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Abstract

Let Ag be the Laplacian on smooth functions on a compact Riemanniafotdafil , g) and Zg the

associated spectral zeta function. Some special valuetheofspectral zeta function and their
generalisations such as the spectral height and specteami@nt usually defined in terms of the

spectral zeta function to b&; (0) and exp({(0)) respectively, have been computed explicitly, see

e.g [1,2] and [3]. Another special value of the spectetd function which has been a fundamental igsue
in quantum field theory is the Vacuum (Casimir) energyi@a energy is defined, mathematically, via

the spectral zeta function as a function on the set of ereairi the manifold by (_}) [4,5] and [6]. In
9 2 !

this paper, a general technique for computing the Casingrggnof the Laplacian on the unfit -

dimensional sphereS", by factoring the spectral zeta function through the RiematmfznctionZR is
presented.
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1 Introduction

The study of Vacuum energy (also known as Casimirggfds believed to originate from the work of
Hendrik B. G. Casimir (1909 - 2000), who in the year 1948tpdimut the existence of a force between a
pair of neutral perfectly conducting parallel plate$,diid [8]. The Casimir energy may be thought-of as the
energy difference due to the distortion of the vacuum,T6§ energy difference gives rise to what is known
as the Casimir force. Although Casimir energy is a conggging in quantum field theory with observable
consequences in physics, research is on-going in tilkenm@spects of spectral geometry, formulating the
notion in a purely mathematical framework; you may seeng@iand the numerous literature cited there-
in.

In most physics literature, the Casimir energy, papyldenoted byE__ is written as sum over the

eigenvaluesi), = /A, of the Laplacian on smooth functions &4 , i.e E_ = chq( which is the

1
spectral zeta functio:zfg ats= —E. Because the spectral zeta function depends on the chometof

1
g. [9,10,4,11,12], the Casimir ener@g (_E) is defined via the spectral zeta function as a function o

the set of metrics on the manifoldl , see [7]. However, this sum is usually divergent and has to be
regularized.

The regularization of this a priori divergent sum has beeiougly addressed using different methods; see
e.g [8,13,14,5,2,15,16,17,9] and mostly recently [3] anéf@dng many other literature. For example in [7],
Elizalde had to split the sphere into hemispheres and imp@irichlet boundary condition on one of the
hemispheres and Neumann boundary condition on the other tdl®ecampute Casimir energy on

S",n=1,2,3,4. The authors in [3] followed similar procedure as8htp compute functional determinant
corresponding to massive Laplacian in arbitrary dimensigpla¢res. In this paper, a more general method

1
of computing the Casimir energg/, (—E) of the LaplacianA ; on the N-sphere,S" which only employs

factoring the spectral zeta functify, (S) through the Riemann zeta functidfy(S) is introduced. This

method has an advantage of computing the Casimir energpithey dimensional spheres less tediously
over the method of taking the full sphere as the union d€dét and Neumann problems on hemispheres.

This is simply obtained by computing the finite pdrf, of the spectral zeta functior{sn, of the

Laplacian on the spheres given by

00

_ oo (=1 T(s+m) T(k+n-1) \  N=1 5 o,
=2 e Tk <2 )

for eachn where the finite part functior-P, is defined by

f(s) if sis not a pole

FHf](s):= |i%(f(s+£)—@e),ifsisapole

We proceed by giving the notion of the Laplacian and thetspezeta function of the Laplacian on
Riemannian manifolds.
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2 Basic Concepts

2.1 TheLaplacian on the unit n-sphere
The Laplacian on smooth functions ¢M , g) is the operator
A, :C*(M) - C*(M) (2.1)

defined in local coordinates by

. ) 2.2)

A, =-div(grad = - J_Z o % Wialg' 2 a

where gij are the components of the dual metric, [18, 19] and [20].

The operatorA; extends to a self-adjoint operator af(M)OH?*(M) - L*(M) with compact

resolvent. This implies that there exists an orthonormsis§g/, } 1 L*(M) consisting of eigenfunctions
such that

A = A, (2:3)
where the eigenvalues are listed with multiplisitie

0=y <A <A <A << <) (2.4)

see for example, ([18,20] and [17]). The Laplacﬁg thus, has one-dimensional null space consisting
precisely of constant functions.

