
 

 
Asian Research Journal of Mathematics 

  

1(5): 1-16, 2016; Article no.ARJOM.28960 
 

 

SCIENCEDOMAIN international 
www.sciencedomain.org   

 

_____________________________________ 
*Corresponding author: E-mail: snghelpyou@gmail.com; 
 
 

Common Fixed Point Results in Ordered S-metric Spaces for 
Rational Type Expressions 

 
Arvind Bohre1, Suresh Nagle2*, Rashmi Jain3 and Manoj Ughade4  

 
1Department of Mathematics, Faculty of Science, Government Girls P.G. College, Sagar, MP, India. 

2Research Scholar, Department of Mathematics, Atal Bihari Vajpai Hindi University, Bhopal, MP, India. 
3Research Scholar, Department of Mathematics, J H Government Post Graduate College, Betul, MP, India. 
4Department of Mathematics, Faculty of Science, Sarvepalli Radhakrishnan University, Bhopal, MP, India. 

 
Authors’ contributions  

 
All authors contributed equally and significantly in writing this paper. All authors read and approved the 

final manuscript.  
 

Article Information 
 

DOI: 10.9734/ARJOM/2016/28960 
Editor(s): 

(1) Sheng Zhang, School of Mathematics and Physics, Bohai University, Jinzhou, China. 
Reviewers: 

(1) Xiaolan Liu, Sichuan University of Science and Engineering, China. 
(2) Muhammad Nazam, International Islamic University, Pakistan. 

Complete Peer review History: http://www.sciencedomain.org/review-history/17065 
 
 
 

Received: 15th August 2016 
Accepted: 24th September 2016 
Published: 29th November 2016 

_______________________________________________________________________________ 
 

Abstract 
 

The aim of this paper is to present some common fixed point theorems for g-monotone maps involving 
rational expression in the framework of S-metric spaces endowed with a partial order using a class of 
pairs of functions satisfying certain assumptions.  
 

 
Keywords: Common fixed point; S-metric space; contractions; partially ordered set, altering distance 

function.  
 

1 Introduction and Preliminaries 
 
Metric spaces are very important in mathematics and applied sciences. So, some authors have tried to give 
generalizations of metric spaces in several ways. For example, Gahler [1] and Dhage [2] introduced the 
concepts of 2-metric spaces and D-metric spaces, respectively. In 2006, Mustafa and Sims [3] introduced a 
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new structure of generalized metric spaces which are called G-metric spaces as a generalization of metric 
spaces (�, �) to develop and introduce a new fixed point theory for various mappings in this new structure. 
Sedghi et al. [4] introduced the notion of a �∗-metric space.  
 
Das and Gupta [5] proved the following fixed point theorem. 
 
Theorem 1.1: (see [5]) Let (�, �) be a complete metric space and �: � → � a mapping such that there exist �, � ≥ 0 with � + � < 1 satisfying 
 

�(��, ��) ≤ � �(�,��)[� � �(�,��)]
� � �(�,�) +  ��(�, �)                                                                                 (1.1) 

 
for all �, � ∈ �. Then � has a unique fixed point in �. 
 
For more details on fixed point results with rational expressions, see [6-8]. 
 
Cabrera et al. [9] proved Theorem 1.1 in the context of partially ordered metric spaces. 
 
Definition 1.2 (see [9]) Let (�, ⪯)  is a partially ordered set and � ∶ � → � is said to be monotone non-
decreasing if for all �, � ∈ �, 
 � ⪯ � ⇒  �� ⪯ ��.                                                                                                                       (1.2) 
 
Theorem 1.3: (see [9]) Let (�, ⪯) is a partially ordered set. Suppose that there exist a metric � on � such 
that (�, �) be a complete metric space. Let �: � → � be a continuous and non-decreasing mapping such that 
(1.1) is satisfied for all �, � ∈ � with � ≤ �. If there exist �" ∈ � such that �" ⪯ ��", then � has a fixed 
point.  
 
Theorem 1.4: (see [9]) Let (�, ⪯) is a partially ordered set. Suppose that there exist a metric � on � such 
that (�, �) be a complete metric space. Assume that if #�$% is non-decreasing sequence in �  such that �$ → &, then �$ ⪯ &, for all ' ∈ ℕ. Let �: � → � be a non-decreasing mapping such that (1.1) is satisfied 
for all �, � ∈ � with � ⪯ �. If there exist �" ∈ � such that �" ⪯ ��", then � has a fixed point.  
 
Theorem 1.5: (see [9]) In addition to the hypothesis of Theorem 1.3 or Theorem 1.4, suppose that for every �, � ∈ �, there exist & ∈ � such that & ⪯ � and & ⪯ �. Then T has a unique fixed point. 
 
In this paper, we establish some common fixed point theorems for g-monotone mappings involving rational 
expression in the framework of S-metric spaces endowed with a partial order using a class of pairs of 
functions satisfying certain assumptions. 
 
Sedghi et al. [10] introduced a new generalized metric space called an S-metric space. 
 
