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Abstract

We examine the spectral geometry of η-Einstein S-manifolds and compute the the spectral

coefficients for S-space form and obtain the results analogue to Patodi’s results for Riemannian

manifolds and J. Park results for η−Einstein Sasakian manifolds. We show that how an

η−Einstein S-manifold and S-space forms are spectrally determined.
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1 Introduction

The spectral geometry of the Laplace-Beltrami operator has been studied by many authors [1,
2, 3], [4] and has developed rapidly during the last decade. Mainly, topic of Spectral Geometry is
developed by Patodi’s work [4] on heat-kernel asymptotic for operators of Laplace type on manifolds
with boundary. Gilkey [3] computed some spectral invariants concerning the asymptotic expansion
of the trace of the heat kernel for an elliptic differential operator acting on the space of sections
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of a vector bundle. Later on Donnely [1] and Sacks [2] extended the Patodi’s results to complex
manifolds. After this J. Park extended these result to η−Einstein contact manifolds [5].

Generalizing the notion of η-Einstein contact manifolds, M. Kobayashi and S. Tsuchiya defined the
notion of η-Einstein S-manifolods [6], [7]. For more detail on η−Einstein S-manifolds see [8].

Let ∆p be the Laplace Beltrami operator acting on the space of smooth p-forms, p=0, 1, 2 over
a compact m−dimentional Riemannian manifold M. Patodi [4] set up the following result for the
space forms.

Theorem 1.1. [4] Let (Mi, gi) be the compact Riemanian manifolds without boundary. Assume
that Spec(∆p,M1) = Spec(∆p,M2), for p = 0, 1, 2. Then

(1) The manifold M1 has constant scalar curvature c if and only if the manifold M2 has constant
scalar curvature c.
(2) The manifold M1 is Einstein if and only if the manifold M2 is Einstein.
(3) The manifold M1 has constant sectional curvature c if and only if the manifold M2. has constant
sectional curvature c.

We extend these results to η−Einstein S-manifolds which are the generalization of both complex
and contact structure. For s = 0, our results are for manifolds with complex structure, for s = 1,
we get results for η−Einstein Sasakian manifolds [5].

In this paper, after introduction, the second section is related to S-manifolds. Third section is related
to main results related to curvature tensor and heat trace asymptotics on η-Einstein S-manifolds.

2 S-manifolds

As a generalization of both almost complex (in even dimension) and almost contact (in odd
dimension) structures, Yano introduced in [9] the notion of f -structure on a smooth manifold
of dimension 2n+s, i.e. a tensor field of type (1,1) and rank 2n satisfying f3+f = 0. The existence
of such a structure is equivalent to a reduction of the structural group of the tangent bundle to
U(n) × O(s). Let N be a (2n + s)-dimensional manifold with an f -structure of rank 2n. If there
exist s global vector fields ξ1, ξ2, . . . , ξs on N such that:

fξα = 0, ηα ◦ f = 0, f2 = −I +
∑

ξα ⊗ ηα, (2.1)

where ηα are the dual 1-forms of ξα, we say that the f -structure has complemented frames. For
such a manifold there exists a Riemnnian metric g such that

g(X,Y ) = g(fX, fY ) +
∑

ηα(X)ηα(Y )

for any vector fields X and Y on N .

An f -structure f is normal, if it has complemented frames and

[f, f ] + 2
∑

ξα ⊗ dηα = 0,

where [f, f ] is Nijenhuis torsion of f .

Let F be the fundamental 2-form defined by F (X,Y ) = g(X, fY ), X, Y ∈ T (N). A normal f -
structure for which the fundamental form F is closed, η1∧, . . . ,∧ηs ∧ (dηα)

n ̸= 0 for any α, and
dη1 = · · · = dηs = F is called to be an S-structure. A smooth manifold endowed with an S-structure
will be called an S-manifold. These manifolds were introduced by Blair in [6].
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We have to remark that that if we take s = 1, S-manifolds are natural generalizations of Sasakian
manifolds. In the case s ≥ 2 some interesting examples are given in [6, 10].

If N is an S-manifold, then the following formulas are true (see [6]):

∇Xξα = −fX, X ∈ T (N), α = 1, . . . , s, (2.2)

(∇Xf)Y =
∑

{g(fX, fY )ξα + ηα(Y )f2X}, X, Y ∈ T (N), (2.3)

where ∇ is the Riemannian connection of g. Let L be the distribution determined by the projection
tensor −f2 and let M be the complementry distribution which is determined by f2+ I and spanned
by ξ1, . . . , ξs. It is clear that if X ∈ L then ηα(X) = 0 for any α, and if X ∈ M , then fX = 0.
A plane section π on N is called an invariant f -section if it is determined by a vector X ∈ L(x),
x ∈ N, such that {X, fX} is an orthonormal pair spanning the section. The sectional curvature
of π is called the f -sectional curvature. If N is an S-manifold of constant f -sectional curvature k,
then its curvature tensor has the form

