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Abstract

The aim of this paper is to present some common fixed poiotehes for g-monotone maps involving
rational expression in the framework of S-metric spaaetowed with a partial order using a clasg of
pairs of functions satisfying certain assumptions.
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1 Introduction and Preliminaries

Metric spaces are very important in mathematics antleapgciences. So, some authors have tried to give
generalizations of metric spaces in several ways. kample, Gahler [1] and Dhage [2] introduced the
concepts of 2-metric spaces dbemetric spaces, respectively. In 2006, Mustafa and $inistroduced a
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new structure of generalized metric spaces which atedo@tmetric spaces as a generalization of metric
spacegX, d) to develop and introduce a new fixed point theory for varioappings in this new structure.
Sedghi et al[4] introduced the notion of A*-metric space.

Das and Gupta [5] proved the following fixed point theorem.

Theorem 1.1: (see [5]) Let(X,d) be a complete metric space ghd — X a mapping such that there exist
a, B = 0 with a + B < 1 satisfying

d.fy)[1 +d(x.fx)]
d(fx, fy) < @ 2L

+ Bd(x,y) (1.1)
for all x,y € X. Thenf has a unique fixed point iXi.
For more details on fixed point results with rationalrespions, see [6-8].

Cabrera et al. [9] proved Theorem 1.1 in the context of pgrtedered metric spaces.

Definition 1.2 (see [9]) Let(X, <) is a partially ordered set ajfid X — X is said to be monotone non-
decreasing if for alk,y € X,

x2y = fx = fy. 1.2

Theorem 1.3: (see [9]) Let(X, X) is a partially ordered set. Suppose that there exist acrdetn X such

that (X, d) be a complete metric space. lfeX — X be a continuous and non-decreasing mapping such that
(1.1) is satisfied for alt,y € X with x < y. If there existr, € X such that, < fx,, thenf has a fixed
point.

Theorem 1.4: (see [9]) Let(X, X) is a partially ordered set. Suppose that there exist acrdedn X such

that (X, d) be a complete metric space. Assume thd,jf} is non-decreasing sequenceXirsuch that

x, = u, thenx,, < u, for alln € N. Letf: X = X be a non-decreasing mapping such that (1.1) is satisfied
for all x,y € X with x < y. If there existx, € X such that, < fx,, thenf has a fixed point.

Theorem 1.5: (see [9]) In addition to the hypothesis of Theorem 1.3 or Emdr.4, suppose that for every
x,y € X, there exist: € X such thatt < x andu < y. Then T has a unique fixed point.

In this paper, we establish some common fixed point theofermy-monotone mappings involving rational
expression in the framework of S-metric spaces endowed wthrtéal order using a class of pairs of
functions satisfying certain assumptions.

Sedghi et al. [10] introduced a new generalized metric spdled eam S-metric space.

Definition 1.6: (see [10]) LetX be a non-empty set. An S-metric ¥iis a functionS: X3 — [0, +) that
satisfies the following conditions, for eaghy, z,a € X,

(S1). S(x,y,2) = 0;
(S2). S(x,y,z) = 0ifand only ifx = y = z;
(S3). Sx,y,2) < S(x,x,a) + S(v,y,a) + S(z,z,a).

ThenS is called ars-metric onX and(X, S) is called ars-metric space.

The following is the intuitive geometric example fametric spaces.



Bohre et al.; ARJOM, 1(5): 1-16, 2016; Article nRJOM.28960

Example 1.7: (see [10], Example 2.4)et X = R? andd be the ordinary metric oX. PutS(x,y,z) =
d(x,y) + d(x,z) + d(y,z) forallx,y € R?, that is,S is the perimeter of the triangle given by, z. Then
S is anS-metric onX.

Lemma 1.8: (see [10], Lemma 2.5)et (X,S) be an S-metric space. Th&(x,x,y) = S(y,y,x) for all
x,y € X.

Lemma 1.9: (see [11], Lemma 1.6)et (X,S) be anS-metric space. TheSf(x,x,z) < 2S(x,x,y) +
S(,y,z) and S(x,x,2) < 2S(x,x,y) + S(z,z,y) forallx,y,z € X.