Definition 1.6: (see [10]) Let � be a non-empty set. An S-metric on X is a function *: �+ → [0, +∞) that 
satisfies the following conditions, for each �, �, ,, - ∈ �, 
 

(S1). *(�, �, ,) ≥ 0; 
(S2). *(�, �, ,) = 0 if and only if � = � = ,; 
(S3). *(�, �, ,) ≤ *(�, �, -) + *(�, �, -) + *(,, ,, -). 

 
Then S is called an S-metric on X and (X, S) is called an S-metric space. 
 
The following is the intuitive geometric example for S-metric spaces.  
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Example 1.7: (see [10], Example 2.4) Let � = ℝ1  and d be the ordinary metric on X. Put *(�, �, ,) = �(�, �) + �(�, ,) + �(�, ,)  for all �, � ∈ ℝ1, that is, * is the perimeter of the triangle given by �, �, ,. Then * is an *-metric on �. 
 
Lemma 1.8: (see [10], Lemma 2.5) Let (�, *) be an S-metric space. Then *(�, �, �) = *(�, �, �) for all �, � ∈ �.  
 
Lemma 1.9: (see [11], Lemma 1.6) Let (X, S)   be an S -metric space. Then *(�, �, ,) ≤ 2*(�, �, �) +*(�, �, ,) and  *(�, �, ,) ≤ 2*(�, �, �) + *(,, ,, �) for all �, �, , ∈ �. 
 
Definition 1.10: (see [10]) Let � be an S-metric space. 
 

(i). A sequence #�$%$4�∞ ⊂ � converges to � if and only if 678$→∞ *(�$, �$, �) = 0. That is for each 9 > 0  there exists '" ∈ ℕ  such that for all ' ≥ '", *(�$, �$, �) < 9  and we denote this by 678$→∞ �$ = �. 
(ii).  A sequence #�$%$4�∞ ⊂ � is called a Cauchy if 678$,;→∞ *(�$, �$, �;) = 0. That is, for each 9 > 0 

there exists '" ∈ ℕ such that for all , 8 ≥ '",  *(�$, �$, �;) < 9. 
(iii).  � is called complete if every Cauchy sequence in � is a convergent sequence. 

 
From (see [10], Examples in page 260), we have the following. 
 
Example 1.11: 

 
(a). Let ℝ be the real line. Then *(�, �, ,) = |� − ,| + |� − ,| for all �, �, , ∈ ℝ, is an S-metric on ℝ. 

This S -metric is called the usual S -metric on ℝ . Furthermore, the usual S -metric space ℝ  is 
complete. 

(b). Let >  be a non-empty set of ℝ. Then *(�, �, ,) = |� − ,| + |� − ,|  for all �, �, , ∈ > , is an S-
metric on >. If > is a closed subset of the usual metric space ℝ, then the S-metric space >  is 
complete. 

 
Lemma 1.12: (see [10], Lemma 2.11) Let (�, *)  be an S-metric space. If the sequence #�$%$4�∞  in � 
converges to �, then � is unique. 
 
Lemma 1.13: (see [10], Lemma 2.12) Let (�, *)  be an S-metric space. If 678$→�∞ �$ = � and 678$→�∞ �$ = �, then 678$→�∞ *(�$, �$, �$) = *(�, �, �). 
 
Remark 1.14: (see [11]) It is easy to see that every D∗-metric (see [4]) is S-metric, but in general the 
converse is not true, see the following example. 
 
Example 1.15: (see [11]) Let � = ℝ$ and ‖ . ‖ a norm on �, then *(�, �, ,) = ‖� + , − 2�‖ + ‖� − ,‖ is 
S-metric on �, but it is not D∗-metric because it is not symmetric. 
 
The following lemma shows that every metric space is an S-metric space. 
 
Lemma 1.16: (see [11], Lemma 1.10)  Let (�, �) be a metric space. Then we have 

 
1. *�(�, �, ,) = �(�, ,) + �(�, ,) for all �, �, , ∈ � is an S-metric on �. 
2. 678$→�∞ �$ = � in (�, �) if and only if 678$→�∞ �$ = � in (�, *�). 
3. #�$%$4�∞  is Cauchy in (�, �) if and only if #�$%$4�∞  is Cauchy in (�, *�). 
4. (�, �) is complete if and only if (�, *�) is complete.  

 
In 2012, Sedghi et al. [10] asserted that an S-metric is a generalization of a G-metric, that is, every G-metric 
is an S-metric, see [10, Remarks 1.3] and [10, Remarks 2.2]. The Example 2.1 and Example 2.2 of Dung et 
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al. [12] shows that this assertion is not correct. Moreover, the class of all S-metrics and the class of all G-
metrics are distinct. For more results on S-metric spaces, see [11-12]. 
 
In this paper, we consider the following class of pairs of functions B. 
 
