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Abstract 

Incorporating of fixed oils in biodegradable packaging has an important action on the polymer matrix and 
biological activities on phytopathogens. This study aimed to evaluate the incorporation of fixed oils from the 
seeds of Hymenaea stigonocarpa and Hymenaea courbaril in the arrowroot starch biofilm matrix, evaluating the 
physicochemical parameters of biodegradability and antifungal activity on Colletotrichum acutatum, 
Colletotrichum gloeosporioides, Aspergillus tubingensis, Aspergillus fumigatus, Aspergillus niger and Rhizopus 
stolonifer. Both fixed oils from Hymenaea seeds showed biological antioxidant activity in reducing DPPH. 
Biofilms showed increasing variation in thickness ranging from 0.23-0.43 mm and decreasing moisture content 
and solubility 15.01-5.14% and 51.07-34.10%, respectively, as oil concentrations increased. The oil 
concentration also reduced the transparency rate, a considerable variation between the color and biodegradability 
parameters. However, the biofilms presented a mass reduction of more than 90% for this test. Biofilms still 
demonstrate considerable antifungal activity for the evaluated phytopathogens. The seed oil of Hymenaea 
stigonocarpa and Hymenaea courbaril played important roles in developing biopolymer matrices and special 
biological activity on potential phytopathological agents of fruits and grains. 

Keywords: Colletotrichum acutatum, Aspergillus niger, antioxidant activity, Rhizopus stolonifer 

1. Introduction 

Synthetic packaging is widespread in any industrial segment and even in products of “green” origin, these are 
produced from petroleum processing presents serious and potential environmental problems due to the extended 
stay in the mainly marine environment (Nielsen et al., 2020). The degradation process of the different types of 
plastics used for the storage of agricultural, biological and chemical products is long, exceeding 500 years in a 
favorable environment for this process. It is also worth mentioning that synthetic polymers used as packaging 
can be associated with food contamination (Kalpana et al., 2019; Santos et al., 2020). 

In addition, the packaging industry increases its production by 8% a year, which negatively impacts 
accumulation, where 90% of all plastic produced is accumulated in the environment, and only 5% is recycled 
(Nor Adilah et al., 2018). The microplastics produced from the abrasion process can be inserted in both animal 
and human food, and studies carried out on the absorption of this material by humans generate an accumulation 
of 1 kg per year, which is toxic (Nor Adilah et al., 2018; Henry et al., 2019). 
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Observing from several studies that characterize synthetic packaging as a harmful promoter for man and the 
environment, thus, the need arose to develop biodegradable packaging comparable to synthetic plastics. Green 
chemistry is called the area that develops products that combine natural bases such as fats, oils, chitosan, 
starches, among other biopolymers, as raw materials in the development of sustainable packaging (Gandini et al., 
2018). According to Tavassoli-Kafran et al. (2016) and Beikzadeh et al. (2020), their growing application is due 
to the advantages such as being environmentally friendly, preventing losses of moisture, aromas, colors, gas 
barrier attributes (O2, CO, CO2 and C2H4), reduction enzymatic of spoilage, microbial contamination; 
consequently, they could extend the shelf life of main food products with no side effects by inhibiting the 
dehydration, browning, and oxidative rancidity.  

Furthermore, the incorporation of substances such as fixed oil, essential oil, oil-resin, and plant extracts 
positively aggregate in a resistant polymeric matrix and have bioactive characteristics in the inhibition of fungal 
and bacterial agents. Several vegetable oils incorporated in biopolymers have potential activity on many 
pathological and phytopathological fungicide species (Arruda et al., 2019; Aydogdu et al., 2020). 

In agricultural production, mainly of fruits and grains, the community's constant pressure on producers to 
provide products free of fungal agents that present health problems for both humans and animals. Several 
Colletotrichum, Aspergillus and Rhizopus genus produce adverse effects every year on the economy from natural 
products such as fruits, vegetables and grains used in food. Several of these microorganisms during the 
metabolic rate can produce aflatoxins involved in the death of animals fed on contaminated feed. There are 
reports that these toxins may be associated with an increase in CD4 cells in carriers of the acquired 
immunodeficiency virus (HIV) (Ikarugi et al., 2008; Souza et al., 2014; Li et al., 2017; Tahir et al., 2018).  

