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1 Introduction

In 1922, Banach [1] introduced the concept of Banach contraction mapping principle. Due to wide
applications of this concept, the study of existence and uniqueness of fixed points of a mapping and
common fixed points of one, two or more mappings has become a subject of great interest. Many
authors proved the Banach contraction principle in various generalized metric spaces.

In 2007, Huang and Zhang [2] introduced the concept of a cone metric space, they replaced the set of
real numbers by an ordered Banach space and proved some fixed point theorems for contractive type
conditions in cone metric spaces. Later on many authors have proved some fixed point theorems
for different contractive types conditions in cone metric spaces (for e.g., [3, 4, 5]).

Azam et al. [6] introduced the notion of cone rectangular metric space and proved Banach contraction
mapping principle in a normal cone rectangular metric space setting. In 2012, Rashwan and Saleh
[7] extended and improved the result of Azam et al. [6] by omitting the assumption of normality
condition.

Recently, Garg and Agarwal [8] introduced the notion of cone pentagonal metric space and proved
Banach contraction mapping principle in a normal cone pentagonal metric space setting.

Very recently, Garg and Agarwal [9] introduced the notion of cone hexagonal metric space and
proved Banach contraction mapping principle in a normal cone hexagonal metric space setting.

In [10], Khamsi claims that most of the cone fixed point results are merely copies of the classical
ones and that any extension of known fixed point results to cone metric spaces is redundant; also
that underlying Banach space and the associated cone subset are not necessary. In fact, Khamsi’s
approach includes a small class of results and is very limited since it requires only normal cone metric
spaces, so that all results with non-normal cones (which are proper extensions of the corresponding
results for metric spaces) cannot be dealt with by his approach (e.g., see [4] and references therein).

Motivated and inspired by the results of [7, 9, 11], it is our purpose in this paper to continue the
study of common fixed point of mapping in non-normal cone hexagonal metric space setting. Our
results extend and improve the results of [6, 7, 8, 9, 11], and many others.

2 Preliminaries

We present some definitions and Lemmas, which will be needed in the sequel.

Definition 2.1. [2] Let E be a real Banach space and P subset of E. P is called a cone if and only
if:

(1) P is closed, nonempty, and P ̸= {0};
(2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P =⇒ ax+ by ∈ P ;

(3) x ∈ P and −x ∈ P =⇒ x = 0.

Given a cone P ⊆ E, we defined a partial ordering ≤ with respect to P by x ≤ y if and only if
y − x ∈ P. We shall write x < y to indicate that x ≤ y but x ̸= y, while x ≪ y will stand for
y − x ∈ int(P ), where int(P ) denotes the interior of P.
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Definition 2.2. [2] A cone P is called normal if there is a number k > 0 such that for all x, y ∈ E,
the inequality

0 ≤ x ≤ y =⇒ ∥x∥ ≤ k∥y∥. (2.1)

The least positive number k satisfying (2.1) is called the normal constant of P.

In this paper, we always suppose that E is a real Banach space and P is a cone in E with int(P ) ̸= ∅
and ≤ is a partial ordering with respect to P.

Definition 2.3. [2] Let X be a nonempty set. Suppose the mapping ρ : X ×X → E satisfies:

(1) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

Then ρ is called a cone metric on X, and (X, ρ) is called a cone metric space.

Remark 2.1. The concept of a cone metric space is more general than that of a metric space, because
each metric space is a cone metric space where E = R and P = [0,∞) (e.g., see [2]).

Definition 2.4. [6] Let X be a nonempty set. Suppose the mapping ρ : X ×X → E satisfies:

(1) 0 < ρ(x, y) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y;

(2) ρ(x, y) = ρ(y, x) for all x, y ∈ X;

(3) ρ(x, y) ≤ ρ(x,w) + ρ(w, z) + ρ(z, y) for all x, y, z ∈ X and for all distinct points w, z ∈
X − {x, y} [Rectangular property].

Then ρ is called a cone rectangular metric on X, and (X, ρ) is called a cone rectangular metric
space.

Remark 2.2. Every cone metric space is cone rectangular metric space. The converse is not
necessarily true (e.g., see [6]).

Definition 2.5. [8] Let X be a nonempty set. Suppose the mapping d : X ×X → E satisfies:

(1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for x, y ∈ X;

(3) d(x, y) ≤ d(x, z)+d(z, w)+d(w, u)+d(u, y) for all x, y, z, w, u ∈ X and for all distinct points
z, w, u ∈ X − {x, y} [Pentagonal property].