Definition 1.17: (see [13]) A pair of functions (C, D) is said to belong to the class B, if they satisfy the 
following conditions:  
 

(b1). C, D: [0,∞) → [0,∞);  
(b2). for F, G ∈  [0,∞), C(F) ≤ D(G) then F ≤ G;  
(b3). for #F$% and #G$% sequence in [0,∞) such that  lim$→∞ F$ = lim$→∞ G$ = -, if C(F$) ≤ D(G$) for 

any ' ∈ ℕ, then - = 0. 
 
Remark 1.18: (see [13], Remark 4) Note that, if (C, D) ∈ B and C(F) ≤ D(F), then F = 0, since we can take F$ = G$ =  F for any ' ∈ ℕ and by (b3) we deduce that F = 0. 
 
Example 1.19: (see [13], Example 5) Let C ∶ [0,∞)  → [0,∞) be a continuous and increasing function such 
that C(F) = 0 if and only if F = 0 (these functions are known in the literature as altering distance functions). 
Let D ∶ [0,∞)  → [0,∞) be a non-decreasing function such that D(F) = 0 if and only if F = 0 and suppose 
that D ≤ C. Then the pair (C, C − D) ∈ B.  
 
An interesting particular case is when C is the identity mapping, C =  1[",∞) and D: [0,∞) → [0,∞) is a non-
decreasing function such that D(F) = 0 if and only if F = 0 and D(F) ≤ F for any F ∈ [0,∞). 
 
Example 1.20: (see [13], Example 6) Let S be the class of functions defined by   
 * =  #� ∶ [0,∞) → [0, 1) ∶ #�(F$) → 1 ⇒  F$ → 0%%. 
 
Let us consider the pairs of functions (1[",∞) , �1[",∞)), where � ∈ * and �1[",∞) is defined by K�1[",∞)L(F)  =
 �(F)F, for F ∈ [0,∞). Then (1[",∞) , �1[",∞)) ∈ B. 
 
Remark 1.21: (see [13], Remark 7) Suppose that M ∶ [0,∞) → [0,∞) is an increasing function and (C, D) ∈B. Then it is easily seen that the pair (M ∘ C, M ∘ D) ∈ B.  
 
For more fixed point results with alternating distance function, see [14-19].  
 
Definition 1.22: (see [20]) Let (�, ⪯) be a partially ordered set and let �, M: � → � be two maps. Map� is 
called M-non-decreasing if M� ⪯ M� implies �� ⪯ �� for all �, � ∈ �. 
 
Definition 1.23: (see [21]) Let � be a non-empty set and let �, M: � → � be two maps. � and M are called to 
commute at � ∈ � if �(M�) = M(��).      
                                          

2 Main Results 
 
In this section, we investigate the common fixed point problem on S-metric spaces. The following result 
states the existence of a common fixed point of two maps � and M on partially ordered S-metric spaces. 
 
Theorem 2.1: Let (�, ⪯) is a partially ordered set. Suppose that there exists an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists a pair of functions (C, D) ∈ B satisfying 
 

CK*(��, ��, ��)L ≤ 8-� ODK*(M�, M�, M�)L, D PQ(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) ST,                              (2.1) 



 
 
 

Bohre et al.; ARJOM, 1(5): 1-16, 2016; Article no.ARJOM.28960 
 
 
 

5 
 
 

for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
Proof Since �(�) ⊂ M(�),  we can choose �� ∈ � such that M�� = ��". Again, from �(�) ⊂ M(�) we can 
choose �1 ∈ � such that M�1 = ���. Continuing this process, we can choose a sequence #�$% in � such that 
 M�$�� = ��$, ∀ ' ∈ ℕ.                                                                                                                  (2.2) 
 
Since M�" ⪯ ��" and M�� = ��", we have M�" ⪯ M��. Since � is M-non-decreasing, we get ��" ⪯ ���. By 
using (2.2), we have M�� ⪯ M�1. Again, since � is M-non-decreasing, we get ��� ⪯ ��1, that is, M�1 ⪯ M�+. 
Continuing this process, we obtain 

   
 ��$ ⪯ ��$��, M�$�� ⪯ M�$�1, ∀ ' ∈ ℕ  

                                                                                       
Denote  V$ = *(��$, ��$, ��$��), ∀ ' ∈ ℕ.  To prove that � and M have a coincidence point. We consider 
two following cases. 
 
Case 1. There exists '"  such that V$W  =  0. It implies that �$W = ��$W��  . By (2.2), we get ��$W�� =
M�$W��. Therefore, �$W�� is a coincidence point of � and M.  
 
Case 2. Let V$ > 0 for all ' ∈ ℕ. We will show that lim$→∞ V$ = 0. Since ��$X� ≺ ��$  for all ' ≥ 1, 
applying the contractive condition (2.1), we have 
 C(V$) = C(*(��$, ��$, ��$��)) 
 

                         ≤ max ODK*(M�$, M�$, M�$��)L, D PQ(R�\]^,R�\]^,��\]^)[��Q(_�\,R�\,��\)]
��Q(��\,��\,��\]^) ST 

 

                         = max ODK*(��$X�, ��$X�, ��$)L, D PQ(��\,��\,��\]^)[��Q(��\`^,��\`^,��\)]
��Q(��\,��\,��\]^) ST    

        

                         = max OD(V$X�), D Pa\[��a\`^]
��a\ ST                                                                                        (2.3) 

 
Now, we consider two following subcases.  
 