The constant need for studies to evaluate natural products from plants as the main renewable source makes it 
necessary to evaluate species in the most varied biomes and Cerrado domain (Bueno et al., 2018). Thus, there is 
a need to study native plant species of this domain such as Hymenaea stigonocarpa and Hymenaea courbaril 
popularly known as “jatobá-do-Cerrado and jatobá-do-campo”, both belonging to the Fabaceae family that 
annually have large fruit harvests. Each Hymenaea fruit produces around 5-10 seeds where they present in their 
cotyledons compounds such as fatty acids (fixed oil) (Pereira et al., 2011; Silva, 2018). This oil can be used in 
the incorporation of polymeric matrices where they can present important characteristics such as increased 
impermeability, antioxidant activity, average extended shelf life, visible and ultraviolet light transmission, 
elasticity and water vapor transfer. It is also noteworthy that both species of Hymenaea still have a limited 
number of studies, especially for the use of seeds used in different industrial processes (Menezes Filho et al., 
2020). 

In addition, eco-friendly bioactive packaging that features natural preservatives may be better options to 
overcome health concerns, environmental issues and mitigate losses in agriculture. And for that, arrowroot-based 
high-performance biodegradable packaging materials are considered a relatively easy and suitable method for 
developing edible emulsion materials and biodegradable packaging with antioxidant, antifungal and antibacterial 
biological activities. 

This study aimed to evaluate the incorporation of fixed oil from the seed of two species of Hymenaea 
stigonocarpa and Hymenaea courbaril and evaluate the characteristics of biofilms regarding structural antifungal 
characteristics on potential agricultural phytopathological agents. 

2. Method 

Six hundred (600 g) of H. stigonocarpa and H. courbaril seeds were collected in two Cerrado areas in Rio Verde, 
Goiás state, Brazil (17°47′17.6″S and 50°57′55.6″W, 17°42′58.6″S and 50°53′28.6″W) respectively. The 
specimens were authenticated by M.Sc. Antonio Carlos Pereira de Menezes Filho, and are stored was Herbarium 
in Vegetable Systematic Laboratory, Biology Departament, Goiano Federal Institute. (HRV No. 14097 and 
14098).  

Seeds were sprayed with a mixer grinder and dried in an oven at 35 °C for 12 h. Fixed oil was obtained using a 
Soxlhet type system as described by Elagbar et al. (2016) adapted. The extractant solvent used was n-Henaxe. 
Fifteen (15 g) of processed seed was used in the extraction. The system was refluxed for 8 h. Then, the solvent 
was evaporated using a rotary evaporator. The oil was collected in amber-colored bottles and stored in the 
refrigerator until analysis at -12 °C.  

Physicochemical properties specific gravity (pycnometer 1 mL) and refractive index (digital refractometer) were 
determined according to Adegbe et al. (2016). The methodology used for Thin Layer Chromatography (TLC) of 
Hymenaea seed oils followed as proposed by Ferreira et al. (2021). The analyzed samples and standards were 



jas.ccsenet.org Journal of Agricultural Science Vol. 14, No. 4; 2022 

158 

placed on a silica chromatographic plate (Xtra SIL G/UV254). The standards used were oleic acid 
(Sigma-Aldrich), linoleic acid (Vetec), myristic acid and palmitic acid (Sigma-Aldrich). The distance for the 
chromatographic run was 10 cm. A binary mixture of n-hexane and ethyl acetate (8:2) was used as the mobile 
phase. The mobile phase and the chromatographic plate were placed inside a glass vat and kept at rest for 20 mL 
for the chromatographic run. After this period, the chromatoplates were developed with solid iodine vapor (I2) 
and ferric chloride, and the Rfs compared between oil samples and standards. 

