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Abstract 
 

A study of a non-linear parabolic SPDEs of the form wtBfuuu x
tt

),()(=  L  with w  as the 

space-time white noise and ),( tBf x
t  a space-time harmonic function was done. The function 

RR :  is Lipschitz continuous and L  the 
2L -generator of a Lévy process. Some precise condition 

for existence and uniqueness of the solution were given and we show that the solution grows weakly(in 

law/distribution) in time (for large t ) at most a precise exponential rate for the L ; and grows in time at 

most a precise exponential rate for the case of (1,2],)(= /2  L  generator of an alpha-stable 

process.  
 

 
Keywords: Stochastic heat equations (she); space-time harmonic function; hitting time; Hermite 

polynomials; Doob’s maximal inequality.    
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1 Introduction 
 
The study of stochastic heat equations with space-time white noise has received quite a lot of interests, see 
[1-4] and [3-8], to mention but a few. Here, we study a long-time behaviour of a class of stochastic heat 

equation perturbed with a multiplicative space-time harmonic function of ),( tBf x
t  type. The space-time 

harmonic functions are closely related to a class of martingales that are instantaneous functions of tX . That 

is, every space-time harmonic function f  gives rise to a martingale with respect to a probability measure. 

Thus given a process ),(, tXfX tt  is a martingale with respect to a probability measure )(d  . Space-

time harmonic functions have their application in determining the growth properties of a branching process 

[9]. They also play a central role in constructing Schr o dinger bridges for Markov chains. An example of the 

space-time harmonic function is the Brownian bridge given by ))/2(1(exp1:=),( 2 txttxf  . 

Martingale on the other hand plays a crucial role in the Black-Scholes formula. The continuous-time 

stochastic process tS  given below describes the price of the stock (stock price process) at time t , 0S  the 

current stock price, known to all investors at 0=t :  
 

][0,],/2)[(exp= 2
0 TtBtSS tt    

 
or equivalently  
 

][0,,/2)(=log 2

0

TtBt
S

S
t

t    

 

the "log-normal" or "geometric Brownian motion" where tB  denotes a Brownian motion, the mean   

denotes the "drift term" and   the volatility. The stock price tS  can be thought of as an exponential of 

Brownian motion with drift term. That is, the geometric Brownian motion models a stock price. It has the 
following martingale property (known as its expected growth):  
 

.e=Ee0,,e=E /22

0
ttBt

t sincetforSS  
 

 
In [10], the authors studied space-time harmonic functions of both Brownian and Gamma-types and their 
applications to finance. Due to the importance and applications of the martingale-valued harmonic 
function(processes), for example, Variance-Gamma (VG) process is used as a model for asset returns (log-
price increments) and options pricing; we are motivated to investigate a long-time influence and effect of the 
space-time harmonic functions for Brownian motion on a class of stochastic heat equation. 
 
Now consider a parabolic heat equation perturbed with a multiplicative space-time harmonic function.  
 

),,(),()),((),(=),( xtwtBftxutxutxu x
tt

 L                                                                 (1.1) 

 

 with the non-random initial condition )(=0),( 0 xuxu , RR :  a Lipschitz continuous function and  

 

).(d=),( 
t

x
t MtBf R  
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Here, 
x
tB  does not stand for a Brownian motion starting from x , rather a notation specifying space 

dependence x . Most times, we write ),( tBf t  without the space variable x . The aim of this article is to 

study how the solution u  is influenced by the interaction or competition between the generator of a 

semigroup L  which has a smoothing effect, the martingale measure and the noise potential )dd( txw , 

which makes the solution spatially irregular. This is a long-time behaviour of a system exhibiting an 
intermittency effect and we show that existence of the solution is closely related to its growth.  
 

Definition 1.1: [10] Let 0),(= tXX t  be a real-valued stochastic process, we say that 

RRR  :f  is a space-time harmonic function if 0}),,({ ttXf t  is a martingale (with respect 

to the filtration of X ).  
 
Here, follows our representation of the harmonic function (see [10] for details on space-time harmonic 
functions):  
 

Theorem 1.2: Every R -valued space-time harmonic function of 0),( tBt  such that 1=0)(0,f , may 

be written as  
 

),
2

(exp)(d=),(
2

tBtBf tt


 R

 
 

for some probability measure )(d   on R .  

