16(1): 1-9, 2016, Article no.BJMCS.25210 *ISSN: 2231-0851*

SCIENCEDOMAIN *international*

Eta-Einstein *S***-Manifolds and Spectral Geometry**

Najma Abdul Rehman¹ *∗*

¹*Department of Mathematics, COMSATS Institute of Information Technology Sahiwal, Pakistan.*

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/25210 *Editor(s):* (1) Metin Basarir, Department of Mathematics, Sakarya University, Turkey. *Reviewers:* (1) Ruben Dario Ortiz Ortiz, University of Cartagena, Colombia. (2) Zeki Kasap, University Kinikli Campus Denizli, Turkey. (3) Doschoris Michael, University of Patras, Greece. Complete Peer review History: http://sciencedomain.org/review-history/14217

Original Research Article Published: 18th April 2016

Received: 23rd [February 2016](http://sciencedomain.org/review-history/14217) Accepted: 11th April 2016

Abstract

We examine the spectral geometry of *η*-Einstein S-manifolds and compute the the spectral coefficients for S-space form and obtain the results analogue to Patodi's results for Riemannian manifolds and J. Park results for *η−*Einstein Sasakian manifolds. We show that how an *η*−Einstein S-manifold and S-space forms are spectrally determined.

Keywords: S-Manifolds; η- Einstein manifolds; spectral geoemtry; laplace operator.

2010 Mathematics Subject Classification: 58J50, 53D10, 53D35.

1 Introduction

The spectral geometry of the Laplace-Beltrami operator has been studied by many authors [1, 2, 3], [4] and has developed rapidly during the last decade. Mainly, topic of Spectral Geometry is developed by Patodi's work [4] on heat-kernel asymptotic for operators of Laplace type on manifolds with boundary. Gilkey [3] computed some spectral invariants concerning the asymptotic expansion of the trace of the heat kernel for an elliptic differential operator acting on the space of sectio[ns](#page-7-0)

^{}[Co](#page-7-1)rresponding author: E-mail: najma−ar*@*hotmail.com;*

of a vector bundle. Later on Donnely [1] and Sacks [2] extended the Patodi's results to complex manifolds. After this J. Park extended these result to *η−*Einstein contact manifolds [5].

Generalizing the notion of *η*-Einstein contact manifolds, M. Kobayashi and S. Tsuchiya defined the notion of *η*-Einstein S-manifolods [6], [7]. For more detail on *η−*Einstein S-manifolds see [8].

Let Δ_p be the Laplace Beltrami operator acting on the space of smooth p-forms, p[=](#page-7-2)0, 1, 2 over a compact *m−*dimentional Riemannian manifold M. Patodi [4] set up the following result for the space forms.

Theorem 1.1. \mathcal{A} Let (M_i, g_i) be the compact Riemanian manifolds without boundary. Assume *that* $Spec(\Delta_p, M_1) = Spec(\Delta_p, M_2)$ *, for* $p = 0, 1, 2$ *. Then*

*(1) The manifold M*¹ *has constant scalar curvature c if and only if the manifold M*² *has constant scalar curvature c.*

*(2) The manifold [M](#page-7-1)*¹ *is Einstein if and only if the manifold M*² *is Einstein.*

*(3) The manifold M*¹ *has constant sectional curvature c if and only if the manifold M*2*. has constant sectional curvature c.*

We extend these results to *η−*Einstein S-manifolds which are the generalization of both complex and contact structure. For $s = 0$, our results are for manifolds with complex structure, for $s = 1$, we get results for *η−*Einstein Sasakian manifolds [5].

In this paper, after introduction, the second section is related to S-manifolds. Third section is related to main results related to curvature tensor and heat trace asymptotics on *η*-Einstein S-manifolds.