Oil samples were evaluated using DPPH radical (2,2-Diphenyl-1-pikryl-hydrazyl) for free radical scavenging 
activity using the method described by Elagbar et al. (2016). Solutions were freshly prepared. DPPH (0.006 g%), 
different concentration of oil conc. (10-2000 µg mL-1) prepared in n-hexane, and Ascorbic acid (10-2000 µg 
mL-1) were prepared in ethanolic solution (70%) (v/v). One mL of DPPH was mixed with either oil (1 mL) or 
Ascorbic acid (1 mL). These solutions were homogenized at 25 °C for 30 s and kept aside for 30 min in dark 
room. Using -hexane as blank at Abs 517 nm the instrument UV-Vis spectrophotometer was set at zero. The 
free radical scavenging activity of residual DPPH against the blank was determined at Abs 517 nm using the 
following Equation 1. 

DPPH scavenging activity (%) = (1 − AbsC/AbsS) × 100                   (1) 

Where, AbsC = Absorbance control; AbsS = Absorbance sample.  

All the experiments were conducted in quadruplicate. The values of the calculated inhibition concentration (IC50) 
µg mL-1.  

Biodegradable films were obtained by the “casting” method, agreeing with the methodology proposed by 
Valadares et al. (2020) adapted. In order to obtain biofilms, 5 g commercial arrowroot starch M. arundinacea 
was dissolved in 100 mL distilled water. The mixture was moderately agitated at room temperature (25 °C) for 5 
minutes. Afterwards, this solution was heated at 70 °C under constant agitation for 30 minutes. After starch 
gelatinization, glycerol was added conc. 30% (w/v). This dispersion was then agitated for 5 minutes. When the 
filmogenic solution reached 30 °C, a previously prepared suspension of fixed oil from H. stigonocarpa or H. 
courbaril in Tween 40 conc. 0.25 (g/g fixed oil) was incorporated into it under constant agitation for 15 minutes. 
Final concentrations of seed fixed oil were 0.25%, 0.50%, 0.75% and 1% (v/v), besides a control treatment with 
no fixed oil. Filmogenic solutions made from arrowroot starch into which fixed oil was incorporated were 
poured on a polyethylene plate and dried in an oven with air circulation at 35 °C for about 48 hours. 

A digital caliper measured biofilm thickness. Measurements were carried out in ten spots on every biofilm, and 
the thickness mean was calculated by according Santos et al. (2021). The moisture content was obtained in an 
oven at 105 °C for 4 h. Four replicates per film treatment were used, in agreement with the methodology 
described by Rambabu et al. (2019) adapted. Measurement of water solubility was performed as described by 
Santos et al. (2020) and proposed by Jahed et al. (2017). Biofilms which measured about 2 cm2 were dried in an 
oven at 105 °C for 4 hours and then weighed so that initial mass (Mi) could be determined. They were immersed 
in 50 mL distilled water and kept under constant agitation at 25 °C for 24 hours. Afterwards, solutions with the 
films were filtered through filter paper which had been previously weighed. Sheets of filter papers with films 
were dried at 105 °C for 24 hours and weighed so that final mass (Mf). The analysis was analyzed in triplicate. 
Biofilm solubility (%) was calculated by Equation 2. 

Water solubility assay (%) = (Mi – Mf/Mi) × 100                        (2) 

Ultraviolet and visible light transmittance of biofilms was conducted by UV-Vis spectrophotometer. Biofilm 
samples were cut and placed in cuvettes so that transmittance could be measured over a wavelength range 
between 850 and 200 nm (Hosseini et al., 2015) adapted. The FT-IR data were obtained in the range of 600-4000 
cm-1, with 60 scans and a resolution of 4 cm-1, equipped with a diamond attenuated total reflectance (ATR) 
accessory. Data were evaluated using Microsoft Excel. Analysis of biofilm color was carried out by a colorimeter. 
Parameters under evaluation were L* (luminosity) and chromaticity parameters [(+60/-60) a* and (+60/-60) b*]. 
Measurements were conducted on five randomly selected film spots (Valadares et al., 2020). 