Definition 1.10: (see [10]) LetX be anS-metric space.

(). A sequencdx,}r-, c X converges ta if and only iflim,_. S(x,,x,,x) = 0. That is for each
€ > 0 there existsn, € N such that for alln > ny, S(x,, x,,x) <€ and we denote this by
lim, . x, = x.

(i). A sequencéx,}y_; c X is called a Cauchy tim,, ., S(x,, x4, xp,) = 0. That is, for eacla > 0
there exists, € N such that for allm = ny, S(x,, x,, x) < €.

(iii). X is called complete if every Cauchy sequenck is a convergent sequence.

From (see [10], Examples in page 260), we have the following
Example 1.11:

(a). LetR be the real line. Thesi(x,y,z) = |x — z| + |y — z| for allx,y,z € R, is anS-metric onR.
This S-metric is called the usudl-metric onR. Furthermore, the usu8l-metric spaceR is
complete.

(b). LetY be a non-empty set &. ThenS(x,y,z) = |x—z| +|y—z| for allx,y,z€Y, is an S-
metric onY. If Y is a closed subset of the usual metric sfRcehen the S-metric spadeis
complete.

Lemma 1.12: (see [10], Lemma 2.11) L€#,S) be an S-metric space. If the sequeficgi—; in X
converges ta, thenx is unique.

Lemma 113: (see [10], Lemma 2.12) Let (X,S) be an S-metric space. If
limy,_, o Xy, = x andlim,,_, ., y, = y, thenlim,,_, ., S(x, X, Yn) = S(x, x, y).

Remark 1.14: (see [11])It is easy to see that eveby-metric (see [4]) is S-metric, but in general the
converse is not true, see the following example.

Example 1.15: (see [11])LetX = R™ and||.]|| a norm orX, thenS(x,y,z) = |ly + z — 2x|| + |ly — z|| is
S-metric onX, but it is notD*-metric because it is not symmetric.

The following lemma shows that every metric spaceiS-anetric space.
Lemma 1.16: (see [11], Lemma 1.10)et (X, d) be a metric space. Then we have
1. S;(x,y,z) =d(x,z) +d(y,z) forallx,y,z € X is an S-metric oiX.
2. lim,_,,x, =xin(X,d) if and only iflim,_, ., x, = x in (X, Sy).
3. {x.}%-, is Cauchy in(X, d) if and only if{x,}5-, is Cauchy in(X, S;).
4. (X,d) is complete if and only ifX, S;) is complete.

In 2012, Sedghi et al. [10] asserted that an S-metdagieneralization of a G-metric, that is, every Grioet
is an S-metric, see [10, Remarks 1.3] and [10, RemarksTh2]Example 2.1 and Example 2.2 of Dung et
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al. [12] shows that this assertion is not correct. Mogeothe class of all S-metrics and the class of all G-
metrics are distinct. For more results on S-metric spaees[11-12].

In this paper, we consider the following class of paifsin€tionsg.

Definition 1.17: (see [13]) A pair of functionp, ¢) is said to belong to the clags if they satisfy the
following conditions:

(b1). ¢, ¢:[0,00) = [0,0);

(b2). fort,s € [0,%), @(t) < ¢(s) thent < s;

(b3). for {t,} and{s,.} sequence ifi0, ) such thatlim,,_,, t, = lim,_ s, = a, if p(t,) < ¢(s,) for
anyn € N, thena = 0.

Remark 1.18: (see [13], Remark 4) Note that(ip, ¢) € F ande(t) < ¢(t), thent = 0, since we can take
t, = s, = t for anyn € N and by (b3) we deduce that= 0.

Example 1.19: (see [13], Example 5) Let : [0,0) — [0,) be a continuous and increasing function such
thate(t) = 0 if and only ift = 0 (these functions are known in the literature as algedistance functions).

Let¢ : [0,0) — [0,0) be a non-decreasing function such ét) = 0 if and only ift = 0 and suppose
that¢ < ¢. Then the paifp, ¢ — ¢) € &.

An interesting particular case is wheris the identity mappingp = 1y, ande: [0,) — [0, ) is a non-
decreasing function such thagt) = 0 if and only ift = 0 and¢(t) < t for anyt € [0, ).