2 S-manifolds

As a generalization of both almost complex (in even dimension) and almost contact (in odd dimension) structures, Yano introduced in [9] the notion of *f*-structure on a smooth manifold of dimension $2n+s$, i.e. a tensor field of type $(1,1)$ and rank $2n$ satisfying $f^3+f=0$. The existence of such a structure is equivalent to a reduction of the structural group of the tangent bundle to $U(n) \times O(s)$. Let *N* be a $(2n + s)$ -dimensional manifold with an *f*-structure of rank 2*n*. If there exist *s* global vector fields $\xi_1, \xi_2, \ldots, \xi_s$ on *N* [su](#page-8-0)ch that:

$$
f\xi_{\alpha} = 0, \qquad \eta_{\alpha} \circ f = 0, \qquad f^2 = -I + \sum \xi_{\alpha} \otimes \eta_{\alpha}, \tag{2.1}
$$

where η_{α} are the dual 1-forms of ξ_{α} , we say that the *f*-structure has complemented frames. For such a manifold there exists a Riemnnian metric *g* such that

$$
g(X,Y) = g(fX, fY) + \sum \eta_{\alpha}(X)\eta_{\alpha}(Y)
$$

for any vector fields *X* and *Y* on *N*.

An *f*-structure *f* is normal, if it has complemented frames and

$$
[f,f]+2\sum \xi _{\alpha }\otimes d\eta _{\alpha }=0,
$$

where [*f, f*] is Nijenhuis torsion of *f*.

Let *F* be the fundamental 2-form defined by $F(X, Y) = g(X, fY)$, $X, Y \in T(N)$. A normal *f*structure for which the fundamental form *F* is closed, $\eta_1 \wedge, \dots, \wedge \eta_s \wedge (d\eta_\alpha)^n \neq 0$ for any α , and $d\eta_1 = \cdots = d\eta_s = F$ is called to be an *S*-structure. A smooth manifold endowed with an *S*-structure will be called an *S*-manifold. These manifolds were introduced by Blair in [6].

We have to remark that that if we take $s = 1$, *S*-manifolds are natural generalizations of Sasakian manifolds. In the case $s \geq 2$ some interesting examples are given in [6, 10].

If *N* is an *S*-manifold, then the following formulas are true (see [6]):

$$
\overline{\nabla}_X \xi_\alpha = -fX, \qquad X \in T(N), \quad \alpha = 1, \dots, s,
$$
\n(2.2)

$$
(\overline{\nabla}_X f)Y = \sum \{g(fX, fY)\xi_\alpha + \eta_\alpha(Y)f^2X\}, \quad X, Y \in T(N),
$$
\n(2.3)

where *∇* is the Riemannian connection of g. Let *L* be the distrib[ut](#page-7-3)ion determined by the projection tensor *−f* 2 and let *M* be the complementry distribution which is determined by *f* ² +*I* and spanned by ξ_1, \ldots, ξ_s . It is clear that if $X \in L$ then $\eta_\alpha(X) = 0$ for any α , and if $X \in M$, then $fX = 0$. A plane section π on N is called an invariant *f*-section if it is determined by a vector $X \in L(x)$, $x \in N$, such that $\{X, fX\}$ is an orthonormal pair spanning the section. The sectional curvature of *π* is called the *f*-sectional curvature. If *N* is an *S*-manifold of constant *f*-sectional curvature k, then its curvature tensor has the form

$$
R(X, Y, Z, W) = \sum_{\alpha, \beta} \{g(fX, fW)\eta_{\alpha}(Y)\eta_{\beta}(Z) - g(fX, fZ)\eta_{\alpha}(Y)\eta_{\beta}(W) ++g(fY, fZ)\eta_{\alpha}(X)\eta_{\beta}(W) - g(fY, fW)\eta_{\alpha}(X)\eta_{\beta}(Z)\} ++ \frac{1}{4}(k+3s)\{g(fX, fW)g(fY, fZ) - g(fX, fZ)g(fY, fW)\} ++ \frac{1}{4}(k-s)\{F(X, W)F(Y, Z) - F(X, Z)F(Y, W) - 2F(X, Y)F(Z, W)\},
$$
(2.4)

X, Y, Z, W *∈ T*(*N*). Such a manifold *N*(*k*) will be called an *S*-space form. The Euclidean space E^{2n+s} and the hyperbolic space H^{2n+s} are examples of *S*-space forms.