Subcase 1. Consider 
 

max OD(V$X�), D Pa\[��a\`^]
��a\ ST = D(V$X�)                                                                                  (2.4) 

 
In this case from (2.3), we have 
 C(V$) ≤ D(V$X�)                                                                                                                           (2.5) 
 
Since (C, D) ∈ B , we deduce that V$ ≤ V$X�.        
                                             
Subcase 2. If 
  

max OD(V$X�), D Pa\[��a\`^]
��a\ ST = D Pa\[��a\`^]

��a\ S                                                                          (2.6) 
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In this case from (2.3), we have 
 

C(V$) ≤ D Pa\[��a\`^]
��a\ S                                                                                                                  (2.7) 

 
Since (C, D) ∈ B and V$ > 0, we deduce that V$ ≤ V$X�. 
 
The conclusions of two above subcases,  
 V$ ≤ V$X�                                                                                                                                       (2.8) 
 
It follows from (2.8) that the sequence #V$% of real numbers is monotone decreasing.Then there exists b ≥ 0 
such that 
 lim$→∞ V$ = b.                                                                                                                                (2.9) 
 
Now, we shall show that b = 0.  
 
Denote  c = #' ∈ ℕ ∶  ' satisfies (2.4)% and  i = #' ∈ ℕ ∶  ' satisfies (2.6)%.                                               
 
From (2.3), we have k-b� c = ∞ or k-b� i = ∞. Let us suppose that k-b� c = ∞.  Then from (2.3), we 
can find infinitely natural numbers ' satisfying inequality (2.5) and since (C, D) ∈ B, we infer from (2.9) 
and condition (b3) that b = 0. On the other hand, if k-b� i = ∞,, then from (2.3), we can find infinitely 
many ' ∈ ℕ satisfying inequality (2.7). Since (C, D) ∈ B, we obtain  
 

V$ ≤ a\[��a\`^]
��a\    

 
for infinitely many ' ∈ ℕ. Letting the limit as n → ∞ and taking into account that (2.9), we deduce that b ≤ b (1 + b) (1 + b)⁄  and consequently, we obtain b = 0. 
 
Therefore 
 lim$→∞ V$ = b = 0.                                                                                                                      (2.10) 
 
Now, we will show that #��$% is a Cauchy sequence. Suppose on the contrary that #��$% is not a Cauchy 
sequence. Then given9 > 0,  we will construct a pair of subsequences #��;m%  and #��$m%  violating the 
following condition for least integer 8n  such that 8n > 'n > 7, where 7 ∈ ℕ:     
 on = *K��$m, ��$m , ��;mL ≥ 9                                                                                                        (2.11) 
 
In addition, upon choosing the smallest possible 8n , we may assume that 
 *K�$m , �$m , �;mX�L < 9                                                                                                                   (2.12) 
 
From Lemma 1.1, Lemma 1.2, (2.11) and (2.12), we have 
 

              9 ≤ on 
                 = *K��$m, ��$m, ��;mL 

                 = *K��;m, ��;m , ��$mL 

                 ≤ 2*K��;m , ��;m , ��;mX�L + *K��$m , ��$m, ��;mX�L 

                 ≤ 2*K��;mX�, ��;mX�, ��;mL + *K��$m , ��$m , ��;mX�L 
                 ≤ 9 + 2V;mX�                                                                                                                             (2.13)      
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On letting the limit as 7 → ∞ in the above inequality, we obtain 
 678n→∞ on = 9                                                                                                                               (2.14)  
 
If we denote  �n = *K��$m��, ��$m��, ��;m��L, we notice that            
                 

  |�n − on| = p*K��$m��, ��$m��, ��;m��L − onp 
 
                              ≤ 2*K��$m��, ��$m��, ��$mL + *K��;m��, ��;m��, ��$mL − on 
 
                              = 2*K��$m , ��$m , ��$m��L + 2*K��;m��, ��;m��, ��;mL − on 
 
                              ≤ 2V$m + 2*K��;m��, ��;m��, ��;mL + *K��$m, ��$m , ��;mL − on 
 
                              = 2V$m + 2*K��;m , ��;m, ��;m��L + on − on 
 
                              = 2V$m + 2V;m                                                                                                              (2.15) 
 
On making 7 → ∞, we immediately obtain that: 
 678n→∞ �n = 9                                                                                                                                (2.16) 
 
It follows from (2.2) and (2.3) that M�$m�� = ��$m ⪯ ��;m = M�;m��.Now using contractive condition (2.1), 
we get 
 

C(�n) = C P*K��$m��, ��$m��, ��;m��LS 

 