The analysis of biodegradability was carried out by according Martucci and Ruseckaite (2009) adapted. Biofilm 
samples (2 × 2 cm2) were dried up to constant weight so that initial mass (Mi). Samples were then placed in open 
high density polyethylene packages to enable microorganisms and moisture to gain access to them. After that, 
they were buried in natural soil, which had been previously prepared, at constant moisture and room temperature 
(70% R.U and 25 °C). Five, ten, fifteen, twenty, twenty-five and thirty days after the experiment installment, the 
packages with the samples were removed from the soil, washed with distilled water and dried up to constant 
weight (Mf). The percentage biodegradability was calculated by Equation 3. 
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Biodegradability (%) = (Mf – Mi/Mi) × 100                           (3) 

The morphology of the biofilms was evaluated under high-resolution optical microscopy. A (2 × 2 cm2) film 
sample was adhered to a microscope slide and analyzed at different magnifications of 4, 10, 40 and 100 X in an 
optical microscope with an attached camera. Micrographs of the biofilm surface area were analyzed in ImageJ 
software in 3D pixel stacking analysis. 

The antifungal activity of biofilms was analyzed against the phytopathogenic fungi Colletotrichum acutatum 
(BW-101), Colletotrichum gloeosporioides (BW-102), Aspergillus tubingensis (N2A), Aspergillus fumigatus 
(V1G), Aspergillus niger (VIF) and Rhizopus stolonifer (BW-116) belonging to the mycological bank of the 
Technological Chemistry laboratory of the Goiano Federal Institute, Goiás State, Brazil, by a diffusion test on 
disk described by Ma et al. (2016). Petri dishes, half full with medium potato dextrose agar (PDA), were 
inoculated with 100 µL suspension with 1 × 108 CFU mL-1 with 0.5 McFarland scale in UV-Vis 
spectrophotometer. Then, three samples of biofilms which had been cut in circles with about 7 mm in diameter 
were placed on every dish. Dishes were incubated at 26 °C for 10 days (Weir et al., 2012; Damm et al., 2012). 
Finally, diameters of the zone of inhibition (mm) were measured with digital caliper. As standard fungicide 
Frowncide 500 SC concentration 10 µL mL-1 was used (C. gloeosporioides and C. acutatum), Anphotericin B 
100 MCG (A. tubingensis, A. fumigatus and A. niger) and Botector® 50 µL mL-1 Westbridge. 

Analyses were carried out in quadruplicate±SD were calculated. The data was statistically analysed by ANOVA 
and means were compared by the Duncan multiple range test significance with the use of the IBM SPSS 
Statistics 26 software program. The P level of < 5% was supposed to be significant in determining the variations 
among mean values of biofilm aspects. 

3. Results and Discussion 

The physicochemical and antioxidant properties of the analyzed Hymenaea oils presented for specific gravity g 
mL-1 (20 °C) 0.9274±0.04a and 0.9280±0.06a, refractive index (25 °C) 1.44718±0.01a and 1.46237±0.03b, H. 
stigonocarpa and H. courbaril, respectively. According by Dias et al. (2013) the refractive index is mainly 
related to the saturation degreeand the ratio of fatty acids Cis and Trans double bonds, besides in isinfluenced by 
oxidative processes. In the analyzed oils of H. courbaril by Dias et al. (2013), the refractive indices at 40 ºC 
were 1.4653 for the pulp and 1.4655 for the seeds.  

In both oil samples it was verified the presence of Rfs close to the standards for oleic, linoleic and palmitic acid 
(H. stigonocarpa and H. courbaril), and myristic (H. courbaril). The TLC method showed good separation 
results for the evaluated fatty acids. Several retention spots were observed on chromatoplates containing 
Hymenaea oil on I2 vapor and UV365 nm light, suggesting the presence of other fatty acid groups. Ferric chloride 
developer revealed a blue spot at 33 mm which suggests the presence of the hydrolyzable or gallic tannin group 
in H. courbaril. This result corroborates the study by Dias et al. (2013) where they evaluated total phenolic 
compounds in H. courbaril seed oil with a result of 3.43 mg GAE 100 g-1.  