Example 1.20: (see [13], Example 6) L&be the class of functions defined by
S ={a:[0,0)>1[0,1):{a(t,) > 1= t, = 0}}

Let us consider the pairs of functiofi§, .y , @1o;), Wherea € S andalyy,; is defined by(a1jy.,))(t) =
a(t)t, fort € [0,0). Then(1jy., , aljo.)) € F.

Remark 1.21: (see [13], Remark 7) Suppose tpat[0,o) — [0, ) is an increasing function ar{, ¢) €
&. Then it is easily seen that the p@re ¢, g ° ¢) € &.

For more fixed point results with alternating distanaection, see [14-19].

Definition 1.22: (see [20]) Le(X, <) be a partially ordered set and fepg: X — X be two maps. Mapis
calledg-non-decreasing ifx < gy impliesfx < fy forallx,y € X.

Definition 1.23: (see [21]) LetX be a non-empty set and J&tg: X — X be two mapsf andg are called to
commute ak € X if f(gx) = g(fx).

2 Main Results

In this section, we investigate the common fixed point probten S-metric spaces. The following result
states the existence of a common fixed point of two nfieguedg on partially ordered S-metric spaces.

Theorem 2.1: Let (X,<X) is a partially ordered set. Suppose that there exisS-metricS onX such that
(X,S) be a complete S-metric space. lfelj: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arglX) is closed such that there exists a pair of functigng) € & satisfying

9(S(fx. fx, 1)) < max {$(S(gx, g%, 7)), ¢ (FLLR I ) (2.1)
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for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existr, € X such thagx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

Proof Sincef(X) c g(X), we can choose, € X such thayx; = fx,. Again, fromf(X) c g(X) we can
choosex, € X such thayx, = fx,. Continuing this process, we can choose a seqyengén X such that

9Xni1 = fxp, VN €N, (2.2)
Sincegx, < fx, andgx, = fx,, we havegx, < gx,. Sincef is g-non-decreasing, we ggk, < fx,. By

using (2.2), we havgx; < gx,. Again, sincef is g-non-decreasing, we gk, < fx,, thatis,gx, < gx;.
Continuing this process, we obtain

fxn =2 fXne1, 9%n41 = 9Xne2, VR EN

Denote &, = S(fx,, fxn fxn41), V1 € N. To prove thaf andg have a coincidence point. We consider
two following cases.

Case 1. There existsi, such thats,, = 0. It implies thatx,, = fx,,+1 . By (2.2), we gefx, .1 =
9Xn,+1- Thereforex, ., is a coincidence point gfandg.

Case 2. Let§,, > 0 for alln € N. We will show thalim,,_,,, §, = 0. Sincefx,_; < fx, for alln>1,
applying the contractive condition (2.1), we have

(p(5n) = (p(S(fxn! fxn, fxn+1))

S(gxXn+1,9%n+1.f Xn+1)[1+5(8xn,9%n.f xn)]
< max { (S92, g2 gXns1)), ¢ (2L212 o)L E g )}

= max {¢(S(fxn_1, fxn—lr fxn))' ® (S(fxn'fxnrfxn+1)[1+S(fxn—1rfxn—1'fxn)])}

1+S(fxnfxnfxn+1)
= max {$(8,-1), ¢ (52} (23)

Now, we consider two following subcases.

Subcase 1. Consider

max {$(8-1), (M)} = 6(6,00) (24)
In this case from (2.3), we have

@(6,) < p(6,-1) (2.5)
Since(p, ¢) € § , we deduce that, < §,,_;.

Subcase 2. If

max {§(8n-1), ¢ ()} = ¢ (i) (2.6)

146,
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In this case from (2.3), we have

P(8,) < ¢ (2lr2=]) 27

1+6p
Since(p, ¢) € § ands,, > 0, we deduce that, < §,_;.
The conclusions of two above subcases,
6p < 0pyq (2.8)

It follows from (2.8) that the sequen&,} of real numbers is monotone decreasing.Then there exist®
such that

lim,,_, 6, = . (2.9)
Now, we shall show that = 0.

Denote
A ={n € N : nsatisfies (2.4)} and B = {n € N : n satisfies (2.6)}.