Definition 2.1. [7], [8] *S*-manifold $(M_m, \eta_\alpha, g, f, \xi_\alpha)$ is said to be *η*-Einstein if the Ricci tensor ρ of M is of the form

$$
\rho = ag + b \sum_{\alpha=1}^{s} \eta_{\alpha} \otimes \eta_{\alpha},\tag{2.5}
$$

where a, b are co[nst](#page-8-2)a[nt](#page-8-3)s on *M*.

3 Main Results

Let M be a $(2m + s)$ −dimensional S-space form then from (2.4), the ricci tensor ρ is given by

$$
\rho = \frac{4s + (k+3s)(2m-1) + 3(k-1)}{4}g + \frac{(2m+s-2)(4-k-3s) - 3(k-s)}{4}\eta_{\alpha} \otimes \eta_{\alpha}.
$$
 (3.1)

Hence M is an eta-Einstein manifold.

Define the tensor fields $S_{\alpha,\beta}$ and T_c of M respectively by

$$
S_{a,b}(X,Y) = \rho(X,Y) - (ag(X,Y) + b \sum_{\alpha=1}^{s} \eta_{\alpha}(X) \otimes \eta_{\alpha}(X)),
$$

\n
$$
T_c(X,Y,Z,W) = R(X,Y,Z,W) - \{ \sum_{\alpha,\beta} \{ g(fX,fW) \eta_{\alpha}(Y) \eta_{\beta}(Z) - g(fX,fZ) \}.
$$

\n
$$
= \eta_{\alpha}(Y) \eta_{\beta}(W) + g(fY,fZ) \eta_{\alpha}(X) \eta_{\beta}(W) - g(fY,fW) \eta_{\alpha}(X) \eta_{\beta}(Z) \}
$$

\n
$$
+ \frac{1}{4} (k+3s) \{ g(fX,fW)g(fY,fZ) - g(fX,fZ)g(fY,fW) \}
$$

\n
$$
+ \frac{1}{4} (k-s) \{ F(X,W)F(Y,Z) - F(X,Z)F(Y,W) -
$$

\n
$$
- 2F(X,Y)F(Z,W) \} \}, \tag{3.2}
$$

3

for vector fields X, Y, Z, W on M, where a, b are smooth functions on M and k is a constant f-sectional curvature.

Let ${e_i}$ be an orthonormal basis of T_pM at any point $p \in M$. Next in this paper, we shall use the following notations:

$$
R_{ijkl} = g(R(e_i, e_j)e_k, e_l), \quad \rho_{i,j} = \rho(e_i, e_j), \quad f_{ij} = g(fe_i, e_j), \tag{3.3}
$$

$$
\nabla_i f_{jk} = g((\nabla_{e_i} f)e_j, e_k), \nabla_i \eta_{\alpha j} = g((\nabla_{e_i} \xi_\alpha, e_j))
$$
\n(3.4)

and so on, where indices run over the range $1, 2, \ldots, 2m + s$.

The equations (2.2) , (2.3) can be written as:

$$
\nabla_i f_{jk} = \sum_{\alpha} g_{ij} \eta_{\alpha k} - \eta_{\alpha j} g_{ik} \tag{3.5}
$$

$$
\nabla_i \eta_{\alpha j} = -f_{ij} \tag{3.6}
$$

By the definition of the tensor field $S_{\alpha,\beta}$, (3.5), (3.6) and some computations, we have

$$
|S_{a,b}|^2 = |\rho|^2 + (2m+s)a^2 + sb^2 - 2a\tau + 2abs - 4bms
$$
\n(3.7)

Here we see that M is *η*-Einstein if and only if $S_{a,b} = 0$ and

$$
a = \frac{\tau}{2m} - s, \quad b = s(2m + s) - \frac{s\tau}{2m}.
$$
 (3.8)

Now first we shall prove the following lemma for further computations of $||T_k||^2$ of the tensor field *T^k* on S-manifold M. In case of Sasakian manifolds, it was proved by J. Park [5].