The N-dimensional sphere of radius, r JR™ is the set of points ilR™ at a distance from a given
central point; i.eS"(r) ={xOR"™™ || x||=r}, [17,21,22] and [2]. We calS" a unit N-sphere or
simply anN-sphere when the radius=1 and write the uniin-sphere as the set

"={xOR"™ | x||I=1} (2.5)
where|| [|| is the usual norm oh*(S"), see e.g. [23].

The N-sphere is am -dimensional compact manifold ifn+1) -space of constant positive sectional
curvature, namely+1, n= 2. So, in particular, the 0-sphere, 1-sphere and the 2&iierrespectively a
pair of points on a line segment, a circle on a plane anddeaoy sphere in 3-dimension.

Let f OS" be any function on th&-sphere andf~ be its extension to an open neighbourhoo®bfthat

is constant along rays from the centre . We say thatf JC*(S") if f is aC? function of that
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neighbourhood. For such functions (not contairfi@y ) on S" the Laplaciard\, equals
Af=Af (2.6)
whereAg on the right-hand side of (2.6) is the usual LaplaciaR H".

In R",n>2, every pointX#0 can be represented in polar coordinates as a cdup) where
X _

r:=|x|>0 is the polar radius an@::ﬁDSn Lis the polar angle. In the polar coordinates, the
X

Riemannian measure o8" is given bydV = gin"*rdrd é.

For the unitn-sphere, the Laplacian (2.6) in polar coordinates reduces to

1
sinf@

.1 o
" sin"808

0
{sin”'lﬁﬁ} + A 2.7)

where A _, is the Laplacian or8" .
Following [24, 14, 22] and [23], we give the followidgfinitions.

Definition 2.1 A function f :R" - C is called homogeneous of degrkeif it satisfies f (tx) = t* f (x)
forall xOR" andt > O fixed.

Definition 2.2 Let P, (n) denote the space of homogeneous polynomials of db’gine(n +1) variables.
The space H,(n):={p, OP(n):A,p, =0, p, homogeneas} is called the space of harmonic
homogeneous polynomials.

Note, if p, JH, (n) then

X X n.
P () =] x[" mk(m);wheremms “x# 0.

Also, if P, Is”: O | ii-e p(X) =g, (x) OxOS", then

s’

X X
=) =Ix[ g (—

=0, (x) Ox#0:; =
IX] |X|) . (x) = Pc =G

P (X) :|X|k Py (

since they are both polynomials. One may see [2, 25, Shdoe details.

Theorem 2.3[23]. The dimensiord, (n) of the space of harmonic polynomltd], is given by the formula
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dk(n):[k;nJ—(k+:_2j. 2.8)

We make the following lemma.

Lemma 2.4 The multiplicitiesd, (n) of the eigenspace of the spectr{ih} can be expressed as

2k +n-1)(k+n-2)!
K(n—1)!

di(n) = (2.9)

where k (0N, and n = 1is thedimensiorof themanifold S".

Proof. It is clear that

4 = k+n) (k+n=2) _(k+n)! (k+n-2)!
()= n n ) Kn (k-2)n

(k+n—2)![(k+n)(k+n—1) 1
n! k! (k=2)!

]

which simplifies as

(k+n-2)! (k+n)(k+n-1)
n(k-2)! k(k—1)
(k+n-2)I'n
k! nl
_(2k+n-1)(k+n-2)!
- kI(n-1)! '

1]

(2k +n-1)

2.2 Spectral zeta function

Spectral zeta function is best explained through the welvknRiemann zeta function. Recall that the
Riemann zeta functioq' is the function defined ag;: {SOC:[1(s) >1} - C with

ACED I IO (210)

c.f: [4] and [10]. Notice that since

>, 1 1
Zlﬁlzzkﬂ(s) ’ (2.11)

[}
k=1 k=1

the series on the right-hand-side of (2.11) convergeslutbly if and only if (1(S) > 1. The Riemann zeta
function defined by (2.10) above is holomorphic in the regidicated. It, however, admits a meromorphic
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continuation to the wholé& -complex plane with only simple pole &=1 and has residue 1; see e.g.
[19,21, 186, 4, 10].

A generalization of the Riemann zeta function (2.10) isthewitz zeta functiond, (S, &).