From (2.3), we hav€ard A = « or Card B = ». Let us suppose th@urd A = . Then from (2.3), we
can find infinitely natural numberssatisfying inequality (2.5) and sinée, ¢) € &, we infer from (2.9)

and condition (b3) that = 0. On the other hand, ffard B = «,, then from (2.3), we can find infinitely
manyn € N satisfying inequality (2.7). Sindg, ¢) € &, we obtain

5. < Snl14+8n-1l
= 148,

for infinitely manyn € N. Letting the limit asn — o and taking into account that (2.9), we deduce that
r<r(1+r)/(1+r)and consequently, we obtair= 0.

Therefore
lim,_, 6, =1 =0. (2.10)

Now, we will show tha{fx,} is a Cauchy sequence. Suppose on the contrar§fthatis not a Cauchy
sequence. Then giver> 0, we will construct a pair of subsequendg¢s.,, } and{fx, } violating the
following condition for least integen; such thatn; > n; > i, wherei € N:

Vi = S(fxni,fxni,fxmi) =€ (2.11)
In addition, upon choosing the smallest possiblewe may assume that

S(xni,xni,xmi_l) <e€ (2.12)
From Lemma 1.1, Lemma 1.2, (2.11) and (2.12), we have

EXYi
= S(fxni! fxni! fxmi)
= S(fxmir fxmi'fxni)
< Zs(fxmirfxmi'fxmi—l) + S(fxni'fxnirfxmi—l)
< Zs(fxmi—lrfxmi—lrfxmi) + S(fxni'fxnirfxmi—l)
<€+ 28,1 (2.13)
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On letting the limit ag — « in the above inequality, we obtain
limi_,y;i =€ (2.14)
If we denote; = S(fxy,+1, fXn 41, f Xm,+1), We Notice that
1B —vil = |S(fxni+1'fxni+1'fxmi+1) - )’il
= ZS(fxniH,fxniH,fxni) + S(fxmi+1!fxmi+1rfxni) — Vi
= 28(fxns fng Fongn) + 28 (fotmens, fompn, fXm) = Vi
<26y, + ZS(fxmiH,fxmiH,fxmi) + S(fxni,fxni,fxmi) -y
=26y, + ZS(fxmi,fxmi,fxmiH) +vYi— Vi
= 26, + 28, (2.15)
On makingi — o, we immediately obtain that:
limi_,Bi =€ (2.16)

It follows from (2.2) and (2.3) thatx,, 1 = fxn, = fxXm, = gxm+1.NOW using contractive condition (2.1),
we get

0(B) = ¢ (S(Frnges, fngar Fomiss) )

mei+1'gxmi+1'fxmi+1)[1+5(9xni+1'gxni+1'fxni+1)])}

1+5(fxni+1,fxni+1.fxmi+1)

S
< max {qb (S(9%ni1 GXnie1s 9Tmes1) ) & ( (

_ S(fxm-'fxm-'fxm-+1)[1+5(fxn-»fxn-»fxn-+1)]
= max {¢> (SCFnp Fnp fm)) ¢ ( e

= max {d)(m ¢ (M)} (2.17)

1+B;
Let us put

B={ieN: () <o)},
¢= {i EN: () < ¢<M)}

1+B;

By (2.17), we have&€ard B = « or Card C = . Let us suppose th#@lard B = . Then there exists
infinitely manyi € N satisfying inequalityp (8;) < ¢(y;) and sincdgp, ¢) € §, we have by letting the limit
asi - o, lim;_,, 8; < lim;_,, y;- We infer from (2.14) and (2.16) that= 0. This is a contradiction.