 

 The process )
2

(exp=
2

tBM tt


   known as an exponential martingale has its natural appearance in the 

expression of the Randon-Nikodym densities with the following property:  
 

0.1,=][E=][E 0  tMM t


 
 

 One approach to solving the problem is to express 

tM  in the following classical series expansion  

 

),(
!

=)
2

(exp
0=

2

tBH
n

tB tn

n

n
t


 




 

 

where )(=),( /2

t

B
httBH t

n
n

tn  with )( nh  the Hermite polynomials and ),( tBH tn  a martingale and 

seek for an approximation of the hermite polynomial.  
 

Definition 1.3: Hermite polynomials )( nh  on R  is given by  

 

....1,0,=,e
d

d
e1)(=)( /22/22

nfor
x

xh x

n

n
xn

n

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The first few terms are  
 

etcxxxhxxhxxhxh ,3=)(1,=)(,=)(1,=)( 3
3

2
210   

 

 with the following recursive formula )()(=)( 11 xnhxxhxh nnn    and the generating function 

).(
!

=e
0=

/22
xh

n

t
n

n

n

ttx 


 Alternatively, one gives the generating identity of the Hermite functions )(xhn  

as follows ).(
!

=e
0=

)2/22( xh
n

t
n

n

n

txtx 


 They satisfy the so called "creation" and "annihilation" 

identities  
 

0),(=)()
d

d
()(=)()

d

d
( 11   nxhxh

x
xandxhxh

x
x nnnn

 
 

where /22

1
/22

01 e2=)(,e=)(0,=)( xx xxhxhxh 
 , etc. Generally,  

 

,e)(=)( /22x
nn xPxh 

 
 

where nP  is a polynomial of degree n . The existence and uniqueness of the solution requires a bound on the 

polynomial function nP  for all n . We will follow rather a different approach in this paper.  

 
The outline of the paper is given as follows. Section 2 is the formulation of the problem and the main results 
of the paper, section 3 surveys some preliminary concepts used. Auxiliary results which comprise of 
Lemma(s) and Propositions that will be used in the proofs of the results are given in section 4. Proofs of 
main results: existence and uniqueness result and growth bounds are given in the last section.  
 

2 Formulation and Main Results 
 
For existence and uniqueness, we need the following condition on  . The condition states that   is 
globally Lipschitz in its variable.  
 

Condition 2.1:  There exist a finite positive constant, Lip  such that for all Ryx, , we have  

 

.||Lip|)()(| yxyx                                                                                                   (2.1) 

 
We will make use of Walsh’s integral in [2] and follow the steps of [1].  
 

Definition 2.2: We say that a process 0>,)},({ txxtu R  is a mild solution of (1.1) if a.s, the following is 

satisfied  
 

)dd(),()),((),,())((=),(
0

0 sywsBfsyuyxstpxuPtxu y
s

t

t   R                               
 (2.2) 

 

where .).,,(tp  is the heat kernel. If in addition to the above, 0>,)},({ txtxu R  satisfies the following 

condition  
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,<|),(|Esupsup 2

0




txu
xTt R

                                                                                                         (2.3) 

 

 for all 0>T , then we say that 0>,)},({ txtxu R  is a random field solution to (1.1).  

 
 Define  
 

,0>allfor
)(e2

d

2

1
:=)( 









  RR

                                                    (2.4) 

 

where   is the characteristic exponent for the Lévy process. A result of Dalang [3] shows that equation 

(1.1) has a unique solution with the requirement that  <)(  for all 0> . Fix some R0x  and 

define the upper p  th-moment Liapunov exponent )( p  of u  [at 0x ] as  

 

  .),(0pallfor),(Eln
1

limsup:=)( 0 


p

t

txu
t

p                                                        (2.5) 

 
 See [1] and its references for details on intermittent property. We will assume the following condition:  
 

0:=sup)(d=),(




  ssss MMMsBf
RR 

  

 

for a fixed 0  finite. Consequently,  

 

).dd()),((),,(sup))((),(
0

0

<<0
0 sywsyuyxstpMxuPtxu

t

s
ts

t 


  R
 

  
Theorem 2.3:  Equation (1.1) admits a mild solution u  that is unique up to a modification, satisfying the 

following: For even integers 1>p ,  

 

},

1)/2))((exp)
1

(Lip(

1
<)

2
(:0>{inf)(

2
0

2
0 





pt
p

p
Czp

p

p 






 

 

where pz  is the constant given in [1]. Next, we estimate bound on growth moment and show that our 

solution grows exponentially. For the lower bound result, we will need the following extra condition on  . 
 