Lemma 3.1. *On S-manifold, we have*

$$
R_{ijkl}\{f_{ki}f_{jl} - f_{kj}f_{il} + 2f_{ji}f_{kl}\} = 6\tau - 12ms + 12m(2m + s - 2)
$$

Proof. It is clear from the properties of curvature tensor that

$$
R_{ijkl}f_{ki}f_{jl} = \frac{1}{2}(R_{ijkl} - R_{kjil})f_{ki}f_{jl} = \frac{1}{2}(R_{ijkl} + R_{jkil})f_{ki}f_{jl} = -\frac{1}{2}R_{kijl}f_{ki}f_{jl}.
$$
 (3.9)

Similarly

$$
-R_{ijkl}f_{kj}f_{il} = -\frac{1}{2}R_{jkil}f_{jk}f_{il}
$$
\n(3.10)

$$
R_{ijkl}f_{ji}f_{kl} = -R_{ijkl}f_{ij}f_{kl}
$$
\n(3.11)

from (3.9), (3.10) and (3.11) we have

$$
R_{ijkl}\{f_{ki}f_{jl} - f_{kj}f_{il} + 2f_{ji}f_{kl}\} = -3R_{ijkl}f_{ij}f_{kl}.
$$
\n(3.12)

Also

$$
\nabla_l \nabla_i f_{jk} = \sum_{\alpha} g_{ij} \nabla_l \eta_{\alpha k} - g_{ik} \nabla_l \eta_{\alpha j} = \sum_{\alpha} -g_{ij} f_{lk} + g_{ik} f_{lj},
$$
\n(3.13)

$$
\nabla_l \nabla_i f_{jk} - \nabla_i \nabla_l f_{jk} = \sum_{\alpha} -g_{ij} f_{lk} + g_{ik} f_{lj} + g_{lj} f_{ik} + g_{lk} f_{ij}.
$$
\n(3.14)

Apply Ricci identity to (3.14) and taking sum by setting $i = k$ in the resulting equality, we get

$$
-R_{lij\beta}f_{\beta i}-\rho_{l\beta}f_{j\beta} = (2m+s-2)f_{lj}, \qquad (3.15)
$$

and

$$
-R_{lij\beta}f_{\beta i}f_{lj} - \rho_{l\beta}f_{j\beta}f_{lj} = (2m+s-2)f_{lj}f_{lj}
$$

=
$$
(2m+s-2)(2m).
$$

Hence

$$
-R_{il\beta}j f_{\beta i} f_{jl} = -\rho_{l\beta} (g_{l\beta} - \eta_l \eta_\beta) + (2m + s - 2)(2m)
$$

= $-\tau + 2ms + (2m + s - 2)(2m).$ (3.16)

From (3.9) and (3.16)

$$
\frac{1}{2}R_{jkil}f_{jk}f_{il} = -\tau + 2ms + (2m + s - 2)(2m). \tag{3.17}
$$

From ([3.12](#page-3-2)) and [\(3.1](#page-4-0)7)

$$
R_{ijkl}\{f_{ki}f_{jl} - f_{kj}f_{il} + 2f_{ji}f_{kl}\} = 6\tau - 12ms + 12m(2m + s - 2). \quad \Box
$$

3.1 [He](#page-3-3)at t[race](#page-4-1) asymptotics

Let M be a compact Riemannian manifold of real dimension m without boundary and let D ba a operator of Laplace type on the space of smooth sections to a smooth vector bundle over M. Let *e [−]tD* be the fundamental solution of the heat equation. This operator is of trace class and as *t ↓* 0 there is a complete asymptotic expansion with locally computable coefficients in the form:

$$
Tr_{L^{2}}e^{-tD} \sim \sum_{n\geq 0} t^{(n-m)/2} a_{n}(D). \tag{3.18}
$$

Consider the following result [11].

Theorem 3.2. Let D be an operator of Laplace type on the space of sections $C^{\infty}(V)$ to a vector *bundle V over a compact manifold M. Let I be the identity endomorphism of V. We have*

$$
a_0(D) = (4\pi)^{-m/2} \int_M Tr\{I\},
$$
\n
$$
a_2(D) = (4\pi)^{-m/2} \frac{1}{6} \int_M Tr(6E + \tau I),
$$
\n
$$
a_4(D) = (4\pi)^{-m/2} \frac{1}{360} \int_M Tr\{60E + 60\tau E + 180E^2 + 30\Omega^2 + (12\tau + 5\tau^2 - 2|\rho|^2 + 2|R|^2)I\}.
$$
\n(3.19)

Now we will extend Theorem 1.1 for s-manifolds with proof.

