix operations in Step-
1 to Step-6 generate the Adomian polynomials of Eq. (2.2). It is clear from Step-1 to Step-6 that only
4(m + 1)(n + 1) − (m + n + 2) number of matrix operations (2(m + 1)(n + 1) − (m + n + 2) number of
flippings, (m+ 1)(n+ 1) number of element-wise matrices multiplications and (m+ 1)(n+ 1) number of matrix
summations) are required to compute the Adomian matrix of Eq. (2.2) with i = m, j = n in Eq. (2.1). This
simplicity in mathematical operations enhances the computing efficiency of this algorithm.

Listing 1: Computation of Adomian matrix A of Eq. (2.2) in pseudo-code.

1 input : Functions u and v o f Eq . (2.2)
2 output : Adomian matrix A
3 function AdomianMatrix (u, v )
4 Express u in matrix form U : U ← Matrix (

∑m
i=0

∑n
j=0 uij )

5 Express v in matrix form V : V ← Matrix (
∑m
i=0

∑n
j=0 vij )

6 for k ← m to k ≥ 0 do
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7 for l← n to l ≥ 0 do
8 U [0, 1, . . . , k; 0, 1, . . . , l] ← the submatrix o f U for the e lements Ukl
9 V [0, 1, . . . , k; 0, 1, . . . , l] ← the submatrix o f V for the e lements Vkl

10 V [k, k − 1, . . . , 0; l, l − 1, . . . , 0] ← V [0, 1, . . . , k; 0, 1, . . . , l] are f l i p p e d h o r i z o n t a l l y and
then v e r t i c a l l y

11 Element−wise m u l t i p l i c a t i o n : W [0, 1, . . . , k; 0, 1, . . . , l] ←
U [0, 1, . . . , k; 0, 1, . . . , l] ◦ V [k, k − 1, . . . , 0; l, l − 1, . . . , 0]

12 Akl ←
∑k
i=0

∑l
j=0 Wij

13 end for
14 end for
15 return A
16 end function

Listing 2: Computation of Adomian matrix A of Eq. (2.12) in pseudo-code.

1 input : Functions u(1), u(2), u(3), . . . , u(P−2), u(P−1), u(P ) o f Eq . (2.12)
2 output : Adomian matrix A

3 function AdomianMatrix2 (u(1), u(2), u(3), . . . , u(P−2), u(P−1), u(P ) )

4 Express u(1), u(2), u(3), . . . , u(P−2), u(P−1), u(P ) in matrix forms : U (P ) ← Matrix (∑m
i=0

∑n
j=0 u

(P )
ij )

5 A ← U (P )

6 for k ← P to k ≥ 2 do

7 A ← AdomianMatrix (U (k−1) ,A)
8 end for
9 return A

10 end function

2.1 F in general form

Let us now consider the nonlinear polynomial functional F in the following general form

F = u(1)u(2)u(3) . . . u(P−2)u(P−1)u(P ), (2.12)

where F depends on P number of two-dimensional functions u(1), u(2), u(3), . . . , u(P ). For P = 2 and u(1) =
u, u(2) = v, Eq. (2.12) is reduced to Eq. (2.2). The algorithms presented in the Step-1 to Step-6 also work
for Eq. (2.12) in the following way. Let U (1), U (2), U (3), . . . , U (P ) are the matrix forms of the two-dimensional
functions u(1), u(2), u(3), . . . , u(P ) respectively. In order to determine the Adomian matrix of Eq. (2.12), at first,
we will start to determine the Adomian matrix for the first two matrices U (1), U (2) or for the last two matrices
U (P−1), U (P ) using the algorithms presented in the Step-1 to Step-6. Let A(P−1)(P ) is the Adomian matrix of
the last two matrices U (P−1) and U (P ). Next, we determine the Adomian matrix of the two matrices A(P−1)(P )

and the previous one U (P−2). This process is continued up to first matrices U (1). After completing this process,
finally, we will get the Adomian matrix of F given in Eq. (2.12). We present this process in pseudo-code in
Listing 2 which determines the Adomian matrix of Eq. (2.12).