                     ≤ 8-� qD P*KM�$m��, M�$m��, M�;m��LS , D rQPR�sm]^,R�sm]^,��sm]^St��QPR�\m]^,R�\m]^,��\m]^Su
��QP��\m]^,��\m]^,��sm]^S vw 

 

                    = 8-� qD P*K��$m, ��$m, ��;mLS , D rQP��sm ,��sm ,��sm]^St��QP��\m ,��\m ,��\m]^Su
��QP��\m]^,��\m]^,��sm]^S vw 

                    = 8-� qD(on), D rasmt��a\mu
��xm vw                                                                                              (2.17) 

 
Let us put  
 i = #7 ∈ ℕ ∶ C(�n) ≤ D(on)%,      

 

k = q7 ∈ ℕ ∶ C(�n) ≤ D rasmt��a\mu
��xm vw.              

     
 
By (2.17), we have k-b� i = ∞  or k-b� k = ∞ . Let us suppose that k-b� i = ∞ . Then there exists 
infinitely many 7 ∈ ℕ satisfying inequality C(�n) ≤ D(on) and since (C, D) ∈ B, we have by letting the limit 
as 7 → ∞, limn→∞ �n ≤ limn→∞ on. We infer from (2.14) and (2.16) that 9 = 0. This is a contradiction.  
 
On the other hand, if k-b� k = ∞, then we can find infinitely many 7 ∈ ℕ satisfying inequality C(�n) ≤
D rasmt��a\mu

��xm v and since (C, D) ∈ B,  we obtain �n ≤ asmt��a\mu
��xm . Om letting the limit as 7 → ∞ and using 
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(2.10) and (2.16) we get 9 ≤ 0, which is a contradiction. Therefore, since in both possibilities k-b� i = ∞ 
and k-b� k = ∞, we obtain a contradiction, we deduce that #��$% is a Cauchy sequence. From (2.1), we 
have #M�$��% is also a Cauchy sequence. Since M(�) is closed, there exists & ∈ � such that 
 lim$→∞ ��$ = lim$→∞ M�$ = M&.                                                                                                (2.18) 
 
Now we will show that & is a coincidence point of � and M. Since#M�$% is non-decreasing sequence in � 
such that M�$ → M&, then M�$ ⪯ M& for all ' ∈ ℕ. Applying contractive condition (2.1), we obtain for any ' ∈ ℕ, 
 

CK*(�&, �&, ��$)L ≤ 8-� ODK*(M&, M&, M�$)L, D PQ(R�\,R�\,��\)[��Q(Ry,Ry,�y)]
��Q(�y,�y,��\) ST                    (2.19) 

 
Put  
 

z = {' ∈ ℕ ∶ CK*(�&, �&, ��$)L ≤ DK*(M&, M&, M�$)L|,        
               

} = O' ∈ ℕ ∶ CK*(�&, �&, ��$)L ≤ D PQ(R�\,R�\,��\)[��Q(Ry,Ry,�y)]
��Q(�y,�y,��\) ST.          

   
By (2.19), we have k-b� z = ∞  or k-b� } = ∞ . Let us suppose that k-b� z = ∞ . Then there exists 
infinitely many ' ∈ ℕ   satisfying inequality CK*(�&, �&, ��$)L ≤ DK*(M&, M&, M�$)L and since (C, D) ∈ B, 
letting the limit as ' → ∞ and using (2.18), we obtain lim$→� *(�&, �&, ��$) = 0,  and consequently, we 
obtain lim$→� ��$ = �&. The uniqueness of the limit, since  lim$→� ��$ = M&, we have �& = M&. 
 
On the other hand, if k-b� } = ∞, we can find infinitely many ' ∈ ℕ satisfying inequality  
 

CK*(�&, �&, ��$)L ≤ D PQ(R�\,R�\,��\)[��Q(Ry,Ry,�y)]
��Q(�y,�y,��\) S                                                                   (2.20) 

 
Now, passing to the limit in 
 *(M�$, M�$, ��$) ≤ *(M�$, M�$, M&) + *(M�$, M�$, M&) + *(��$, ��$, M&) 
 
as ' → ∞, we obtain lim$→� *(M�$, M�$, ��$) = 0. Since (C, D) ∈ B, letting the limit as ' → ∞ in (2.20) 
and taking into account that lim$→� *(M�$, M�$, ��$) = 0,  we deduce that lim$→� *(�&, �&, ��$) = 0 and 
consequently, we obtain lim$→� ��$ = �&. Thus, we have �& = M&. Therefore, in both the cases, & is a 
coincidence point of � and M.  
 