Theorem 3.3. Let $M_i = (M_i, \eta_i, g_i, f_i, \xi_i)$ be m_i -dimensional compact S-manifolds without boundary *with* $m_i \geq 5$ *. Assume that* $Spec(\Delta_p, M_1) = Spec(\Delta_p, M_2)$ *for* $p = 0, 1, 2$ *, then:*

 (1) $m_1 = m_2$ *and* $Vol(M_1) = Vol(M_2)$ *.*

*(2) M*¹ *has constant scalar curvature k if and only if the manifold M*² *has constant scalar curvature k.*

*(3) M*¹ *is η-Einstein if and only if M*² *is η-Einstein.*

*(4) M*¹ *is S-space form with constant f-sectional curvature k if and only if M*² *is S-space form with constant f-sectional curvature k.*

The values p=0, 1, 2 are not particularly special.

Proof. Let $M(\eta, g, f, \xi)$ be a $(2m + s)$ -dimensional compact S-manifold without boundary. From (3.2) Theorem for $D = \Delta_p(p=0, 1, 2)$, we have

$$
Tr_{L^{2}}(e^{-t}\Delta_{0}) = (4\pi t)^{-m/2} \{Vol(M) + O(t)\},
$$

\n
$$
a_{2}(\Delta_{0}, M) = \frac{1}{6}(4\pi)^{-m/2} \int_{M} \tau,
$$

\n
$$
a_{2}(\Delta_{1}, M) = \frac{1}{6}(4\pi)^{-m/2} \int_{M} (2m+s)\tau.
$$
\n(3.20)

The work of Patodi shows that there exist universal constants so:

$$
a_4(\Delta_p, M) = (4\pi)^{-m/2} \int_M \{c_{m,p}^1 \tau^2 + c_{m,p}^2 \rho^2 + c_{m,p}^1 R^2 + c_{m,p}^1 \tau\}, \quad p = 0, 1, 2. \tag{3.21}
$$

Let $M_i = (M_i, \eta_i, g_i, f_i, \xi_i)$ be $m_i + s$ -dimensional compact S-manifolds without boundary (i = 1, 2). Assume that $Spec(\Delta_p, M_1) = Spec(\Delta_p, M_2)$ for p=0, 1, 2. Let R_i , ρ_i and τ_i denote the curvature tensor, the Ricci tensor and the scalar curvature of $M_i(i = 1, 2)$ respectively. Then by Theorem 3*.*2(1) we have

 $m_1 = m_2$ and $Vol(M_1) = Vol(M_2)$. Also

$$
\tau_1 = (4\pi)^{m/2} Vol(M_1)^{-1} \{ma_2(\triangle_0, M_1) - a_2(\triangle_1, M_1)\}
$$

= $(4\pi)^{m/2} Vol(M_2)^{-1} \{ma_2(\triangle_0, M_2) - a_2(\triangle_1, M_2)\}$
= τ_2 . (3.22)

Further suppose that M_1 is an *η*-Einstein S-manifold with coefficient functions α_1 and β_1 . Here *α*₁ and *β*₁ are constant and hence the scalar curvature $τ_1$ of M_1 is also constant given as $τ_1$ = $(2m + s)\alpha_1 + \beta_1$. Thus from second assertion of theorem the scalar curvature τ_2 of M_2 is also constant and $\tau_1 = \tau_2$. Since $Vol(M_1) = Vol(M_2)$, the integrals of τ^2 are equal. Since $\tau_{ii} = 0$, from *a*4, we have

$$
\int_{M_1} (c_{m,p}^2 \rho_1^2 + c_{m,p}^3 R_1^2) = \int_{M_2} (c_{m,p}^2 \rho_2^2 + c_{m,p}^3 R_2^2),\tag{3.23}
$$

for $p = 1, 2$ these two equations are independent [4]. Consequently

$$
\int_{M_1} \rho_1^2 = \int_{M_2} \rho_2^2, \quad \int_{M_1} R_1^2 = \int_{M_2} R_2^2.
$$
\n(3.24)