R(X,Y, Z,W ) =
∑
α,β

{g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ)ηα(Y )ηβ(W ) +

+g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z)}+

+
1

4
(k + 3s){g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW )}+

+
1

4
(k − s){F (X,W )F (Y,Z)− F (X,Z)F (Y,W )− 2F (X,Y )F (Z,W )}, (2.4)

X, Y, Z, W ∈ T (N). Such a manifold N(k) will be called an S-space form. The Euclidean space
E2n+s and the hyperbolic space H2n+s are examples of S-space forms.

Definition 2.1. [7], [8] S-manifold (Mm, ηα, g, f, ξα) is said to be η-Einstein if the Ricci tensor ρ
of M is of the form

ρ = ag + b
s∑

α=1

ηα ⊗ ηα, (2.5)

where a, b are constants on M .

3 Main Results

Let M be a (2m+ s)−dimensional S-space form then from (2.4), the ricci tensor ρ is given by

ρ =
4s+ (k + 3s)(2m− 1) + 3(k − 1)

4
g +

(2m+ s− 2)(4− k − 3s)− 3(k − s)

4
ηα ⊗ ηα. (3.1)

Hence M is an eta-Einstein manifold.

Define the tensor fields Sα,β and Tc of M respectively by

Sa,b(X,Y ) = ρ(X,Y )− (ag(X,Y ) + b

s∑
α=1

ηα(X)⊗ ηα(X)),

Tc(X,Y, Z,W ) = R(X,Y, Z,W )− {
∑
α,β

{g(fX, fW )ηα(Y )ηβ(Z)− g(fX, fZ).

. ηα(Y )ηβ(W ) + g(fY, fZ)ηα(X)ηβ(W )− g(fY, fW )ηα(X)ηβ(Z)}

+
1

4
(k + 3s){g(fX, fW )g(fY, fZ)− g(fX, fZ)g(fY, fW )}

+
1

4
(k − s){F (X,W )F (Y,Z)− F (X,Z)F (Y,W )−

− 2F (X,Y )F (Z,W )}}, (3.2)
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for vector fields X, Y, Z, W on M, where a, b are smooth functions on M and k is a constant
f-sectional curvature.

Let {ei} be an orthonormal basis of TpM at any point p ∈ M . Next in this paper, we shall use the
following notations:

Rijkl = g(R(ei, ej)ek, el), ρi,j = ρ(ei, ej), fij = g(fei, ej), (3.3)

∇ifjk = g((∇eif)ej , ek), ∇iηαj = g((∇eiξα, ej) (3.4)

and so on, where indices run over the range 1, 2, . . . , 2m+ s.

The equations (2.2), (2.3) can be written as:

∇ifjk =
∑
α

gijηαk − ηαjgik (3.5)

∇iηαj = −fij (3.6)

By the definition of the tensor field Sα,β , (3.5), (3.6) and some computations, we have

|Sa,b|2 = |ρ|2 + (2m+ s)a2 + sb2 − 2aτ + 2abs− 4bms (3.7)

Here we see that M is η-Einstein if and only if Sa,b = 0 and

a =
τ

2m
− s, b = s(2m+ s)− sτ

2m
. (3.8)

Now first we shall prove the following lemma for further computations of ∥Tk∥2 of the tensor field
Tk on S-manifold M. In case of Sasakian manifolds, it was proved by J. Park [5].

Lemma 3.1. On S-manifold, we have

Rijkl{fkifjl − fkjfil + 2fjifkl} = 6τ − 12ms+ 12m(2m+ s− 2)

Proof. It is clear from the properties of curvature tensor that

Rijklfkifjl =
1

2
(Rijkl −Rkjil)fkifjl =

1

2
(Rijkl +Rjkil)fkifjl = −1

2
Rkijlfkifjl. (3.9)

Similarly

−Rijklfkjfil = −1

2
Rjkilfjkfil (3.10)

Rijklfjifkl = −Rijklfijfkl (3.11)

from (3.9), (3.10) and (3.11) we have

Rijkl{fkifjl − fkjfil + 2fjifkl} = −3Rijklfijfkl. (3.12)

Also

∇l∇ifjk =
∑
α

gij∇lηαk − gik∇lηαj =
∑
α

−gijflk + gikflj , (3.13)

∇l∇ifjk −∇i∇lfjk =
∑
α

−gijflk + gikflj + gljfik + glkfij . (3.14)

Apply Ricci identity to (3.14) and taking sum by setting i = k in the resulting equality, we get

−Rlijβfβi − ρlβfjβ = (2m+ s− 2)flj , (3.15)
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and

−Rlijβfβiflj − ρlβfjβflj = (2m+ s− 2)fljflj

= (2m+ s− 2)(2m).