Furthermore, we will show that M& is a common fixed point of � and M if � and M are commutative at the 
coincidence point. Indeed, we have �(M&)  =  M(�&)  =  M(M&). By (2.3) and (2.18), we have M& ⪯ M(M&). 
Applying contractive condition (2.1), we obtain  
 

    C P*K�&, �&, �(M&)LS ≤ 8-� ODK*(M&, M&, M(M&))L, D PQ(R(Ry),R(Ry),�(Ry))[��Q(Ry,Ry,�y)]
��Q(�y,�y,�(Ry)) ST 

 

                                                      = 8-� ODK*(M&, M&, M(M&))L, D PQ(R(Ry),R(Ry),�(Ry))
��Q(�y,�y,�(Ry)) ST                      (2.21) 

Consider    
 

8-� �D P*KM&, M&, M(M&)LS , D �QKR(Ry),R(Ry),�(Ry)L
��QK�y,�y,�(Ry)L �� = DK*(M&, M&, M(M&))L  
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In this case, from (2.21) we have C P*K�&, �&, �(M&)LS ≤ DK*(M&, M&, M(M&))L. Now, since(C, D) ∈ B, 
and using �(M&) =  M(�&) =  M(M&), we get *K�&, �&, �(M&)L = 0 and therefore �(M&) = M(M&) = �& =M&.  
 
On the other hand, if 
 

8-� qD P*KM&, M&, M(M&)LS , D r*KM(M&), M(M&), �(M&)L
1 + *K�&, �&, �(M&)L vw = D r*KM(M&), M(M&), �(M&)L

1 + *K�&, �&, �(M&)L v 

 
In this case, from (2.21) we have 
 

C P*K�&, �&, �(M&)LS ≤ D r*KM(M&), M(M&), �(M&)L
1 + *K�&, �&, �(M&)L v.  

 
Now, since (C, D) ∈ B,  we get  
 

*K�&, �&, �(M&)L ≤ QKR(Ry),R(Ry),�(Ry)L
��QK�y,�y,�(Ry)L .   

 
Thus, *K�&, �&, �(M&)L = 0 and therefore �(M&) = M(M&) = �& = M&.  
 
This result finishes the proof. 
 
By Theorem 2.1, we obtain the following corollaries. 
 
Corollary 2.2: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that  
 

*(��, ��, ��) ≤ �*(M�, M�, M�) + � Q(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) ,                                               (2.22) 

 
for all �, � ∈ �  with M� ⪯ M�,  where �, � > 0  and � + � < 1 . Assume that if #M�$%  is non-decreasing 
sequence in � such that M�$ → M&, then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ. If there exist �" ∈ � such that M�" ⪯ ��", then � and M have a coincidence point. Furthermore, if � and M commute at the coincidence 
point, then � and M have a common fixed point. 
 
Proof: Since 
 

*(��, ��, ��) ≤ �*(M�, M�, M�) + � *(M�, M�, ��)[1 + *(M�, M�, ��)]
1 + *(��, ��, ��) , 

 

                                     ≤ (� + �) max O*(M�, M�, M�), Q(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) T 

 

                                     = max O(� + �)*(M�, M�, M�), (� + �) Q(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) T 

 
for all comparable elements �, � ∈ �, where � + � < 1. This condition is a particular case of the contractive 
condition appearing in Theorem 2.1 with the pair of functions (C, D) = (1[",∞) , (� + �)1[",∞)) ∈ B, given 
by C = 1[",∞) and D = (� + �)1[",∞), (see Example 1.20). Furthermore, we relaxed the requirement of the 
continuity of mapping to prove the results.  



 
 
 

Bohre et al.; ARJOM, 1(5): 1-16, 2016; Article no.ARJOM.28960 
 
 
 

10 
 
 

Corollary 2.3: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists a pair of functions (D, C) ∈ B satisfying 
 

CK*(��, ��, ��)L ≤ DK*(M�, M�, M�)L                                                                                        (2.23) 

 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
Corollary 2.4: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists a pair of functions (C, D) ∈ B satisfying 
 

CK*(��, ��, ��)L ≤ D PQ(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) S,                                                                       (2.24) 

 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
Taking into account Example 1.19, we have the following corollary. 
 
Corollary 2.5: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists a pair of functions (C, D) ∈ B satisfying 
 
               CK*(��, ��, ��)L ≤ 8-�{CK*(M�, M�, M�)L − DK*(M�, M�, M�)L�,  
 

                                                        �C PQ(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) S − D PQ(R�,R�,��)[��Q(R�,R�,��)]

��Q(��,��,��) ST             (2.25) 

 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
Corollary 2.5 has the following consequences. 
 
Corollary 2.6: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists a pair of functions (C, D) ∈ B satisfying 
 

CK*(��, ��, ��)L ≤ CK*(M�, M�, M�)L − DK*(M�, M�, M�)L,                                                      (2.26) 
 
for all �, � ∈ � with M� ⪯ M�. Assume that if  #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
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Corollary 2.7: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *) be a complete S-metric space. Let �, M: � → � be two maps with �(�) ⊂ M(�), � is M-non-decreasing 
map and M(�) is closed such that there exists a pair of functions (C, D) ∈ B satisfying 
 

 CK*(��, ��, ��)L ≤ C PQ(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) S − D PQ(R�,R�,��)[��Q(R�,R�,��)]

��Q(��,��,��) S,                       (2.27) 

 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
Taking into account Example 1.20, we have the following corollary. 
 