Thus from (3.7), we have

$$
0 = \int_{M_1} |S_{a_1, b_1}^1|^2 = \int_{M_1} |\rho_1|^2 + (2m + s)a_1^2 + sb_1^2 - 2a\tau_1 + 2a_1b_1s - 4b_1ms \qquad (3.25)
$$

$$
= \int_{M_2} |\rho_2|^2 + (2m+s)a_1^2 + sb_1^2 - 2a_1\tau_1 + 2a_1b_1s - 4b_1ms. \tag{3.26}
$$

Here we may note that

$$
a_1 = \frac{\tau_1}{2m} - s = \frac{\tau_2}{2m} - s \tag{3.27}
$$

$$
b_1 = s(2m + s) - \frac{s\tau_1}{2m} = s(2m + s) - \frac{s\tau_2}{2m}.
$$
\n(3.28)

Here we may take

$$
S_{a,b}^2 = \rho_2 - (a_2 g_2 + b_2 \sum_{\alpha=1}^s \eta_{\alpha 2} \otimes \eta_{\alpha 2}),
$$
\n(3.29)

6

where

$$
a_2 = \frac{\tau_2}{2m} - s, \quad b_2 = s(2m + s) - \frac{s\tau_2}{2m},\tag{3.30}
$$

then we have

$$
\int_{M_2} |S_{a_2,b_2}^2|^2 = \int_{M_2} |\rho_2|^2 + (2m+s)a_2^2 + sb_2^2 - 2a_2\tau_2 + 2a_2b_2s - 4b_2ms.
$$
\n(3.31)

This implies

$$
a_1 = a_2, \quad b_1 = b_2. \tag{3.32}
$$

Therefore all above equation implies

$$
0 = \int_{M_2} |S_{a_2, b_2}^2|^2,\tag{3.33}
$$

then M_2 is an η -Einstein manifold with the same coefficients in the defining equation. This completes the proof of Theorem 3.3 (3). Lastly, suppose that *M*¹ is s-space form with constant f-sectional curvature k. Then from (3.1), M_1 is η -Einstein with constant coeficients $a_1 = \frac{4s + (k+3s)(2m-1) + 3(k-1)}{4}$
and $b_1 = \frac{(2m+s-2)(4-k-3s)-3(k-s)}{4}$. Thus the scalar cutvature is

$$
\tau_1 = \frac{m}{2} \{ (2m+2)k + 6m + 8s - 6 \}.
$$
\n(3.34)

Therefore from assertio[n \(3](#page-2-0)) and hypothesis that $Spec(\Delta_p, M_1) = Spec(\Delta_p, M_2)(p = 0, 1, 2)$, we see that M_2 is η -Einstein manifold with constant coefficients a_2 and b_2 such that $a_2 = a_1$, $b_2 = b_1$ and hence $\tau_2 = \tau_1$. Now we define the tensor field for the S-manifold M_2 as:

$$
(T_c^2)_{ijkl} = R_{ijkl} - K_{ijkl},\tag{3.35}
$$

where

$$
K_{ijkl} = \sum_{\alpha,\beta} \{g(fe_i, e_l)\eta_{\alpha}(e_j)\eta_{\beta}(e_k) - g(fe_i, e_k)\eta_{\alpha}(e_j)\eta_{\beta}(e_l) +
$$

+
$$
+g(fe_j, fe_k)\eta_{\alpha}(e_i)\eta_{\beta}(e_l) - g(fe_j, fe_l)\eta_{\alpha}(e_i)\eta_{\beta}(e_k)\} +
$$

+
$$
\frac{1}{4}(k+3s)\{g(fe_i, fe_l)g(fe_j, fe_k) - g(fe_i, fe_k)g(fe_j, fe_l)\} +
$$

+
$$
\frac{1}{4}(k-s)\{F(e_i, e_l)F(e_j, e_k) - F(e_i, e_k)F(e_j, e_l) - 2F(e_i, e_j)F(e_k, e_l)\},
$$
(3.36)

after some computations, we have

$$
|K|^2 = m\{(2m+2)k^2 + 6m + 8s - 6\}.
$$
\n(3.37)