Then d is called a cone pentagonal metric on X, and (X, d) is called a cone pentagonal metric space.

Remark 2.3. Every cone rectangular metric space and so cone metric space is cone pentagonal
metric space. The converse is not necessarily true (e.g., see [8]).

Definition 2.6. [9] Let X be a nonempty set. Suppose the mapping d : X ×X → E satisfies:

(1) 0 < d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for x, y ∈ X;

(3) d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) + d(u, v) + d(v, y) for all x, y, z, w, u, v ∈ X and for all
distinct points z, w, u, v ∈ X − {x, y} [Hexagonal property].

Then d is called a cone hexagonal metric on X, and (X, d) is called a cone hexagonal metric space.

Remark 2.4. Every cone pentagonal metric space and so cone rectangular metric space is cone
hexagonal metric space. The converse is not true (e.g., see [9]).
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Definition 2.7. [9] Let (X, d) be a cone hexagonal metric space. Let {xn} be a sequence in X and
x ∈ X. If for every c ∈ E with 0 ≪ c there exist n0 ∈ N and that for all n > n0, d(xn, x) ≪ c, then
{xn} is said to be convergent and {xn} converges to x, and x is the limit of {xn}. We denote this
by limn→∞ xn = x or xn → x as n → ∞.

Definition 2.8. [9] Let (X, d) be a cone hexagonal metric space. Let {xn} be a sequence in X and
x ∈ X. If for every c ∈ E, with 0 ≪ c there exist n0 ∈ N such that for all n,m > n0, d(xn, xm) ≪ c,
then {xn} is called Cauchy sequence in X.

Definition 2.9. [9] Let (X, d) be a cone hexagonal metric space. If every Cauchy sequence is
convergent in (X, d), then X is called a complete cone hexagonal metric space.

Definition 2.10. [7] Let P be a cone defined as above and let Φ be the set of non decreasing
continuous functions φ : P → P satisfying:

1. 0 < φ(t) < t for all t ∈ P \ {0},
2. the series

∑
n≥0 φ

n(t) converge for all t ∈ P \ {0}.
From (1), we have φ(0) = 0, and from (2), we have limn→0 φ

n(t) = 0 for all t ∈ P \ {0}.

Lemma 2.1. [12] Let (X, d) be a complete cone hexagonal metric space. Let {xn} be a Cauchy
sequence in X and suppose that there is natural number N such that:

1. xn ̸= xm for all n,m > N ;

2. xn, x are distinct points in X for all n > N ;

3. xn, y are distinct points in X for all n > N ;

4. xn → x and xn → y as n → ∞.

Then x = y.

3 Main Results

In this section, we derive the main result of our work, which is an extension of Banach contraction
principle in cone hexagonal metric space and we give an example to illustrate the result.

Theorem 3.1. Let (X, d) be a complete cone hexagonal metric space. Suppose the mapping S :
X → X satisfy the following:

d(Sx, Sy) ≤ φ
(
d(x, y)

)
, (3.1)

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. Let x0 be an arbitrary point in X. Define a sequence {xn} in X such that

xn+1 = Sxn, for all n = 0, 1, 2, . . . .

We assume that xn ̸= xn+1, for all n ∈ N. Then, from (3.1), it follows that

d(xn, xn+1) = d(Sxn−1, Sxn)

≤ φ
(
d(xn−1, xn)

)
= φ

(
d(Sxn−2, Sxn−1)

)
≤ φ2(d(xn−2, xn−1)

)
...

≤ φn(d(x0, x1)
)
. (3.2)

4
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It again follows that

d(xn, xn+2) = d(Sxn−1, Sxn+1)

≤ φ
(
d(xn−1, xn+1)

)
= φ

(
d(Sxn−2, Sxn)

)
≤ φ2(d(xn−2, xn)

)
...

≤ φn(d(x0, x2)
)
. (3.3)

It further follows that

d(xn, xn+3) = d(Sxn−1, Sxn+2)

≤ φ
(
d(xn−1, xn+2)

)
= φ

(
d(Sxn−2, Sxn+1)

)
≤ φ2(d(xn−2, xn+1)

)
...

≤ φn(d(x0, x3)
)
, and (3.4)

d(xn, xn+4) = d(Sxn−1, Sxn+3)

≤ φ
(
d(xn−1, xn+3)

)
= φ

(
d(Sxn−2, Sxn+2)

)
≤ φ2(d(xn−2, xn+2)

)
...