Corollary 2.8: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists � ∈ * satisfying 
 
             *(��, ��, ��) ≤ 8-�{�K*(M�, M�, M�)L*(M�, M�, M�),�  
 

                                      �� PQ(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) S PQ(R�,R�,��)[��Q(R�,R�,��)]

��Q(��,��,��) ST                                       (2.28)  

 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
A consequence of Corollary 2.8 is the following corollary. 
 
Corollary 2.9: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists � ∈ * satisfying 
 

*(��, ��, ��) ≤ �K*(M�, M�, M�)L*(M�, M�, M�)                                                                        (2.29) 
 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
Corollary 2.10: Let (�, ⪯) is a partially ordered set. Suppose that there exist an S-metric * on � such that (�, *)  be a complete S-metric space. Let �, M: � → �  be two maps with  �(�) ⊂ M(�), �  is M -non-
decreasing map and M(�) is closed such that there exists � ∈ * satisfying 
 

             *(��, ��, ��) ≤ � PQ(R�,R�,��)[��Q(R�,R�,��)]
��Q(��,��,��) S PQ(R�,R�,��)[��Q(R�,R�,��)]

��Q(��,��,��) S                                      (2.30) 

 
for all �, � ∈ � with M� ⪯ M�. Assume that if #M�$% is non-decreasing sequence in � such that M�$ → M&, 
then M�$ ⪯ M& ⪯ M(M&) for all ' ∈ ℕ . If there exist �" ∈ �  such that M�" ⪯ ��" , then �  and M  have a 
coincidence point. Furthermore, if � and M commute at the coincidence point, then � and M have a common 
fixed point. 
 
If we put � = M in Theorem 2.1, we have following corollary. 
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Corollary 2.11: Let (�, ⪯) is a partially ordered set. Suppose that there exists an S-metric * on � such that (�, *) be a complete S-metric space. Let �: � → � be a non-decreasing map such that there exists a pair of 
functions (C, D) ∈ B satisfying 
 

        CK*(��, ��, ��)L ≤ 8-� ODK*(�, �, �)L, D PQ(�,�,��)[��Q(�,�,��)]
��Q(��,��,��) ST,                                             (2.31) 

 
for all �, � ∈ � with � ⪯ �. Assume that if #�$% is non-decreasing sequence in � such that �$ → &, then �$ ⪯ & for all ' ∈ ℕ. If there exist �" ∈ � such that �" ⪯ ��", then � have a fixed point. 
 
In what follows, we prove a sufficient condition for the uniqueness of the fixed point in Corollary 2.11. 
 
Theorem 2.12: Suppose that: (a) hypothesis of Corollary 2.11 hold, (b) for each �, � ∈ �, there exists , ∈ � 
that is comparable to � and �. Then � has a unique fixed point. 
 
Proof: As in the proof of Corollary 2.11, we see that � has a fixed point. Now we prove that the uniqueness 
of the fixe point of �. Let & and � be two fixed points of �.  
 
We consider the following two cases: 
 
Case 1. &  is comparable to � . Then �$&  is comparable to �$�  for all ' ∈ ℕ . For all - ∈ �,  applying 
contractive condition (2.31), we have 
 
                CK*(&, &, �)L = CK*(�$&, �$&, �$�)L 
 

                                       ≤ 8-� ODK*(�$X�&, �$X�&, �$X��)L, D PQK�\`^�,�\`^�,�\�L���QK�\`^y,�\`^y,�\yL�
��Q(�\y,�\y,�\�) ST   

 

                                       = 8-� ODK*(&, &, �)L, D PQ(�,�,�)[��Q(y,y,y)]
��Q(y,y,�) ST                                                    (2.32) 

 
Consider 
 

8-� qDK*(&, &, �)L, D r*(�, �, �)[1 + *(&, &, &)]
1 + *(&, &, �) vw = DK*(&, &, �)L 

 
Then from (2.33), we have CK*(&, &, �)L ≤ DK*(&, &, �)L. Since (C, D) ∈ B, it follows that *(&, &, �) = 0 
and so & =  �. 
 
If  
 

8-� qDK*(&, &, �)L, D r*(�, �, �)[1 + *(&, &, &)]
1 + *(&, &, �) vw = D r*(�, �, �)[1 + *(&, &, &)]

1 + *(&, &, �) v 

 
Then from (2.33), we have  
 

CK*(&, &, �)L ≤ D PQ(�,�,�)[��Q(y,y,y)]
��Q(y,y,�) S.  