Condition 2.4:  There exist a positive constant, L  such that for all Rx , we have  

 

|||)(| xLx                                                                                                                              (2.6) 
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Theorem 2.5: If we further assume that condition 2.4 holds and 0>)(inf 0 xux R , then in law (in 

distribution) we have:  
 

0,>)
1

((2)
2

1

K


 
 

 where }>)(:0>{sup:=)(1 tt  
 and .)

2

||
(exp= 2222 a
aCL K  

 
To prove the lower bound for the solution, we consider a heat equation of the form  
 

),
2

(exp)(d),(),((),(=),(
2

tBxtwtxutxutxu tt


  RL

                                     
 (2.7) 

 

 with the non-random initial condition )(=0),( 0 xuxu . For explicit and easy computation, we will take 

)(d  , the probability measure of a normalized (standardized) Gaussian random variable:  

 

0.>,d/2)(exp=)(d 2 CC    
 
The solution to equation (2.7) is given by  
 

yyuyxtptxu d)(),,(=),( 0R  

             ).dd(d))(1
2

(exp)),((),,(
2

0
sywsBsyuyxstpC s

t




   RR
 

 
The approach we will adopt to making sense of our solution is in terms of a stopping time, particularly (and 
more importantly in terms of applications) a hitting time of a Lévy process. Let a new process 

0),(= ttXX T  be defined by TtTT XXtX =)( , (see [11]).  

 

Theorem 2.6: (Strong Markov property) If X  is a Lévy process and T  is a stopping time, then on 

)<( T ,   

 

1.   TX  is a Lévy process that is independent of TF ,  

2.   For each 0t , tTT XtX =)(  has the same law as tX ,  

3.   TX  has cádlág paths and is tTF - adapted.  

  

Remark 2.7: Stating the above theorem for the hitting time aT  of level a '  of a process tB .   

 

1.   For each 0t , tTB   has the same law as tB .  

  

Definition 2.8: (Hitting Times) Let Ra  and define  
 

}.=:0{inf:= aBtT ta 
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The random variable aT  is called the first hitting time of level '''' a  by a Brownian motion.  

  

Proposition 2.9: [12,13] Let aT  be the first hitting time. Then 1=)<( aTP  and =][E aT . 

Moreover,  
 

0.),2||(exp=)](exp[E   aTa  

 

Remark 2.10: On the set }<{ aT , we have that aBB
aTaTt =  when t , hence  

 

).
2

(exp)
2

(exp
22

at TatB





   

 

In what follows, we consider the case of 
/2)(= L ,  (1,2]  a generator of an alpha-stable Lévy 

processes and use some explicit bounds on its corresponding fractional heat kernel to obtain more precise 
results. It helps to understand the full behaviour of the solution and to have an explicit estimate for the 

generator of the process. We present some required properties of ),( xtp  which come in handy in the proof 

of our results [14, 15].  
 

Lemma 2.11: [15] Suppose that ),( xtp  denotes the heat kernel for a strictly stable process of order  . 

Then the following estimate holds.  
 

.,and0>allfor
||

),,( / d

d

d yxt
yx

t
tyxtp R











 

  

Here and in the sequel, for two non-negative functions gfgf ,,  means that there exists a positive 

constant 1>c  such that gcfgc 1
 on their common domain of definition. Below is the upper 

growth bound of the solution.  
 

Theorem 2.12:  There exist constants c  and c  such that  
 

0,>allfor))
1

((exp|),(|Esup 1)/(2 tt
p

p
cctxu p

x



 
 

R  
 

where the constant c depends on 0, p  and 0t .  