On the other hand, ffard C = «, then we can find infinitely maniye N satisfying inequalityp(B;) <

Sm;|1+6n; . . Sm;|1+6n; . . .
¢ (%) and since(g, ) € §, we obtaing; < %. Om letting the limit ag — o and using
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(2.10) and (2.16) we get< 0, which is a contradiction. Therefore, since in both fwiéss Card B = «
andCard C = ,we obtain a contradiction, we deduce tffat,} is a Cauchy sequence. From (2.1), we
have{gx, .} is also a Cauchy sequence. Sig¢&) is closed, there exists€ X such that

lim,,_, fx, = lim,_., gx, = gu. (2.18)
Now we will show that is a coincidence point ¢gf andg. Sincdgx,} is non-decreasing sequenceXin

such thaigx,, - gu, thengx, < gu for alln € N. Applying contractive condition (2.1), we obtain for any
neN,

o(SUfu, fu, fx,)) < max {#(S(gu, gu, gxa)), ¢ (FL2ERTHT I IN)| (2.19)

Put

E={neN:o(S(fu fu fx,)) < ¢(S(gu, gu, gx,))},

_ . S(gxn.gxn.fxn)[1+S(gugu.fuw]
F = {n EN:o(S(fu fu, fx,)) < ¢( T )}
By (2.19), we hav&€ard E = o or Card F = o. Let us suppose thélard E = . Then there exists
infinitely manyn € N satisfying inequalityp (S (fu, fu, fx,)) < ¢(S(gu, gu, gx,,)) and sincp, ) € §,
letting the limit as: —» c0 and using (2.18), we obtalim,,_,., S(fu, fu, fx,) = 0, and consequently, we
obtainlim,,_,., fx, = fu. The uniqueness of the limit, sinden,,_,, fx, = gu, we havefu = gu.

On the other hand, fard F = o, we can find infinitely many € N satisfying inequality

S(gxngxnfxn)[1+S(gu.gu,fu)]
(p(S(fu,fu,fxn)) = ¢( = gi+s(i‘u.fu,fxil)tgu s ) (2.20)

Now, passing to the limit in

S(gxn, gxn, fxn) < S(gXn, GXn, gu) + S(g%Xn, gGXn, gu) + S(f Xy, f x5, gu)

asn — oo, we obtainlim,,_,., S(gxn, gxn, fx,) = 0. Since(yp, @) € F, letting the limit asn - o in (2.20)
and taking into account thimn,,_, ., S(gx,,, gx,, fx,) = 0, we deduce thdtm,,_,., S(fu, fu, fx,) = 0 and
consequently, we obtalim,,_,., fx, = fu. Thus, we hav¢gu = gu. Therefore, in both the casesis a
coincidence point of andg.

Furthermore, we will show thatu is a common fixed point ¢f andg if f andg are commutative at the
coincidence point. Indeed, we hafiggu) = g(fu) = g(gu). By (2.3) and (2.18), we hayat < g(gu).
Applying contractive condition (2.1), we obtain

@ (S (fu. fu, f (gu))) < max {qb(S (gu, gu, g(gu))), ¢ (S(g(gu)'gii?{;f:i);gj;fwulfu)])}

(g(gw), f (gw))
= max {¢(S(gu, gu, g (gu))), ¢ (FLLILLILED) (2.21)

Consider

max {qb (s(gu gu. g(gw)), ¢ (%)} = ¢(5(gu, gu, g(gu)))
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In this case, from (2.21) we haxpe(S(fu,fu,f(gu))) < ¢(S(gu, gu, g(gu))). Now, sincegp, ¢) € §,

and usingf(gu) = g(fu) = g(gu), we getS(fu,fu,f(gu)) = 0 and therefor¢(gu) = g(gu) = fu =
gu.

On the other hand, if

S(g(gw), g(gw), f (gu))>} _ <S (9(gw), g(gw), f (gu))>

max {‘p (S(gu,gu,g(gu)))r¢< 1 +S(fu,fu,f(gu)) 1 +S(fu,fu,f(gu))

In this case, from (2.21) we have

S(g(gu),g(gu),f(gu))>

@ (S(fu,fu,f(gu))) =9 < 1+ S(fu, fu, f(gu))

Now, since(p, ¢) € §, we get

S(g(gw).g(gu).f (gu))
<L 2 g oy
S(fu, fu,f(gu)) S T s(rurur@)

Thus,S(fu, fu, f(guw)) = 0 and therefor¢f (gu) = g(gu) = fu = gu.

This result finishes the proof.

By Theorem 2.1, we obtain the following corollaries.