Now, we consider the nonlinear polynomial functional F in the more general and complicated form (a sum raised
to a power)

F =
(
u(1) + u(2) + u(3) + . . .+ u(P−2) + u(P−1) + u(P )

)N
(2.13)

where the power index N is a positive integer number. In this case, at first, we expand Eq. (2.13) in sum of
product terms. Then we can easily determine the Adomian matrix of each term of the expansion using the above

6



Bairagi; Asian Res. J. Math., vol. 19, no. 7, pp. 1-12, 2023; Article no.ARJOM.98521

algorithms for Eq. (2.12). Finally, simply adding all the Adomian matrices of each term, we get the Adomian
matrix of Eq. (2.13).

In a one-dimensional case, the series (2.1) have only one index (say i). Therefore, all the matrices are one
dimension, and in this case, in Step-3, we have to perform only a horizontal flipping operation. Besides this, all
the algorithms described from Step-1 to Step-6 are identical in a one-dimensional case. In the following, we call
the new algorithm presented by us the Adomian matrix algorithm.

3 Software Implementation and Comparisons with
Other Algorithms

We have implemented the algorithm described in Sec. 2 (called Adomian matrix algorithm) into MATHEMATICA
code in Listings 3 (one-dimensional case), 6 (two-dimensional case) of Appendix: A, B respectively. These
MATHEMATICA programs can determine one-dimensional (using Listing 3) and two-dimensional (using Listing
6) Adomian polynomials of the following polynomial functional

F = uN , (3.1)

where the power index N is an positive integer number that represents the order of nonlinearity. To determine
the Adomian polynomials of Eq. (3.1), we have to input the power index N and the order of the Adomian
matrix in the function arguments (detailed descriptions of these function arguments are given in the Appendix)
of the MATHEMATICA functions, and these functions print the Adomian polynomials in the output cell of the
MATHEMATICA notebook.

MATHEMATICA codes for some other algorithms such as Duan’s Corollary 1 algorithm [21], Duan’s Corollary 3
algorithm [33] for one-dimensional case are also presented in Listings 4, 5 of Appendix: B. The MATHEMATICA
programs in Listings 4 and Listings 5 are taken from Appendix: A.1 in [21] and from Appendix: A in [34]
respectively. Here to make the programs more faster we have modified the programs (given in [21], [34]) which
work only with the polynomial functional (3.1) and evaluate the differentiation of (3.1) using the factorial formula
diF
dui = N !

(N−i)!u
N−i.

We have compared the Adomian matrix algorithm with other algorithms by employing the MATHEMATICA
programs given in Listings 3, 4, 5, 6 and using the polynomial functional (3.1). In Table 1, we have shown
the comparisons between the computing speeds (measured in seconds) of the Adomian matrix algorithm (3rd
column) and two different other algorithms (4th and 5th columns) for the one-dimensional case using the
MATHEMATICA programs given in Listings 3, 4, 5 in Appendix: A. We measure the computing times by
MATHEMATICA 9.0 on the laptop with Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz and 8 GB RAM, using
the MATHEMATICA command Timing[] with suppressing output (i.e., the results are retained in memory).
Table 1 displays that the Adomian matrix algorithm is faster and more efficient than the other two algorithms:
Duan’s Corollary 1 algorithm [21] and Duan’s Corollary 3 algorithms [33]. For example, we observe that in
calculating the first 50 Adomian polynomials, the Adomian matrix algorithm is almost 104 times faster for
N = 3 and almost 103 times faster for N = 10 in comparison to the other two algorithms. Moreover, in
calculating the first 100 Adomian polynomials, the Adomian matrix algorithm spends the time ∼ 10−2 s, but,
notably, the other two algorithms are unable to give results within an elapsed time of 600 s.