Hence

−Rilβjfβifjl = −ρlβ(glβ − ηlηβ) + (2m+ s− 2)(2m)

= −τ + 2ms+ (2m+ s− 2)(2m). (3.16)

From (3.9) and (3.16)

1

2
Rjkilfjkfil = −τ + 2ms+ (2m+ s− 2)(2m). (3.17)

From (3.12) and (3.17)

Rijkl{fkifjl − fkjfil + 2fjifkl} = 6τ − 12ms+ 12m(2m+ s− 2).

3.1 Heat trace asymptotics

Let M be a compact Riemannian manifold of real dimension m without boundary and let D ba a
operator of Laplace type on the space of smooth sections to a smooth vector bundle over M. Let
e−tD be the fundamental solution of the heat equation. This operator is of trace class and as t ↓ 0
there is a complete asymptotic expansion with locally computable coefficients in the form:

TrL2e−tD ∼
∑
n≥0

t(n−m)/2an(D). (3.18)

Consider the following result [11].

Theorem 3.2. Let D be an operator of Laplace type on the space of sections C∞(V ) to a vector
bundle V over a compact manifold M. Let I be the identity endomorphism of V. We have

a0(D) = (4π)−m/2

∫
M

Tr{I}, (3.19)

a2(D) = (4π)−m/2 1

6

∫
M

Tr(6E + τI),

a4(D) = (4π)−m/2 1

360

∫
M

Tr{60E + 60τE + 180E2 + 30Ω2 + (12τ + 5τ2 − 2|ρ|2 +

+ 2|R|2)I}.

Now we will extend Theorem 1.1 for s-manifolds with proof.

Theorem 3.3. Let Mi = (Mi, ηi, gi, fi, ξi) be mi-dimensional compact S-manifolds without boundary
with mi ≥ 5. Assume that Spec(△p,M1) = Spec(△p,M2) for p = 0, 1, 2, then:

(1) m1 = m2 and V ol(M1) = V ol(M2).
(2) M1 has constant scalar curvature k if and only if the manifold M2 has constant scalar curvature
k.
(3) M1 is η-Einstein if and only if M2 is η-Einstein.
(4) M1 is S-space form with constant f-sectional curvature k if and only if M2 is S-space form with
constant f-sectional curvature k.

The values p=0, 1, 2 are not particularly special.
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Proof. Let M(η, g, f, ξ) be a (2m + s)-dimensional compact S-manifold without boundary. From
(3.2) Theorem for D = △p(p=0, 1, 2), we have

TrL2(e−t△0) = (4πt)−m/2{V ol(M) +O(t)},

a2(△0,M) =
1

6
(4π)−m/2

∫
M

τ,

a2(△1,M) =
1

6
(4π)−m/2

∫
M

(2m+ s)τ. (3.20)

The work of Patodi shows that there exist universal constants so:

a4(△p,M) = (4π)−m/2

∫
M

{c1m,pτ
2 + c2m,pρ

2 + c1m,pR
2 + c1m,pτ}, p = 0, 1, 2. (3.21)

Let Mi = (Mi, ηi, gi, fi, ξi) be mi+s-dimensional compact S-manifolds without boundary (i = 1, 2).
Assume that Spec(△p,M1) = Spec(△p,M2) for p=0, 1, 2. Let Ri, ρi and τi denote the curvature
tensor, the Ricci tensor and the scalar curvature of Mi(i = 1, 2) respectively. Then by Theorem
3.2(1) we have

m1 = m2 and V ol(M1) = V ol(M2).
Also

τ1 = (4π)m/2V ol(M1)
−1{ma2(△0,M1)− a2(△1,M1)}

= (4π)m/2V ol(M2)
−1{ma2(△0,M2)− a2(△1,M2)}

= τ2. (3.22)

Further suppose that M1 is an η-Einstein S-manifold with coefficient functions α1 and β1. Here
α1 and β1 are constant and hence the scalar curvature τ1 of M1 is also constant given as τ1 =
(2m + s)α1 + β1. Thus from second assertion of theorem the scalar curvature τ2 of M2 is also
constant and τ1 = τ2. Since V ol(M1) = V ol(M2), the integrals of τ2 are equal. Since τii = 0, from
a4, we have ∫

M1

(c2m,pρ
2
1 + c3m,pR

2
1) =

∫
M2

(c2m,pρ
2
2 + c3m,pR

2
2), (3.23)

for p = 1, 2 these two equations are independent [4]. Consequently∫
M1

ρ21 =

∫
M2

ρ22,

∫
M1

R2
1 =

∫
M2

R2
2. (3.24)