Corollary 2.2: Let (X, <X) is a partially ordered set. Suppose that there existmetScS onX such that

(X,S) be a complete S-metric space. lfelj: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map argdX) is closed such that

507,071 +5(gxg5,12)
S(fx, fx, fy) < aS(gx, gx, gy) + B =2 g{f;f[x}xj;f"f 2, (2.22)

for all x,y € X with gx < gy, wherea, 8 > 0 anda + 8 < 1. Assume that ifgx,} is non-decreasing
sequence i such thaygx, — gu, thengx, < gu < g(gu) for alln € N. If there exist, € X such that
gxo 2 fx,, thenf andg have a coincidence point. Furthermoref &indg commute at the coincidence
point, thenf andg have a common fixed point.

Proof: Since

S(gy, gy, fy)1 + S(gx, gx, fx)]

S(fx,fx, fy) < aS(gx, gx,gy) + B 1+ SCFx, 5, ) )

S(yy.yy.fy)[1+S(yx.yx,fx)]}

< (a + B) max {S(gx, gx, gy), L STALE)

S(gy,gy,fy)[1+S(gX.gx,fx)]}

= max {(a + B)S(gx, gx, g), (a + ) LLLIZ 0

for all comparable elementsy € X, wherea + § < 1. This condition is a particular case of the contractive
condition appearing in Theorem 2.1 with the pair of fumi@, ¢) = (1[0, (@ + B) 1) € &, given
by ¢ = 19y and¢ = (a + B) 1., (see Example 1.20). Furthermore, we relaxed the requiremehe of
continuity of mapping to prove the results.



Bohre et al.; ARJOM, 1(5): 1-16, 2016; Article nRJOM.28960

Corollary 2.3: Let (X, <x) is a partially ordered set. Suppose that there existmetScS onX such that
(X,S) be a complete S-metric space. lfej:X - X be two maps withf(X) c g(X), f is g-non-
decreasing map arglX) is closed such that there exists a pair of functign®) € & satisfying

o(SUfx, fx, fy)) < d(S(gx, gx, gy)) (2.23)

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, tifeandg have a common
fixed point.

Corollary 2.4: Let (X, <X) is a partially ordered set. Suppose that there existmetScS onX such that
(X,S) be a complete S-metric space. lfej: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arglX) is closed such that there exists a pair of functigng) € & satisfying

S(ay.0y.fY1+5x g2 0]
(S, fx, 7)) < ¢ (FLLBLIIILIIN), (2.24)

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

Taking into account Example 1.19, we have the following cospllar
Corollary 2.5: Let (X, <) is a partially ordered set. Suppose that there exist-metScS onX such that

(X,S) be a complete S-metric space. lfelj: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arglX) is closed such that there exists a pair of functigng) € & satisfying

o(S(fx, fx, fy)) < max{p(S(gx, gx, gy)) — ¢(S(gx, gx, gy)),

5(9y.9y.fy)[1+S(gx,9%.fx)] $(gy.9y.fy)[1+5(gx,gx,fx)]
( 1+S(Fxfx.f) ) ¢ ( 1+S(xfxf) )} (2.25)

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thaygx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

Corollary 2.5 has the following consequences.
Corollary 2.6: Let(X,<) is a partially ordered set. Suppose that there exist-metScS onX such that

(X,S) be a complete S-metric space. lfej: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arg{X) is closed such that there exists a pair of functigng) € & satisfying

o(S(fx, fx. fy) < o(S(gx, gx, gv)) — ¢(S(gx, gx, g¥)), (2.26)

for all x,y € X with gx < gy. Assume that if{gx,} is non-decreasing sequenceXisuch thaygx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

10
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Corollary 2.7: Let(X,=x) is a partially ordered set. Suppose that there exist-metScS onX such that
(X,S) be a complete S-metric space. fel: X - X be two maps withf (X) c g(X), f is g-non-decreasing
map andg (X) is closed such that there exists a pair of functigng) € & satisfying

S(gy.9y.f¥)[1+S(gx,gx.fx)] S(gy.gy.fy)[1+S(gx.gx.fx)]
(p(S(fx,fx, fy)) s¢ ( 1+S(fx,fx,fy) ) - ¢( 1+S(fx,fx,fy) )‘ (2.27)

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

Taking into account Example 1.20, we have the following cosollar
Corollary 2.8: Let (X,<) is a partially ordered set. Suppose that there exist-metScS onX such that

(X,S) be a complete S-metric space. lfelj: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arglX) is closed such that there exiatE S satisfying

S(fx, fx, fy) < max{a(S(gx, gx, gv))S(gx, gx, gy),

p (S(gy,gy,fy)[1+S(gx.gx,fX)]) (S(gy.gy,fy)[1+S(gx.gx,fX)])} (2.28)
1+S(fx.fx,fy) 1+S(fx.fx.fy) '

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, tifeandg have a common
fixed point.