≤ φn(d(x0, x4)
)
. (3.5)

In similar way, for k = 1, 2, 3, . . . , we get

d(xn, xn+4k+1) ≤ φn(d(x0, x4k+1)
)
, (3.6)

d(xn, xn+4k+2) ≤ φn(d(x0, x4k+2)
)
, (3.7)

d(xn, xn+4k+3) ≤ φn(d(x0, x4k+3)
)
, (3.8)

d(xn, xn+4k+4) ≤ φn(d(x0, x4k+4)
)
. (3.9)

By using (3.2) and hexagonal property, we have

d(x0, x5) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x5)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x1)

)
≤

4∑
i=0

φi(d(x0, x1)
)
.

Similarly,

d(x0, x9) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x5)

+ d(x5, x6) + d(x6, x7) + d(x7, x8) + d(x8, x9)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x1)

)
+ φ5(d(x0, x1)

)
+ φ6(d(x0, x1)

)
+ φ7(d(x0, x1)

)
+ φ8(d(x0, x1)

)
≤

8∑
i=0

φi(d(x0, x1)
)
.
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Now by induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x4k+1) ≤
4k∑
i=0

φi(d(x0, x1)
)
. (3.10)

Also by (3.2), (3.3) and hexagonal property, we have

d(x0, x6) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x6)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x2)

)
≤

3∑
i=0

φi(d(x0, x1)
)
+ φ4(d(x0, x2)

)
.

Similarly,

d(x0, x10) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x5)

+ d(x5, x6) + d(x6, x7) + d(x7, x8) + d(x8, x10)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x1)

)
+ φ5(d(x0, x1)

)
+ φ6(d(x0, x1)

)
+ φ7(d(x0, x1)

)
+ φ8(d(x0, x2)

)
≤

7∑
i=0

φi(d(x0, x1)
)
+ φ8(d(x0, x2)

)
.

By induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x4k+2) ≤
4k−1∑
i=0

φi(d(x0, x1)
)
+ φ4k(d(x0, x2)

)
. (3.11)

Again by (3.2), (3.4) and hexagonal property, we have

d(x0, x7) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x7)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x3)

)
≤

3∑
i=0

φi(d(x0, x1)
)
+ φ4(d(x0, x3)

)
.

Similarly,

d(x0, x11) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x5)

+ d(x5, x6) + d(x6, x7) + d(x7, x8) + d(x8, x11)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x1)

)
+ φ5(d(x0, x1)

)
+ φ6(d(x0, x1)

)
+ φ7(d(x0, x1)

)
+ φ8(d(x0, x3)

)
≤

7∑
i=0

φi(d(x0, x1)
)
+ φ8(d(x0, x3)

)
.

So by induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x4k+3) ≤
4k−1∑
i=0

φi(d(x0, x1)
)
+ φ4k(d(x0, x3)

)
. (3.12)
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In fact, by (3.2), (3.5) and hexagonal property, we have

d(x0, x8) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x8)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x4)

)
≤

3∑
i=0

φi(d(x0, x1)
)
+ φ4(d(x0, x4)

)
.

Similarly,

d(x0, x12) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + d(x3, x4) + d(x4, x5)

+ d(x5, x6) + d(x6, x7) + d(x7, x8) + d(x8, x12)

≤ d(x0, x1) + φ
(
d(x0, x1)

)
+ φ2(d(x0, x1)

)
+ φ3(d(x0, x1)

)
+ φ4(d(x0, x1)

)
+ φ5(d(x0, x1)

)
+ φ6(d(x0, x1)

)
+ φ7(d(x0, x1)

)
+ φ8(d(x0, x4)

)
≤

7∑
i=0

φi(d(x0, x1)
)
+ φ8(d(x0, x4)

)
.