Thus from (3.7), we have

0 =

∫
M1

|S1
a1,b1 |

2 =

∫
M1

|ρ1|2 + (2m+ s)a2
1 + sb21 − 2aτ1 + 2a1b1s− 4b1ms (3.25)

=

∫
M2

|ρ2|2 + (2m+ s)a2
1 + sb21 − 2a1τ1 + 2a1b1s− 4b1ms. (3.26)

Here we may note that

a1 =
τ1
2m

− s =
τ2
2m

− s (3.27)

b1 = s(2m+ s)− sτ1
2m

= s(2m+ s)− sτ2
2m

. (3.28)

Here we may take

S2
a,b = ρ2 − (a2g2 + b2

s∑
α=1

ηα2 ⊗ ηα2), (3.29)
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where

a2 =
τ2
2m

− s, b2 = s(2m+ s)− sτ2
2m

, (3.30)

then we have∫
M2

|S2
a2,b2 |

2 =

∫
M2

|ρ2|2 + (2m+ s)a2
2 + sb22 − 2a2τ2 + 2a2b2s− 4b2ms. (3.31)

This implies

a1 = a2, b1 = b2. (3.32)

Therefore all above equation implies

0 =

∫
M2

|S2
a2,b2 |

2, (3.33)

thenM2 is an η-Einstein manifold with the same coefficients in the defining equation. This completes
the proof of Theorem 3.3 (3). Lastly, suppose that M1 is s-space form with constant f-sectional

curvature k. Then from (3.1), M1 is η-Einstein with constant coeficients a1 = 4s+(k+3s)(2m−1)+3(k−1)
4

and b1 = (2m+s−2)(4−k−3s)−3(k−s)
4

. Thus the scalar cutvature is

τ1 =
m

2
{(2m+ 2)k + 6m+ 8s− 6}. (3.34)

Therefore from assertion (3) and hypothesis that Spec(△p,M1) = Spec(△p,M2)(p = 0, 1, 2), we
see that M2 is η-Einstein manifold with constant coefficients a2 and b2 such that a2 = a1, b2 = b1
and hence τ2 = τ1. Now we define the tensor field for the S-manifold M2 as:

(T 2
c )ijkl = Rijkl −Kijkl, (3.35)

where

Kijkl =
∑
α,β

{g(fei, el)ηα(ej)ηβ(ek)− g(fei, ek)ηα(ej)ηβ(el) +

+g(fej , fek)ηα(ei)ηβ(el)− g(fej , fel)ηα(ei)ηβ(ek)}+

+
1

4
(k + 3s){g(fei, fel)g(fej , fek)− g(fei, fek)g(fej , fel)}+

+
1

4
(k − s){F (ei, el)F (ej , ek)− F (ei, ek)F (ej , el)− 2F (ei, ej)F (ek, el)}, (3.36)

after some computations, we have

|K|2 = m{(2m+ 2)k2 + 6m+ 8s− 6}. (3.37)

Now using lemma

RijklKijkl = 2kτ −m(k − s)(6m− 6 + 8s), (3.38)

from (3.35), (3.37) and (3.38), we obtain

|T 2
c |2 = |R2|2 − 4kτ +m{(2m+ 2)k2 + 6m+ 8s− 6}+ 2m(k − s)(6m− 6 + 8s). (3.39)

Also, since M1 is m-dimensional S-space form with constant f-sectional curvature k, we have

|R1|2 = m{(2m+ 2)k2 + 6m+ 8s− 6}, (3.40)
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and

0 = |T 1
c |2 = |R1|2 − 4kτ1 +m{(2m+ 2)k2 + 6m+ 8s− 6}+ 2m(k − s)(6m− 6 + 8s). (3.41)

Thus from (3.24), (3.39), (3.41) and τ1 = τ2 we obtain

0 =

∫
M1

|T 1
c |2

=

∫
M1

|R1|2 − 4kτ1 +m{(2m+ 2)k2 + 6m+ 8s− 6}+ 2m(k − s)(6m− 6 + 8s)

=

∫
M2

|R2|2 − 4kτ2 +m{(2m+ 2)k2 + 6m+ 8s− 6}+ 2m(k − s)(6m− 6 + 8s)

=

∫
M2

|T 2
c |2, (3.42)

and hence T 2
c = 0 on M2. Therefore we see that M2 is also an (2m+ s)−dimensional S- space form

with constant f−sectional curvature k. This completes the proof of Theorem.

4 Conclusion

In this paper, We have examined the spectral geometry of η-Einstein S-manifolds and have computed
the spectral coefficients for S-space form to obtain the results analogue to Patodi’s results for
Riemannian manifolds and J. Park results for η−Einstein Sasakian manifolds. It is showed that
how an η−Einstein S-manifold and S-space forms are spectrally determined.
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