A consequence of Corollary 2.8 is the following corollary.

Corollary 2.9: Let (X,=x) is a partially ordered set. Suppose that there exist-metScS onX such that
(X,S) be a complete S-metric space. lfej: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arglX) is closed such that there exigt€ S satisfying

S(fx, fx, fy) < a(S(gx, gx, g))S(gx, gx, gy) (2.29)

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

Corollary 2.10: Let(X, <) is a partially ordered set. Suppose that there existmetBcS onX such that
(X,S) be a complete S-metric space. lfelj: X - X be two maps with f(X) c g(X),f is g-non-
decreasing map arglX) is closed such that there exiatE S satisfying

S(gy.gy.fy)1+S(gx.gx.f1\ (S(gy.9y.f¥)[1+S(gx,gx.fx)]
S(fx, fx, fy) sa ( 1+S(fx.fx,fy) ) ( 1+S(fx.fx,fy) ) (2.30)

for all x,y € X with gx < gy. Assume that ifgx,} is non-decreasing sequenceXisuch thagx, - gu,
thengx, < gu < g(gu) for alln € N. If there existx, € X such thatgx, < fx,, thenf andg have a
coincidence point. Furthermore,fifandg commute at the coincidence point, thfeandg have a common
fixed point.

If we putf = g in Theorem 2.1, we have following corollary.

11
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Corollary 2.11: Let (X, X) is a partially ordered set. Suppose that there ®a&istS-metri€ onX such that
(X,S) be a complete S-metric space. fekK — X be a non-decreasing map such that there exists a pair of
functions(g, ¢) € & satisfying

o(S(fx. fx. f3) < max {$(S G x, ), (P2 L) (2.31)

for all x,y € X with x < y. Assume that i{x,} is non-decreasing sequenceXirsuch thatc, - u, then
x, < ufor alln € N. If there existx, € X such thak, < fx,, thenf have a fixed point.

In what follows, we prove a sufficient condition for the unicqeemof the fixed point in Corollary 2.11.

Theorem 2.12: Suppose that: (a) hypothesis of Corollary Zhbid, (b) for eachr,y € X, there existg € X
that is comparable to andy. Thenf has a unique fixed point.

Proof: As in the proof of Corollary 2.11, we see tlidtas a fixed point. Now we prove that the uniqueness
of the fixe point off. Letu andv be two fixed points of .

We consider the following two cases:

Case 1. u is comparable tow. Thenf™u is comparable t¢g™v for alln € N. For alla € X, applying
contractive condition (2.31), we have

o(Swuv)) = o(S(f"u, fMu, f"v))

n—1, ¢N—1, ¢N n—1,, Fn—1,, FN.
< max {(S(™u, 77w, 1)), (UL LA Pl
Wv)[1+Suuw)]
= max {9(S(u,u, ). ¢ (FEETET)) (232)

Consider

S, v,v)[1+ S(w,u,u)]
1+ S(u,u,v)

max {qb(S(u, u,v)), ¢ ( )} = ¢(Sw,u,v))

Then from (2.33), we hawe(S(u,u,v)) < ¢(S(u,u,v)). Since(p, p) € F, it follows thatS(u,u,v) =0
and sou = v.

If

S(w,v,v)[1+ S, u, u)])} B <S(v, v, V)1 + S(u,u, u)])

e {(],’)(S(u, wo)). < 1+5Swuv) 1+ S(u,u,v)

Then from (2.33), we have

S(v,v,v)[1+s(u,u,u)])
1+S(u,u,v)

(p(S(u,u, v)) < qb(
Then sincdgp, ¢) € & we haveS(u,u,v) < 0 and sau = v

Therefore, in both cases we proved that v.