By induction, we obtain for each k = 1, 2, 3, . . .

d(x0, x4k+4) ≤
4k−1∑
i=0

φi(d(x0, x1)
)
+ φ4k(d(x0, x4)

)
. (3.13)

Using inequality (3.6) and (3.10) for k = 1, 2, 3, . . . , we have

d(xn, xn+4k+1) ≤ φn(d(x0, x4k+1)
)

≤ φn
4k∑
i=0

φi(d(x0, x1)
)

≤ φn
[ 4k∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]
. (3.14)

Similarly for k = 1, 2, 3, . . . , inequalities (3.7) and (3.11) implies that

d(xn, xn+4k+2) ≤ φn(d(x0, x4k+2)
)

≤ φn
[ 4k−1∑

i=0

φi(d(x0, x1)
)
+ φ4k(d(x0, x2)

)]
≤ φn

[ 4k−1∑
i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)

+ φ4k(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ 4k∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]
. (3.15)
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Again for k = 1, 2, 3, . . . , inequalities (3.8) and (3.12) implies that

d(xn, xn+4k+3) ≤ φn(d(x0, x4k+3)
)

≤ φn
[ 4k−1∑

i=0

φi(d(x0, x1)
)
+ φ4k(d(x0, x3)

)]
≤ φn

[ 4k−1∑
i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)

+ φ4k(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ 4k∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]
. (3.16)

Again for k = 1, 2, 3, . . . , inequalities (3.9) and (3.13) implies that

d(xn, xn+4k+4) ≤ φn(d(x0, x4k+4)
)

≤ φn
[ 4k−1∑

i=0

φi(d(x0, x1)
)
+ φ4k(d(x0, x4)

)]
≤ φn

[ 4k−1∑
i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)

+ φ4k(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ 4k∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≤ φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]
. (3.17)

Thus, by inequalities (3.14), (3.15), (3.16) and (3.17) we have, for each m,

d(xn, xn+m) ≤ φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]
. (3.18)

Since
∑∞

i=0 φ
i
(
d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)

)
converges (by definition 2.10), where

d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4) ∈ P \ {0} and P is closed, then
∑∞

i=0 φ
i
(
d(x0, x1) +

d(x0, x2) + d(x0, x3) + d(x0, x4)
)
∈ P \ {0}. Hence

lim
n→∞

φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

= 0.

Then for given c ≫ 0, there is a natural number N1 such that

φn
[ ∞∑

i=0

φi(d(x0, x1) + d(x0, x2) + d(x0, x3) + d(x0, x4)
)]

≪ c, ∀n ≥ N1. (3.19)

Thus from (3.18) and (3.19), we have

d(xn, xn+m) ≪ c, for all n ≥ N1.

8
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Therefore, {xn} is a Cauchy sequence in (X, d). Since X is complete, then there exists a point z ∈ X
such that limn→∞ xn = limn→∞ Sxn−1 = z.

Now, we will show that z is a fixed point of S, i.e. Sz = z. Given c ≫ 0, we choose N2, N3 ∈ N
such that d(z, xn) ≪ c

5
, ∀n ≥ N2 and d(xn, xn+1) ≪ c

5
, ∀n ≥ N3.

Since xn ̸= xm for n ̸= m, therefore by hexagonal property, we have

d(Sz, z) ≤ d(Sz, Sxn) + d(Sxn, Sxn+1) + d(Sxn+1, Sxn+2) + d(Sxn+2, Sxn+3) + d(Sxn+3, z)

≤ φ
(
d(z, xn)

)
+ d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)

< d(z, xn) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)

≪ c

5
+

c

5
+

c

5
+

c

5
+

c

5
= c, for all n ≥ N,

where N = max{N2, N3}. Since c is arbitrary we have d(Sz, z) ≪ c
m
, ∀m ∈ N. Since c

m
→ 0 as

m → ∞, we conclude c
m
−d(Sz, z) → −d(Sz, z) as m → ∞. Since P is closed, −d(Sz, z) ∈ P. Hence

d(Sz, z) ∈ P ∩−P. By definition of cone we get that d(Sz, z) = 0, and so Sz = z. Therefore, S has
a fixed point that is z in X.

Next we show that z is unique. For suppose z′ be another fixed point of S such that Sz′ = z′.
Therefore,

d(z, z′) = d(Sz, Sz′) ≤ φ
(
d(z, z′)

)
< d(z, z′).

Hence, z = z′. This completes the proof of the theorem.

The following example illustrates the result of Theorem 3.1.