Antioxidant activity IC50 = 2.19±0.06a µg mL-1 (Ascorbic acid), IC50 = 398.17±1.08c and IC50 = 211.30±1.96b 
µg mL-1, H. stigonocarpa and H. Courbaril, respectively. Observed that there is no significant difference by the 
Duncan (p < 5%) for specific gravity, however, there is a statistical difference for the refractive index assay and 
in the DPPH free radical reduction for both samples and the standard antioxidant. Fixed oils extracted not only 
from seeds, they have potential antioxidant agents. Dias et al. (2013) found for the pulp and seeds of H. 
courbaril moderate DPPH free radical reduction efficiency of 22.19% (IC50 = 49.04 g/g) and 83.49% (IC50 = 
48.56 g/g) respectively. This anti-free radical activity has potential activity incorporated in polymeric matrices 
capable of reducing the deleterious effects on food (Santos et al., 2020).  

The incorporation of fixed oils of H. stigonocarpa and H. courbaril into the arrowroot biopolymer matrix 
showed significant effects when compared to the control on thickness, moisture and solubility (Table 1). These 
effects are due to the high concentration of amylose found in arrowroot starch (Thakur et al., 2019; Santos et al., 
2020). Thickness analysis showed that the biofilms varied in terms of thickness according to Duncan's test (p < 
5%) noting that the biofilm incorporated with 1% of H. stigonocarpa oil had a higher thickness than the others. 
Aydogdu et al. (2020) found thinner thicknesses between 0.11-0.18 mm for guar gum as a polymer matrix 
incorporated with 1% and 2% of orange oil, emphasizing that the polymer and the oil concentration considerably 
influence this characteristic.  

According by Husseini et al. (2015) the biofilms is a crucial parameter on mechanical properties and water vapor 
permeability values. These results indicated that the addition of Hymenaea oils altered the thickness and 
microstructure of the films.  
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In the study of Kadzińska et al. (2020) the moisture content of the researched biofilms ranked from 15.49-
19.18% for the biofilms with coconut oil and rapeseed oil, respectively, with sodium alginate polymer matrix. In 
the study by Niknam et al. (2019) the researchers obtained a thickness of biodegradable films inferior to that of 
this study, ranging from 0.12-0.19 mm incorporated in different oilseed oils (olive, canola and maize). It is 
noteworthy that the polymer matrix differs from this study, where each biopolymer has a unique behavior. 
According by Peres-Mateos et al. (2009) and Niknam et al. (2019) addition of fixed oil to the biofilm matrix may 
lead to the replacement of strong polymer-polymer interactions with weak polymer-oil interactions and thus 
increasing the biofilm volume which in turn cause to increasing of the biofilm thickness. 

As for the moisture content, biofilms are directly dependent on the oil concentration in both Hymenaea species. 
Although there are no standards for moisture content in biofilms in organs regulatory bodies of food products, 
the packages obtained in this study had similar moisture percentages observed in other studies (Niknam et al., 
2019) and were considered low. Biodegradable packaging with starch-based polymers, gelatine, gum and 
chitosan have different moisture content, this is observed in the study by Niknam et al. (2019) where researchers 
found moisture content ranging from 22.46-15.05%. Galus et al. (2016) obtained higher moisture content than in 
this study evaluating whey protein biofilms incorporated with rapeseed oil between 16.8-17.9%. 

Solubility is an important property of edible biofilms as they are used as protective layers on food. In its various 
uses, potential applications may require water insolubility for harmonic interactions between product integrity 
and water resistance (Hosseini et al., 2015), with this it is observed that, a variation between solubility results 
between the control biofilm and other concentrations of both oils. Biofilms incorporated with higher 
concentration of 1% oil did not show significant difference according to statistical analysis, although it is 
observed that FOHs and FOHc 1% had the lowest solubility. Similar results were obtained in the study by Galus 
et al. (2016) evaluating whey protein biofilms incorporated with rapeseed oil between 37.4-42.4%. 