We have also checked the computation efficiency of the Adomian matrix algorithm in the two-dimensional cases
using the MATHEMATICA code in Listing 6. For example, the Adomian polynomials of Eq. (3.1) in the order
of 40× 40 are generated within 2.6 s for N = 3 and within 19.5 s for N = 10.
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Table 1. Comparisons of computing times (unit: seconds) of the Adomian matrix algorithm
with some other algorithms using different values of N in (3.1) and the different number (n) of

Adomian polynomials in one dimension. In some table cells, × symbols indicate the algorithm in
the corresponding column is unable to compute Adomian polynomials after spending almost 600s

Nonlinearity
(N )

Number of
Adomian

polynomials (n)

Adomian
matrix
algorithm

Duan’s Corollary 1
algorithm [21]

Duan’s
Corollary 3
algorithm

[33]

3 10 0.00047 0.0020 0.0025
30 0.002 0.83 0.76
50 0.0047 62 46
100 0.017 × ×

5 10 0.00078 0.0026 0.0025
30 0.0039 0.87 0.68
50 0.0092 62.5 46.4
100 0.037 × ×

10 10 0.0033 0.0037 0.0029
30 0.012 0.96 0.65
50 0.026 62.7 46.7
100 0.095 × ×

4 Conclusion

We have presented a new algorithm (called the Adomian matrix algorithm) to determine the Adomian polynomials
for scalar-valued nonlinear polynomial functional (with index as positive integers) in a Hilbert space H. The
computations in the Adomian matrix algorithm do not need complicated mathematical operations such as
parametrization, expansion, regrouping, differentiation, and so on. It is clear from Step-1 to Step-6 in Sec. 2 that
the Adomian polynomials are determined entirely by some simple matrix operations. Because of the simplicity
in mathematical operations, the algorithm is more efficient for the fast generation of the Adomian polynomials.
We have designed two MATHEMATICA programs (one-dimensional case in Listing 3 and two-dimensional case
in Listing 6) based on the Adomian matrix algorithm, and compared its efficiency in computations for the
one-dimensional cases with other two popular and powerful algorithms, which are Duan’s Corollary 1 algorithm
[21] and Duan’s Corollary 3 algorithms [33]. We have observed that the computation efficiency of the Adomian
matrix algorithm is better than the other two algorithms. For example, in calculating the first 50 Adomian
polynomials in one dimension with the nonlinearity index N=3 in Eq. (3.1), the Adomian matrix algorithm is
almost 104 times faster than the other two algorithms. For N=10, we are able to find the first 100 Adomian
polynomials using this new algorithm in just 10−2 s, whereas for N=3 and n=100, the other two algorithms fail
to produce any results until 600 s have passed. Therefore, we can conclude that the Adomian matrix algorithm
can be used to determine a large number of Adomian polynomials of nonlinear polynomial functionals that make
the solutions more accurate.
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Appendix A Mathematica programs for one-dimensional case

The following three MATHEMATICA programs can determine one-dimensional Adomian polynomials of the
nonlinear function (3.1). The function arguments N and n represent the nonlinear power index N in Eq. (3.1)
and the number of first Adomian polynomials, respectively.

Listing 3: Program based on the Adomian matrix algorithm.

AdomMatAlgo1D [ N , n ] := Module [{h , j , k} ,
u =. ;
mat = Table [ Subscript [ u , h ] , {h , 0 , n − 1 } ] ;
temmat = Table [ Subscript [ u , h ] , {h , 0 , n − 1 } ] ;
For [ j = 1 , j <= N − 1 , j ++,

For [ k = n , k >= 1 , k−−,
mat [ [ k ] ] = Total [ temmat [ [ ; ; k ] ] ∗ Reverse [ mat [ [ ; ; k ] ] ] ] ;

] ;
] ;

mat
]

Listing 4: Program based on the Duan’s Corollary 1 algorithm [21].