Example Let X = {1, 2, 3, 4, 5, 6}, E = R2 and P = {(x, y) : x, y ≥ 0} is a cone in E. Define
d : X ×X → E as follows:

d(x, x) = 0, ∀x ∈ X;

d(1, 2) = d(2, 1) = (5, 10);

d(1, 3) = d(3, 1) = d(1, 4) = d(4, 1) = d(1, 5) = d(5, 1) = d(2, 3) = d(3, 2) = d(2, 4) = d(4, 2)

= d(2, 5) = d(5, 2) = d(3, 4) = d(4, 3) = d(3, 5) = d(5, 3) = d(4, 5) = d(5, 4) = (1, 2);

d(1, 6) = d(6, 1) = d(2, 6) = d(6, 2) = d(3, 6) = d(6, 3) = d(4, 6) = d(6, 4) = d(5, 6) = d(6, 5) = (4, 8).

Then (X, d) is a complete cone hexagonal metric space, but (X, d) is not a complete cone pentagonal
metric space because it lacks the pentagonal property:

(5, 10) = d(1, 2) > d(1, 3) + d(3, 4) + d(4, 5) + d(5, 2)

= (1, 2) + (1, 2) + (1, 2) + (1, 2)

= (4, 8), as (5, 10)− (4, 8) = (1, 2) ∈ P.

Now, we define a mapping S : X → X as follows

S(x) =

{
5, if x ̸= 6;
2, if x = 6.

Hence, we obtain that

d(S(1), S(2)) = d(S(1), S(3)) = d(S(1), S(4)) = d(S(1), S(5)) = d(S(2), S(3))

= d(S(2), S(4)) = d(S(2), S(5)) = d(S(3), S(4)) = d(S(3), S(5)) = 0.

And in all other cases d(S(x), S(y)) = (1, 2) and d(x, y) = (4, 8), for all x, y ∈ X.

Thus, the conditions of Theorem 3.1 holds for all x, y ∈ X, where φ(t) = 1
4
t, and 5 ∈ X is the

unique fixed point of the mappings S.

9
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4 Conclusion

Corollary 4.1. Let (X, d) be a complete cone hexagonal metric space. Suppose the mapping S :
X → X satisfy the following:

d(Smx, Smy) ≤ φ
(
d(x, y)

)
, (4.1)

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. From Theorem 3.1, we conclude that Sm has a fixed point say z. Hence

Sz = S(Smz) = Sm+1z = Sm(Sz). (4.2)

Then Sz is also a fixed point to Sm. By uniqueness of z, we have Sz = z.

Corollary 4.2. (see [11]) Let (X, d) be a complete cone pentagonal metric space. Suppose the
mapping S : X → X satisfy the following:

d(Smx, Smy) ≤ φ
(
d(x, y)

)
,

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.4 and Corollary 4.1.

Corollary 4.3. (see [7]) Let (X, d) be a complete cone rectangular metric space. Suppose the
mapping S : X → X satisfy the following:

d(Smx, Smy) ≤ φ
(
d(x, y)

)
,

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.3 and Corollary 4.1.

Corollary 4.4. (see [11]) Let (X, d) be a complete cone pentagonal metric space. Suppose the
mapping S : X → X satisfy the following:

d(Sx, Sy) ≤ φ
(
d(x, y)

)
,

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.4 and Theorem 3.1.

Corollary 4.5. (see [7]) Let (X, d) be a complete cone rectangular metric space. Suppose the
mapping S : X → X satisfy the following:

d(Sx, Sy) ≤ φ
(
d(x, y)

)
,

for all x, y ∈ X, where φ ∈ Φ. Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.3 and Theorem 3.1.

Corollary 4.6. (see [9]) Let (X, d) be a cone hexagonal metric space, P be a normal cone, and the
mapping S : X → X satisfy the following:

d(Sx, Sy) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. Define φ : P → P by φ(t) = λt. Then it is clear that φ satisfies the conditions in definition
2.10. Hence the results follows from Theorem 3.1.
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Corollary 4.7. (see [8]) Let (X, d) be a cone pentagonal metric space, P be a normal cone, and
the mapping S : X → X satisfy the following:

d(Sx, Sy) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.4 and Corollary 4.6.

Corollary 4.8. (see [6]) Let (X, d) be a cone rectangular metric space, P be a normal cone, and
the mapping S : X → X satisfy the following:

d(Sx, Sy) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.3 and Corollary 4.7.

Corollary 4.9. (see [2]) Let (X, d) be a cone metric space, P be a normal cone, and the mapping
S : X → X satisfy the following:

d(Sx, Sy) ≤ λd(x, y),

for all x, y ∈ X, where λ ∈ [0, 1). Then S has a unique fixed point in X.

Proof. This follows from the Remark 2.2 and Corollary 4.8.
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