  

3 Preliminaries 
 

 Let )P,,( F  be a probability space. Let tB  be a real-valued random process with index set 

)[0,= R  and consider ),(:= RR  C , the space of real-valued continuous functions on R , 

equipped with the following metric  
 

1.|)()(|sup
2

1
:=),(

||00




 xgxfgf
kx

k
k


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The filtration tF  is given as a subset of the algebra, thus: ).(:= BF  Brownian motion is exponentially 

integrable with  
 

.e=]e[E:=)( /22ttBi 
 

 
 
Martingale is a very important concept in stochastic analysis because they describe fair games. It is a process 

where the current state tX  gives the best prediction for its future state. We state one important fact about 

martingales. See [11, 12, 13] for details.  
 

Lemma 3.1: (Doob’s Maximal Inequality) Suppose 0},{ tX t  is a continuous sub-martingale and 1>p .  

Then for any 0t ,  
 

1>],[E)
1

(]sup[E
<<0

pX
p

p
X p

t
pp

s
ts 

  

 

provided 0sX , a.s P  for every 0s  and <][E p
tX .  

 

Let ttst BS sup= < .  

 

Proposition 3.2: Then for 0>a ,  
 

/2).(exp][P 2taatSt   

 
Remark 3.3:  
 
We note the following identities:  
 

/2.=/2)(infsup/2)(exp 22

0>

2 tatatandMtS s
ts

t 






 

 
We now present the following renewal inequality from ([16], chapter 7). Here, we desire bound on the 
function involved rather than finding their asymptotic properties.  
 

Proposition 3.4: [4] Let 0>  and suppose )(tf  is a non-negative and locally integrable function 

satisfying  
 

0,>allford)()()( 1

0
1 tssfstctf

t
 


 

 

where 1c  is some positive number. Then we have  

 

0,>allfor)))(((exp)( 1/1/
32 ttcctf  

 
 

for some positive constants 2c  and .3c   
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4 Auxiliary Results 
 
 Define for 0>t , 
 

).dd()),((),,(sup=),)((
0

0

<<0

sywsyuyxstpMtxu
t

s
ts




 R
A  

 
We will also use the following norm:  
 

2.]|),([|Eesupsup:=
1/

0>
, 







 



pfortxuu
p

pt

xt
p




R

||||                                                     (4.1) 

 

Lemma 4.1: For all 0> ,  

 

).(dd|),,(|esup 2

00>

 
 syyxsp

t
t

t R
 

  
Proof.  
 

syyxspsyyxsp s
t

t

t

dd|),,(|edd|),,(|esup 2

0

2

00>

 




 
RR

 

                                         ssps dd|),(ˆ|e= 2

0


 R
 

                                         ).(=
)(e2

d
= 






 RR
 

  

Proposition 4.2: Suppose that u  admits a predictable version and that <,pu ||||  for 0> . Then 

there exists some positive constant pz  such that  

 

.)/(2|](0)|Lip1)/2)[((exp)
1

( ,0
2
0, pupt

p

p
zu ppp   


 ||||||A||  

 
 Proof.  
 

1))(
2

(exp)
1

(|),)((|E
2
0 


 p

tp

p

p
ztxu pp

p
p 

A
 

 

                            .)dd]|)),((|E[|),,(|( /22/2

0

ppp
t

syysuyxstp   R
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Therefore,  
 

pptxu 2/]|),)((|E[ A     

          .dd]|)),((|E[|),,(|1))((exp)
1

( 2/2

0

2
0

22 sysyuyxstppt
p

p
z pp

t

p  


  R
 

                 

          1))((exp)
1

( 2
0

22 


 pt
p

p
z p   

         sysyuyxstp pp
t

dd|](0)|]|),(|E[Lip[|),,(| 21/2

0
   R

 

         1))((exp)
1

( 2
0

22 


 pt
p

p
z p   

          .dd]|(0)|]|),(|E[Lip[|),,(| 22/22

0
sysyuyxstp pp

t

   R
 

  

Multiply through by )/2(exp pt , 

 
ppt txu 2/]|),)((|Ee[ A

 

              
)(/22

0
22 e1))((exp)

1
( stp

p pt
p

p
z 


   

              .dd]|(0)|]|),(|E[Lip[e|),,(| 22/2/22

0
sysyuyxstp ppps

t


  

 R
 

 

It follows that for fixed 00 t   
 

]|(0)||Lip1))[((exp)
1

( 22
,

2
0

2
0

222
,   


 ppp upt

p

p
zu ||||||A||  

    syyxstpstp
t

tx

dd|),,(|esupsup 2)(/2

00

 