DuanIndexAlgoAdom [ N , n ] := Module [{Apoly , Zpoly , d i r C l t } ,
Subscript [ Apoly , 0 ] = Subscript [ u , 0 ] ˆN;
Zpoly = Table [ 0 , { i , 1 , n − 1} , { j , 1 , i } ] ;
Do[ Zpoly [ [ suInd , 1 ] ] = Subscript [ u , suInd ] , { suInd , 1 , n − 1 } ] ;
For [ i = 2 , i <= n − 1 , i ++,

For [ j = 2 , j <= i , j ++,
Zpoly [ [ i , j ] ] = Expand [ Subscript [ u , 1 ]∗ Zpoly [ [ i − 1 , j − 1 ] ] ] ;
I f [Head [ Zpoly [ [ i , j ] ] ] === Plus ,

Zpoly [ [ i , j ] ] = Map[#/Exponent[# , Subscript [ u , 1 ] ] &, Zpoly [ [ i , j ] ] ] ,
Zpoly [ [ i , j ] ] = Map[#/Exponent[# , Subscript [ u , 1 ] ] &, Zpoly [ [ i , j ] ] ,

{ 0 } ] ] ] ;
For [ j = 2 , j <= Floor [ i / 2 ] , j ++,

Zpoly [ [ i , j ] ] = Zpoly [ [ i , j ] ] + ( Zpoly [ [ i − j , j ] ] / .
Subscript [ u , sub ] −> Subscript [ u , sub + 1 ] ) ] ] ;

d i r C l t = Table [ Factorial [N] / Factorial [N − j ] ∗ ( Subscript [ u , 0 ] ˆ (N − j ) ) , { j ,
1 , n − 1 } ] ;

Do[ Subscript [ Apoly , suInd ] = Take [ d i rCl t , suInd ] . Zpoly [ [ suInd ] ] , { suInd , 1 ,
n − 1 } ] ;

Table [ Subscript [ Apoly , suInd ] , { suInd , 0 , n − 1 } ] ]

Listing 5: Program based on the Duan’s Corollary 3 algorithm [33, 34].

DuanCoro3AlgoAdm [ N , n ] := Module [{ cPoly , i , k , j , derClt } ,
Table [ cPoly [ i , k ] , { i , 1 , n − 1} , {k , 1 , i } ] ;
derClt = Table [ Factorial [N] / Factorial [N − k ] ∗ ( Subscript [ u , 0 ] ˆ (N − k ) ) ,

{k , 1 , n − 1 } ] ;
Apoly [ 0 ] = Subscript [ u , 0 ] ˆN;
For [ i = 1 , i <= n − 1 , i ++,
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cPoly [ i , 1 ] = Subscript [ u , i ] ;
For [ k = 2 , k <= i , k++,

cPoly [ i , k ] = Expand [ 1/ i ∗Sum[ ( j + 1) ∗Subscript [ u , j + 1 ]∗ cPoly [ i − 1 −
j , k − 1 ] ,

{ j , 0 , i − k } ] ] ] ;
Apoly [ i ] = Take [ derClt , i ] . Table [ cPoly [ i , k ] , {k , 1 , i } ] ] ;

Table [ Apoly [ i ] , { i , 0 , n − 1 } ] ]

Appendix B Mathematica programs for two-dimensional case

The following MATHEMATICA program can determine two-dimensional Adomian polynomials of the nonlinear
function (3.1). The function arguments N , m and n represent the nonlinear power index N in Eq. (3.1), the
number of rows and number of columns in the Adomian matrix, respectively.

Listing 6: Program based on the Adomian matrix algorithm.

AdomMatAlgo2D [ N , m , n ] := Module [{ g , h , j , k , l } ,
u =. ;
mat = Table [ Subscript [ u , g , h ] , {g , 0 , m − 1} , {h , 0 , n − 1 } ] ;
temmat = Table [ Subscript [ u , g , h ] , {g , 0 , m − 1} , {h , 0 , n − 1 } ] ;
For [ j = 1 , j <= N − 1 , j ++,

For [ k = m, k >= 1 , k−−,
For [ l = n , l >= 1 , l −−,

mat [ [ k , l ] ] = Total [ temmat [ [ ; ; k , ; ; l ] ] ∗ Reverse [ Reverse [ mat [ [ ; ;
k , ; ; l ] ] , 1 ] , 2 ] , 2 ] ;

] ;
] ;

] ;
mat

]
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