 

Table 1. Thickness, moisture and solubility of arrowroot biofilms incorporating fixed oil of Hymenaea 
stigonocarpa and Hymenaea courbaril 

Biofilm Thickness (mm) Moisture (%) Solubility (%) 

Control 0.23±0.01f 15.01±0.59a 51.07±2.26a 

FOHs 0.25% 0.25±0.01ef 12.35±0.92c 49,35±1.57ab 

FOHs 0.50% 0.28±0,01d 10.55±0.56d 46.88±1.29b 

FOHs 0.75% 0.40 ±0.02b 8.21±0.91e 39.34±1.84c 

FOHs 1% 0.43±0.01a 5.14±0.60f 35.35±2.10d 

FOHc 0.25% 0.24±0.01f 13.73±0.50b 49.93±1.92a 

FOHc 0.50% 0.26±0.01e 11.65±0.49c 46.86±1.76b 

FOHc 0.75% 0.29±0.02d 8.84±0.32e 40.74±1.40c 

FOHc 1% 0.32±0.03c 5.69±0.43f 34.10±2.18d 

Note. Different letters in a column show significant difference (p < 5%) Duncan’s test. FOHs: Fixed oil 
Hymenaea stigonocarpa. FOHc: Fixed oil Hymenaea courbaril. 

 

Regarding the colors of developing biofilms (Figure 1, A-B), there is a decrease in the light transmittance rates 
of biofilms that incorporate different doses of fixed oil of H. stigonocarpa and H. courbaril in the visible region 
(850 at 250nm). Light transmission rates were higher at lower concentrations when compared to the control. 
Concentrations between 0.75-1% showed low transparency rates, especially for biofilms incorporated with oil of 
H. stigonocarpa due to the opacity promoted by the emulsion incorporated with large volumes of oil. The 
according Pereda et al. (2012) and Galus and Kadzińska (2016) the transparency of emulsion-based biofilms is 
related to their internal structure, which is affected by the fixed and essential oil and droplet size distribution in 
biofilm-forming emulsions and its rearrangement during drying. Galos and Kadzińska (2016) also emphasizes 
the solvent termical evaporation during drying induces changes in the emulsion structure by destabilization 
phenomena such as creaming and aggregation, which have important role in the visual and optical properties of 
emulsion-based biofilms. 

According to Santos et al. (2020), Rambabu et al. (2019) and Romani et al. (2018), the color is an important 
parameter to be evaluated, as it directly influences the acceptance of the product by consumers. Biofilms used as 
packaging generally have a high transparency rate so that the product can be seen by the consumer as fruits, 
vegetables and legumes. However, opaque or colored biofilms offer potential protection, especially to foods 
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Table 2. Measurements of biofilm colors incorporating fixed oil of Hymenaea stigonocarpa and Hymenaea 
courbaril 

Biofilm L* a* b* 

Control 14.59±0.24h -0.71±0.09e -0.91±0.05e 

FOHs 0.25% 16.43±0.07g -0.70±0.05e -0.93±0.02e 

FOHs 0.50% 18.21±0.48e -0.71±0.05e -1,26±0.08f 

FOHs 0.75% 17.65±0.16f -0.57±0.03d -0.96±0.04e 

FOHs 1% 30.29±0.12b -0.54±0.01d 0.40±0.01a 

FOHc 0.25% 26.13±0.55c -0.24±0.01a -0.50±0.04d 

FOHc 0.50% 31.35±0.03a -0.32±0.01b -0.23±0.10c 

FOHc 0.75% 22.89±0.01d -0.39±0.04b -0.56±0.05d 

FOHc 1% 30.24±0.01b -0.47±0.02c 0.23±0.06b 

Note. Different letters in a column show significant difference (p < 5%) Duncan’s test. Parameters CIELab of 
color L* (luminosity), a* and b* (chromaticity). (±) mean standard deviation. FOHs: Fixed oil of Hymenaea 
stigonocarpa. FOHc: Fixed oil of Hymenaea courbaril. 