Now using lemma

$$
R_{ijkl}K_{ijkl} = 2k\tau - m(k - s)(6m - 6 + 8s),
$$
\n(3.38)

from (3.35), (3.37) and (3.38), we obtain

$$
|T_c^2|^2 = |R_2|^2 - 4k\tau + m\{(2m+2)k^2 + 6m + 8s - 6\} + 2m(k-s)(6m - 6 + 8s).
$$
 (3.39)

Also, since M_1 is m-dimensional S-space form with constant f-sectional curvature k, we have

$$
|R_1|^2 = m\{(2m+2)k^2 + 6m + 8s - 6\},\tag{3.40}
$$

and

$$
0 = |T_c^1|^2 = |R_1|^2 - 4k\tau_1 + m\{(2m+2)k^2 + 6m + 8s - 6\} + 2m(k-s)(6m-6+8s).
$$
 (3.41)

Thus from (3.24), (3.39), (3.41) and $\tau_1 = \tau_2$ we obtain

$$
0 = \int_{M_1} |T_c^1|^2
$$

\n
$$
= \int_{M_1} |R_1|^2 - 4k\tau_1 + m\{(2m+2)k^2 + 6m + 8s - 6\} + 2m(k - s)(6m - 6 + 8s)
$$

\n
$$
= \int_{M_2} |R_2|^2 - 4k\tau_2 + m\{(2m+2)k^2 + 6m + 8s - 6\} + 2m(k - s)(6m - 6 + 8s)
$$

\n
$$
= \int_{M_2} |T_c^2|^2,
$$
\n(3.42)

and hence $T_c^2 = 0$ on M_2 . Therefore we see that M_2 is also an $(2m + s)$ −dimensional S- space form with constant *f−*sectional curvature k. This completes the proof of Theorem.

4 Conclusion

In this paper, We have examined the spectral geometry of *η*-Einstein S-manifolds and have computed the spectral coefficients for S-space form to obtain the results analogue to Patodi's results for Riemannian manifolds and J. Park results for *η−*Einstein Sasakian manifolds. It is showed that how an *η−*Einstein S-manifold and S-space forms are spectrally determined.

Acknowledgement

This work is supported by Higher Education Commission Pakistan under initial research grant project.

Competing Interests

Author has declared that no competing interests exist.

References

- [1] Donnelly H. A spectral condition determining the Kahler property. Amer. Math. Soc. 1975;47:187-194.
- [2] Gilkey P, Sacks J. Spectral geometry and manifolds of constant holomorphic sectional curvature. Proc. Sympos. Pure Math. 1975;27:281-285.
- [3] Gilkey P. The spectral geometry of operator of Dirac and Laplace type. Hand book of Global Analysis. 2008;289-326.
- [4] Patodi VK. Curvature and fundamental solution of the heat operator. J. Indian Math. Soc. 1970;34:269-285.
- [5] Park J. Spectral geometry of eta-Einstein Sasakian manifolds. Journal of Geometry and Physics. 2012;62(11):2140-2146.
- [6] Blair DE. Geometry of manifolds with structural group $U(n) \times O(s)$. J. Differential Geom. Volume 1970;4:155-167.
- [7] Kobayashi M, Tsuchiya S. Invariant submanifolds of an f-manifold with complemented frames. Kodai Math. Sem. Rep. 1972;24:430-450.
- [8] Letizia Brunetti. The *η*-Einstein condition on indefinite S-manifolds. Math. Slovaca. No. 2014;64(2):469-478.
- [9] Yano K. On a structure defined by a tensor field of type $(1, 1)$ satisfying $f^3 + f = 0$ Tensor. 1963;14:99-109.
- [10] Hasegawa I, Oknyama Y, Abe T. On the p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A. 1986;37(1):1-16.
- [11] Branson T, Gilkey P. The asymptotics of the Laplacian on a manifold with boundary. Comm. Partial Differential Equations. 1990;15:245-272.

 $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of $\mathcal{L}=\{1,2,3,4\}$ *⃝*c *2016 Rehman; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review hist[ory for this paper can be accessed here \(Pleas](http://creativecommons.org/licenses/by/4.0)e copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/14217