Definition 2.5 [4,10] Let SLIC and 0<a<1. Then for[1(s) >1, the Hurwitz zeta function is defined
by

. (sa)= Z O(s) >1. (2.12)

)s’

Clearly, {}; (S,1) = {z(5). Expression fora=b+1;b R follows by observing that

G =Y s = () 2.13)

Theorem 2.6 For 0 < a<1, we have

ZH(S,a)=é Z( 1y m I (s+m) "

2 T a"dg(s+m). 2.14)

Proof. Note that for| z|<1 the following binomial expansion holds

M(s+m _.,
(1-2)— mzo—mr(s) z".

SoforJ(s) >1, we have

which gives the expansion

Another generalisation of the Riemann zeta function issgeetral zeta function, which is the function of
interest in this paper. The Laplacian defined in (2c2ng on smooth functions on the closed and connected

Riemanniann-dimensional manifolds is a non-negative operator and has tbeetdispectrunf A, },_,
listed with multiplicities. We define
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{y(9)= Z/]s’ D(S)>g; (2.15)

see e.g. [21,11].

The integral kerneld g (s,%,y), associated with the spectral zeta function is defiria the operatoA_gS
(see e.g. [9]) given by the following properties, [23] #id

1. ltislinear on L2(M ) with 1-dimensional null space consisting of constant functidhis ensures
_ 1
that the smallest eigenvalue Afgs is O of multiplicity 1 with corresponding eigenfunctionﬁ

whereV is the volume ofM.

2. The image ofA_gS is contained in the orthogonal complement of constant fumin L2(M ) ie.

jMAjzpdvg =0 OwOL%(M) constant
3. A (X) =AY, (X) forall ¢, ;k >0 an orthonormal basis of eigenfunction%ﬁ'

n _
Then for [1(s) > E we see by property (3.) th:!itgs is trace class, with trace given by the spectra zet

function, namely

7,(9)= i/]i =Tr(A;) = jM(g (s,x,X)dV ; 0O(s)> 2 (2.16)
k=1

k

Theorem 2.7 [17,25]. Let{l//k} ;0:1 be an orthonormal eigenbasis f&g corresponding to the eigenvalues

{AJc-, listed with multiplicities. Then the zeta kernél, (S,X,Y) , also called thepoint-wise zeta
function, is equal to

Z (S X, y) zwk(xz?k(y) D(S) > (2.17)

From here on, we suppress the subscgipin ¢, (S) and A . We simply write{ (S) and A for ' (S)

and Ag respectively, unless for purpose of emphasis.
3 Casimir Energy of A, on S

Using the properties of the Riemann and Hurwitz zeta fumetieviewed above, we can now compute the
Casimir energy of the Laplaciaﬁg for the round metric or8". As mentioned earlier, sometimes zeta
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regularisation is not sufficient to define the Casinmiergy, becauset;’g has a pole at-1/2. In this case,

we define the Casimir energy as the finite pargfat S= —1/2, whereFF is the finite part function
given by

f(s) if s is not a pole

— i 3.1
FRLTI(S): lim (f(s+&)- Readui if sisapole 31)
£-0 &
Now note that the zeta function on tResphere is specifically given by
= d,(n) n
S)= ) —————; U(s)>— 3.2
(o= Lian-yy DO9>3 (3.2)

with d, (n) defined by equation (2.8), [2,13,12,17,25,23,5].
The following theorems will be used to switch limits angkgrals; and sum and integrals.

Theorem 3.1 [18,19]. (Dominated Convergence Theorem). K{1R" be open and le{y,} be a
sequence of integrable functions & Suppose thatimy .., (X) =¢/(X) K -almost everywhere.

Further suppose that there exists =0 with 'fga)(x)d/l(x) < oo such thaty, (X) < w(Xx) UK. Then
Y (X) < «(x) W -almost everywhere and

lim [ 9 (0du(x) = [ ¢ ()du(3);
wheredu(X) is the measure form of.

Theorem 3.2 [18,19]. (Fubini - Tonelli theorem). Left//,} be a sequence of measurable functions. Sum

and integral such aszkj.wk(x)dx can be interchanged in either of the following cases:

W, 2 0,0kON or D[ |¢, (x)|dx<eo,
k

Thus [(s) > g one WritesZSn (s) from (3.2) as

1 i(k+n—2)!(2k+n—1)

o= 0IDiE T Kkk+n-1))

and make the substitution

n-1
w=KkK+—= 3.3
2 ©9



Omenyi; ARJOM, 1(5): 1-14, 2016; Article no.ARJCAA523

to have
o 2WI'(W+nZ_])
HOEDY 3n T
LM (w+ =)W - )°
2 4
By Mellin transform
n -_—
e 20T (WH—5) (n-1)2
{ (9= 1 jo 32_ - e 4t
"OTE e =)

Re-arranging of integral and sum using the Fubini - Totiebrem (3.2) since the exponential of a negative
number is bounded gives

1 &< (n_l)Zm 2 ® w2ty s+m-1
S) = et dt.