 

Biodegradation can be designated as degradation occurring in a in nature biological environment, where 
microorganisms (fungi and bacterial), moisture (RU%) and enzymes are responsible by degrading biopolymers 
(Fernandes et al., 2020). The biodegradability test (Figure 2), evaluates how much in percentage the biopolymers 
incorporated with varying concentrations of H. stigonocarpa and H. courbaril oil influence over time in the soil. 
It is observed that the lowest oil concentrations (0.50%) for both species statistically presented biodegradability 
results close to the standard. Concentrations between 0.75 and 1% for H. stigonocarpa showed statistically 
similar degradation effects. All concentrations except 1% had a biodegradability rate greater than 90% for this 
study. 

After the 25-day analysis, the hollow polyethylene packages that contained arrowroot starch films were removed 
from the soil. Thus, the conclusion may be the fact that incorporation of fixed oil into films does not decrease 
biodegradability of arrowroot starch, which may be considered a promising material for biodegradable 
packaging (Santos et al., 2020). Several studies show biodegradability time longer than 30 days (Seligra et al., 
2016), Fernandes et al. (2020) obtained a time greater than 40 days in the soil biodegradation test for chia 
mucilage biofilm incorporated with chia oil. Arancibia et al. (2014) evaluated the biodegradability in topsoil for 
biofilms of a mixture of soy protein lignin with citronella essential oil, where they obtained a rate of reduction in 
the mass of the biopolymer over six months. It is suggested that the degradation period is influenced by the type 
of polymer, incorporation, moisture and degree of crosslinking, this is also suggested by Arancibia et al. (2014) 
and González et al. (2011). Where a low degree of crosslinking makes biopolymers more degradable in a shorter 
period. 

As reported by Pantini and Sorrentino (2013) denser and more crystalline structures are expected to have a 
slower degradation rate compared to amorphous structures once it affects the water diffusion into de biofilm 
structure. The rapid degradation of the films in this study demonstrates this thesis proposed by the researchers, 
suggesting that the crystalline structure of arrowroot starch biofilms are less dense and easier to degrade in an 
environment with uncontrolled climatic effects. 
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Figure 4. FTIR-ATR spectra of the arrowroot biolfims incorporated with fixed oil Hymenaea stigonocarpa (A) 

and Hymenaea courbaril (B) 

 

Biofilms incorporated with concentrations above 0.50% showed antifungal activity on all evaluated 
phytopathogens. However, the 1% concentration proved to be more effective inhibiting the development of fungi, 
especially for C. acutatum, C. gloeosporioides, A. niger and R. stolonifer (Table 3) for FOHs and FOHc. When 
compared to standard antifungals, the Duncan test (p < 5%) demonstrates a statistical difference between 
concentrations and standards. It is noteworthy that the antifungals Frowncide 500 SC and Amphotericin B are 
synthetic molecules and the Botector is a conjugation of microorganisms, which is a biological antifungal. 

Control biofilm exhibited no antimicrobial activity, as expected. It is suggested that the different inhibition 
activities on the evaluated fungi are involved in the structural characteristics of the cell wall. Arruda et al. (2019) 
also suggests such a statement because the complex structure of this wall is constituted by polysaccharides, 
linked or not to proteins or lipids, polyphosphates and inorganic ions. Although the results of this study 
demonstrate that the use of both oils from Hymenaea species are promising for the alternative control of these 
phytopathogens when used in biodegradable packaging. 

The study with fixed oils incorporated in biopolymeric matrices is scarce in the literature. Although there are 
studies evaluating the lipid fraction extracted from numerous vegetables on different forms of pathogenic and 
phytopathogenic fungi. Aydogdu et al. (2020) found potential antibacterial activity against Escherichia coli and 
lower inhibition activity against Bacillus subtilis in conc. 1%, and higher activity in conc. 2%.  