RR

 

    ]|(0)||Lip1))[((exp)
1

( 22
,

2
0

2
0

22   


 pp upt
p

p
z ||||  

    sspps dd|),(ˆ|e 2/2

0




 R
 

   )./(2]|(0)||Lip1))[((exp)
1

(= 22
,

2
0

2
0

22 pupt
p

p
z pp   


||||  

  

Proposition 4.3:  Let 0>  and let u  and v  be two predictable random field solutions satisfying 

 <,,  pp vu |||||||| . Then  

 

.)/(2||1)/2)((exp)
1

(Lip|| ,0
2
0, pvupt

p

p
zvu ppp   


 ||AA||  

  

Proof. We continue in similar manner as above.  
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pptxvtxu 2/]|),(),)((|E[ AA   

                                       1))((exp)
1
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5 Proofs of Main Results 
 
The proofs of the main results of this paper are outlined.  
 

5.1 Existence and uniqueness 
 
Firstly, we establish the existence and uniqueness of equation (1.1) under linear condition on  .  
 
Proof of the existence and uniqueness part of Theorem 2.3. We prove the existence of the solution by an 

iterative schemes. Let’s define )(:=),( 00 xutxv  for all 0t  and .Rx  Since 0u  is assumed to be 

bounded, so <,0 pv ||||  for all 0> . Iteratively, we set  
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A

A
 

 

 From the above, we have that for sufficiently large 
,
  

 

.)(= ,,1  pnpn vv ||AA||||A||   

 
 Then by Proposition 4.2, we have that  
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 (5.1) 

                                                   )/(2|](0)||Lip[ , pv pn   ||A|| . 

 

 Since 0=)(lim   , then we can always choose and fix 0>  such that  

 

1<Lip)/(21<Lip)/(21)/2)((exp)
1

( 22
0

2
0   pQppt

p

p
z pp 


 

  

where 1)/2)((exp)
1
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2
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From (5.1) we have .)/(2Lip)/(2 ,,1 pQvpQv ppnppn    ||A||||A||  Taking sup  of 

both sides over n , therefore,  
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Rest of the proof of the existence result follows from the proof of Theorem 3.1.1 of the thesis [13]. For the 

proof of the uniqueness of the solution up to modification. Let 1u  and 2u  be solutions and assume for 

contradiction that 21 uu   such that  
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Therefore, 0.>,= ,21,21  pp uuuu ||AA||||||   Then by Proposition 4.3 we have that 

,)/(2Lip ,21,21   ppp uupQuu ||||||||  and 0.])/(2Lip[1,21  pQuu pp ||||  

This implies that 0,21  puu ||||  (since 0>)/(2Lip1 pQp   ) which implies that 

0,=,21 puu ||||   and follows that 21 = uu . This contradicts the assumption that 21 uu  , hence 

21 = uu  and thus a unique solution. Therefore 1u  and 2u  are modification of each other. The proof of the 

upper bound result of the theorem follows similar argument as in the proof of Theorem 2.5 below.  
  

5.2 Growth bounds 
 
 Here we give bounds on the growth of the second moment of the equation.  
 
Proof of Theorem 2.5. The proof suffices for us to show that  
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Apply Laplace transforms to both sides for all 0>  and Rx , and using the fact that |||)(| uLu   ,  
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Then iteratively, we have 
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and the result follows by proposition 3.4.  
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6 Conclusion 
 
 For the class of equation considered in [1,17], it is known that as time t  goes to infinity, the second moment 

of the solution 
2|),(|E txu  grows like )(exp tconstant  whenever the initial condition )(0 xu  is 

bounded below; in the same light, we were able to prove the energy growth (second moment growth) of the 

solution to our class of equation for large time t  only in law (in distribution) for the case of a general 
2L  

generator of a Lévy process and say that our solution has a weak (exponential) energy growth for large t . 

For the case of 
/2)(  , the generator of an isotropic stable process, not only did we estimate the p  th 

energy growth bound for all 1>p , but were able to give precise exponent of the exponential growth bound 

in terms of  . We also established its existence and uniqueness for all 1>p . A further work is to 

investigate the moment growth property for the gamma-type space-time harmonic function which is also a 
martingale.  
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