12
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Case 2. u is not comparable to. Then there exists € X that is comparable to andv. Now, we can define
the sequencgz,} in X as follows:z, = z, fz, = z,,,, ¥ n € N. Sincef is non-decreasing we have,

2y < Zp < Zpyq andlim,,_, o, S(2y, 2y, Zne1) = 0. (2.33)

Asu < z,, puttingx = u andy = z, in the contractive condition (2.31), we get

o(Sww, zp41)) = 0(S(fu, fu, fz,))

(ZnZn, M1+S(wu,fu)]
< ({50 1). 0 (Lmptistenra)

= max {d)(S(u, u, Zn)), ) (w)} (2.34)

1+S(uu,Zn+1)

Let us denote
G={neN:o(Swu z,41)) < d(Sw,u,2,))}

H = {Tl eEN: (p(S(u,u,zn+1)) < ¢(w)}

1+, zn41)
Now we remark following again.
(2). If Card G = oo, then from (2.34), we can find infinitely natural numbersatisfying inequality
(p(S(u, u, zn+1)) < ¢(S(u, u, zn)).

Since (¢, ¢) € &, it follows that the sequencés(u,u,z,,,)} is non-increasing and it has a
limit { > 0. Since

lim S(u, u, z,41) = lim S(u,u,z,) =1
n—-oo n-—-oo
and(o, ¢) € T we obtainl = 0.

(2). If Card H = oo, then from (2.34), we can find infinitely natural numbersatisfying inequality

o(Sww,2p41)) < b (M)

1+S(wu,zn+1)

Then sincd g, ¢) € &, we have

S(an Zn' Zn+1)
S(u, Uu,z ) <—
T+ S(u, U, Zng)

Sincdim,,_,, S(Zy, Zn, Zne1) = 0 andlim,,_,, S(u, u, z,+1) = [,on makingh - oo we havd = 0.
Therefore, in both cases we proved that

lim, o S(u,u, z,44) =1 =0.
In the same way it can be deduced that

lim, o S(, v, 2,41) = 0.

13
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Therefore passing to the limit in

Su,u,v) <SW,u, zy41) + S, U, Zpy1) + S, v, 241)

asn — oo, we obtainu = v. That is, the fixed point is unique.

3 Example

We give an example to demonstrate the validity of the abmudtre
Example3.1 Let X = {1, 2,3} and letS be defined as follows.
S(1,1,1) = S(2,2,2) = §(3,3,3) = 0,
5(1,2,3) =5(1,3,2) =5(2,1,3) = 5(3,1,2) = 4,
$(2,3,1) = 5(3,2,1) = 5(1,1,2) = S(1,1,3) = S(2,2,1) = S(3,3,1) = 2,
5(2,2,3) = 5(3,3,2) = 6,
$(2,3,2) = §(3,2,2) = $(3,2,3) = S(2,3,3) = 3,
$(1,2,1) = S(2,1,1) = (1,3, 1) = S3,1,1) = 5(2,1,2) = 5(1,2,2)
= 5(3,1,3) = S(1,3,3) = 1.

We haveS(x,y,z) =0 for all x,y,z€ X and S(x,y,z) =0 if and only ifx=y=2z. By simple
calculations, we see that the inequality

S(x,y,z) <S(x,x,a) + S(y,y,a) + S(z,z,a)
holds for allx, y, z, a € X. ThenS is anS-metric onX with the usual.

Consider the functiorf,g : X > X given asfx = gx = 1,V x € X. Define the functiong, ¢: [0, o) —
[0,0) as follows: for alk € [0,), ¢(t) =In (%—f-i’—;) and ¢(t) = In (i+ %) Then all assumptions of

Theorem 2.1 are satisfied. Then Theorem 2.1 is applitalfleandg onS.

4 Conclusion

In this article, we established some common fixed point émsrfor g-monotone maps involving rational
expression in the framework of S-metric spaces endowed wtartéal order using a class of pairs of
functions satisfying certain assumptions. The presented theoextend, generalize and improve many
existing results on metric spaces to S-metric spacéseititerature. Our results may be the motivation to
other authors for extending and improving these results soiksble tools for their applications.
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