Arruda et al. (2019) did not find antifungal activity on Rhizoctonia solani and Sclerotium rolfsii evaluating the 
fixed oil of Jatropha curcas seed. Ali et al. (2017) developed nanoemulsions incorporated with neem and 
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citronella oils where they found important phytopathogenic activity on R. solani and S. rolfsii. Passos et al. (2002) 
report in a study using Caryocar brasiliense seed and almond oil high antifungal action on Cryptococcus 
neoformans in conc. 15.6 µg mL-1, where the seed oil showed 21.1% inhibition, and 62.5 µg mL-1 with 10.5% 
for the almond oil. 

 

Table 3. Antifungal activity of biofilms incorporated with fixed oil of Hymenaea stigonocarpa and Hymenaea 
courbaril at different concentrations on phytopathological microorganisms 

Microorganisms 
Inhibition Zone (mm) Concentrations (%) FOHs 

Standard antifungal
Control 0.25% 0.50% 0.75% 1% 

C. acutatum 0.00±0.00d 0.00±0.00d 0.00±0.00d 6.34±0.09c 8.17±0.08b 100±0.00a 

C. gloeosporioides 0.00±0.00d 0.00±0.00d 0.00±0.00d 8.53±0.04c 10.85±0.09b 100±0.00a 

A. tubingensis 0.00±0.00c 0.00±0.00c 0.00±0.00c 0.00±0.00c 6.57±0.43b 100±0.00a 

A. fumigatus 0.00±0.00c 0.00±0.00c 0.00±0.00c 0.00±0.00c 6.22±0.29b 100±0.00a 

A. niger 0.00±0.00d 0.00±0.00d 0.00±0.00d 7.89±0.98c 13.28±0.99b 100±0.00a 

R. stolonifer 0.00±0.00e 0.00±0.00e 7.62±0.52d 9.39±0.68c 14.42±0.86b 100±0.00a 

Microorganisms 
Inhibition Zone (mm) Concentration (%) FOHc 

Standard antifungal
Control 0.25% 0.50% 0.75% 1% 

C. acutatum 0.00±0.00d 0.00±0.00d 0.00±0.00d 6.15±0.08c 10.10±0.07b 100±0.00a 

C. gloeosporioides 0.00±0.00c 0.00±0.00c 0.00±0.00c 4.63±0.09b 5.47±0.07b 100±0.00a 

A. tubingensis 0.00±0.00b 0.00±0.00b 0.00±0.00b 0.00±0.00b 0.00±0.00b 100±0.00a 

A. fumigatus 0.00±0.00c 0.00±0.00c 0.00±0.00c 0.00±0.00c 7.41±0.08b 100±0.00a 

A. niger 0.00±0.00c 0.00±0.00c 0.00±0.00c 0.00±0.00c 9.77±0.04b 100±0.00a 

R. stolonifer 0.00±0.00d 0.00±0.00d 6.15±0.07c 7.42±0.09c 11.07±0.09b 100±0.00a 

Note. Different letters in a line show significant difference (p < 5%) Duncan’s test. 

 

4. Conclusion 

This study revealed that fixed oil from the seed of Hymenaea stigonocarpa and Hymenaea courbaril have great 
potential for application in the manufacture of bioactive packaging. Both oils have antioxidant activity. The 
presence of oleic, linoleic, palmitic and myristic acids was observed in the samples. Physicochemical 
observations related to the incorporation of fixed oil of H. stigonocarpa and H. courbaril into arrowroot biofilms 
led to increase in thickness, decrease in moisture, solubility em transparency, and change in color as its 
concentrations increased. 

Biofilms also showed variation according to the increase in oil concentration over the percentage of 
biodegradability, in the structural morphology of the surface area with bubbles at concentrations above 0.75%, 
functional groups are in accordance with expectations, and antifungal activity was also observed on 
Colletotrichum, Aspergillus and Rhizopus. 
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