 
Then since (C, D) ∈ B, we have *(&, &, �) ≤ 0 and so & =  � 
 
Therefore, in both cases we proved that & =  �. 
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Case 2. & is not comparable to �. Then there exists , ∈ � that is comparable to & and �. Now, we can define 
the sequence #,$% in � as follows: ," = ,, �,$ = ,$��, ∀ ' ∈ ℕ. Since � is non-decreasing we have, 
 ," ≤ ,$ ≤ ,$�� and lim$→� *(,$, ,$ , ,$��) = 0.                                                                        (2.33) 
 
As & ≤ ,$ , putting � = & and � = ,$ in the contractive condition (2.31), we get 
 
               CK*(&, &, ,$��)L = CK*(�&, �&, �,$)L 
 

                                           ≤ 8-� ODK*(&, &, ,$)L, D PQ(�\,�\,�\]^)[��Q(y,y,�y)]
��Q(�y,�y,��\) ST 

 

                                           = 8-� ODK*(&, &, ,$)L, D P Q(�\,�\,�\]^)
��Q(y,y,�\]^)ST                                                      (2.34) 

 
Let us denote 
 

� = {' ∈ ℕ ∶ CK*(&, &, ,$��)L ≤ DK*(&, &, ,$)L|    
                       

� = O' ∈ ℕ ∶ CK*(&, &, ,$��)L ≤ D P Q(�\,�\,�\]^)
��Q(y,y,�\]^)ST                 

                        
Now we remark following again. 
 

(1). If k-b� � = ∞, then from (2.34), we can find infinitely natural numbers '  satisfying inequality 
 

CK*(&, &, ,$��)L ≤ DK*(&, &, ,$)L. 
 
Since (C, D) ∈ B,  it follows that the sequence #*(&, &, ,$��)%  is non-increasing and it has a 
limit  6 ≥ 0. Since 
 lim$→� *(&, &, ,$��) = lim$→� *(&, &, ,$) = 6 
 
and (C, D) ∈ B,we obtain 6 =  0. 
 

(2). If k-b� � = ∞, then from (2.34), we can find infinitely natural numbers '  satisfying inequality 
 

CK*(&, &, ,$��)L ≤ D P Q(�\,�\,�\]^)
��Q(y,y,�\]^)S. 

 
Then since (C, D) ∈ B, we have 
 

*(&, &, ,$��) ≤ *(,$, ,$, ,$��)
1 + *(&, &, ,$��) 

 
Sincelim$→� *(,$, ,$, ,$��) = 0 and lim$→� *(&, &, ,$��) = 6,on making ' → ∞   we have 6 = 0. 

 
Therefore, in both cases we proved that 
 lim$→� *(&, &, ,$��) = 6 = 0. 
 
In the same way it can be deduced that 
 lim$→� *(�, �, ,$��) = 0. 
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Therefore passing to the limit in 
 *(&, &, �) ≤ *(&, &, ,$��) + *(&, &, ,$��) + *(�, �, ,$��) 
 
as ' → ∞, we obtain & = �. That is, the fixed point is unique. 
 

3 Example  
 
We give an example to demonstrate the validity of the above result.  
 
Example 3.1 Let � = #1, 2, 3% and let * be defined as follows. 
 *(1, 1, 1) =  *(2, 2, 2) =  *(3,3, 3) =  0, 

 
    *(1, 2, 3) = *(1, 3, 2) = *(2, 1, 3) = *(3, 1, 2) =  4, 
 
    *(2, 3, 1) =  *(3, 2, 1) =  *(1, 1, 2) =  *(1, 1, 3) =  *(2, 2, 1) =  *(3, 3, 1) =  2, 
 
    *(2, 2, 3) =  *(3, 3, 2) =  6, 
 
    *(2, 3, 2) =  *(3, 2, 2) =  *(3, 2, 3) =  *(2, 3, 3) =  3, 
 
    *(1, 2, 1) =  *(2, 1, 1) =  *(1, 3, 1) =  *(3, 1, 1) =  *(2, 1, 2) =  *(1, 2, 2) 
 
    =  *(3, 1, 3) =  *(1, 3, 3) =  1.  

 
We have *(�, �, ,) ≥ 0  for all �, �, , ∈ �  and *(�, �, ,) = 0  if and only if � = � = , . By simple 
calculations, we see that the inequality 
 *(�, �, ,) ≤ *(�, �, -) + *(�, �, -) + *(,, ,, -) 
 
holds for all �, �, ,, - ∈ �. Then * is an *-metric on � with the usual.  
 
Consider the function �, M ∶ � → �  given as �� = M� = 1, ∀ � ∈ � . Define the functions C, D: [0,∞) →
[0,∞) as follows: for all F ∈ [0,∞), C(F) = ln P �

�1 + ��
�1S and  D(F) = ln P �

�1 + +�
�1S. Then all assumptions of 

Theorem 2.1 are satisfied. Then Theorem 2.1 is applicable to � and M on *.  
 

4 Conclusion 
 
In this article, we established some common fixed point theorems for g-monotone maps involving rational 
expression in the framework of S-metric spaces endowed with a partial order using a class of pairs of 
functions satisfying certain assumptions. The presented theorems extend, generalize and improve many 
existing results on metric spaces to S-metric spaces in the literature. Our results may be the motivation to 
other authors for extending and improving these results to be suitable tools for their applications.   
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