Now let W’t > T to have

2wl (w+ n;l)

1 &9 (n_l)Zm -2s-2m [[® -7 - s+m-1
S) = w e’'r dr
=g zz 0 o [,

r(nmr(w+ 5 )
~2s-2m+l n-1
:ZZ”: (n—lr)ﬂ2m F(s+m)Z°°:W r(W+T)
mo M4 res w= r(n)r(W+3_2n)
Thus,
an (S) — Zi (n _1)2m r(S+ m) i r(k +n _1) (k + n _1)—25—2m+1. (3.4)

o m4" Mres) <=Srmrk+1) 2

Consequently, fom =1, ie the unit circle, we have

Ca(9=3 5= 2029

k=1

(3.5)

which gives
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1
{4(=3) = 25(-1)=-0.166667. (3.6)

For S?, we have
& 2k+1
Z (37)
1 (k(k+1))°

1
and from 3.3 making the substitutian = k +E yields

= 2w
ZSZ :Z—]_( ) 1)
W= wo—= S

4

which reduces from (3.4) to

I(s+m) 43
(.= 2;0—m4”‘r( )ZH (2s+2m 1,2). (3.8)

1
Therefore, the Casimir energ§ , (—=) of A, on S* becomes
s 2 9

FR{, (—%)] =~ -0.265096. g3
Similarly, on the3-sphere, we have

(9 = i (k+1)

) (3.10)
i1 (K(k+2))

and letw =Kk +1 so that
=D ——
ZSS( ) ;(WZ _1)3

and thus

{s(9)= erfisr(r?ZH(zS +2m-2,2) (3.11)

1 1
which has simple pole d@n= 2 with residue— 5 for Zs3 (- E) Therefore,

10
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FAC (—%)] ~ -0.411503. (3.12)

on S*, we have

(k+1)(k +2)(2k +3)
‘=75 kZ_;‘ (k(k +3))° (3.13)
and letw = k+§ to get
2
- WW - 1)
(9= —5%
(w? - 4)
From (3.4) this reduces to
r(s+m 9 s
{u(9)= mzo (s (4) (¢, (2s+2m-3, ) ZH(25+2m 1,2)). (3.14)

1
Unsurprisingly, S = _E is not a pole forZS4 (S). This gives the Casimir energy of the Laplacian$‘h

as

L1 F(m-12) 9 5 _1 S
s ) mzom'l'( 1/2)(4) ({y (2m-4, ) ZH(Zm 2, ))

=-0.43174: (3.15)

Furthermore, forS®, we have

1o (kDK +27 (k+3)
T TS (3.10)

Let W=K+ 2 to get

_ WZ(Wz—l)
{s(9)= EWZ; 22y

Again from (3.4) this reduces to

1 & 4" (s+m) A _
{s ()_TZmZOT”(ZH(25+2m 4,3)- ¢, (2s+2m-2,3)). (3.17)

11
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1 1 1
The formula (3.17) has simple poles fer= _E at M=2 and M= 3 with residuesl—2 and —g

respectively. Hence, the Casimir energy of the Laplaaia®d is

FPIC (—%)] = ~0.510570. (3.18)

1
The Casimir energ)(A (_E) of the LaplacianAg on higher dimensional unit spheres may be computed
g

similarly using the formula (3.4).
4 Conclusion

We have shown that for a given dimensidrof the unit sphere, our formula (3.4) reduces to a €mpl
formula in terms of the Riemann zeta function or its gdisateon, the Hurwitz zeta function. The Casimir
energy is then simply read-off as

FP(Z_, (9)] |S:%: FP[Z; (nn;jr)m m r(rs(+s)m) Z rr((nk);(r:(:-ll)) (k+ n;l)—25—2m+1] Is:% .

This approach may be employed to compute many other Epati@s of the spectral zeta function of the
Laplacian on some other Riemannian manifolds.
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