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Abstract
This paper presents 3D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of
low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication
technique is quick, simple, and inexpensive compared to planar microfabrication processes,
which enables rapid prototyping and the ability to adapt to new requirements. These devices
also utilize true 3D design freedom, facilitating the realization of microscale optical elements
with challenging geometries. Three different device types were fabricated and evaluated: an
unreleased single-cavity device, a released dual-cavity device, and a released hemispherical
mirror dual-cavity device. Each iteration improved the quality of the FP cavity’s reflection
spectrum. The unreleased device demonstrated an extinction ratio around 1.90, the released
device achieved 61, and the hemispherical device achieved 253, providing a strong signal to
observe changes in the free spectral range of the device’s reflection response. The reflectance of
the photopolymer was also estimated to be between 0.2 and 0.3 over the spectrum of interest.
The dual-cavity devices include both an open cavity, which can interact with an interstitial
medium, and a second solid cavity, which provides a static reference reflection. The
hemispherical dual-cavity device further improves the quality of the reflection signal with a
more consistent resonance, and reduced sensitivity to misalignment. These advanced features,
which are very challenging to realize with traditional planar microfabrication techniques, are
fabricated in a single patterning step. The usability of these FP cavities as thermal radiation
sensors with excellent linear response and sensitivity over a broad range of temperature is
reported. The 3D structuring capability the 2PP process has enabled the creation of a suspended
FP heat sensor that exhibited linear response over the temperature range of 20 ºC –120 ºC;
temperature sensitivity of ~50 pm ºC−1 at around 1550 nm wavelength; and sensitivity
improvement of better than 9x of the solidly-mounted sensors.

Keywords: Fabry–Pérot, multiphoton polymerization, 3D microfabrication, optical sensors, fiber
tip sensors
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1. Introduction

The Fabry–Perót (FP) cavity is an important optical compon-
ent with many applications. A basic FP cavity consists of
two parallel reflective surfaces separated by a chosen distance
and encapsulating air, vacuum, or another media with refract-
ive index (RI) n. Multiple beam interference between the
two surfaces causes transmission through the cavity to peak
at specific wavelengths of maximum coherent interference,
while others are reflected. At the micron scale, this enables the
FP cavity to propagate a small number of optical modes com-
pared to other optical cavities such as ring resonators, photonic
crystals, and distributed feedback gratings [1]. The FP cavity
can also achieve large quality factors, with values as high as
105 reported [2]. It is easily accessible to the environment and,
unlike devices such as the ring resonator, the FP cavity does
not require the substance inside the cavity to have a different
RI than the substance outside the cavity [3]. While often bene-
ficial, the open nature of the FP cavity means it lacks lateral
confinement, and loses some resonant light off the edges of the
mirrors. Flat FP cavities are highly sensitive to misalignment,
and any misalignment, even one of several degrees, between
themirrors will significantly lower a cavity’s quality factor [1].
One popular way to overcome this sensitivity is by using one
or more curved mirrors [3–5], although this often increases
the complexity of fabrication. This work introduces an innov-
ative fabrication process that greatly simplifies the realization
of complex geometries on virtually any substrate.

Many advantages of the FP cavity have made it a key com-
ponent to a myriad of applications. When used to form a
laser cavity, a variety of exotic gain media have recently been
explored including biological tissues [6], silicon nanowires
[7], and optical fluids [1, 3]. Miniaturized tunable lasers [8, 9]
and tunable optical filters [10] have also been realized by integ-
rating an FP cavity with microelectromechanical systems. The
accessibility of the cavity has also made it a powerful tool for
spectroscopy. It has been used in on-chip microfluidics [11],
human breath analysis [12], interrogation of living cells [13],
and compact imaging spectrometers [14]. The FP cavity is also
set to play a key role in the emerging field of quantum comput-
ing, with cavity quantum electrodynamics at the forefront of
many advances. It has been demonstrated in a photon emission
source [4, 15], in strong coupling to a trapped atom [16], and
in frequency splitting of polarization Eigen modes [17, 18].

The difference between two resonant wavelengths in a FP
cavity, the cavity’s free spectral range (FSR), is determined
by the distance between the mirrors and the refractive index
of the medium inside the cavity. Sensors can detect phenom-
ena that affect these factors, and have found many applica-
tions to include sensing gravitational waves [19], acceleration
[20], pressure and refractive indices of liquids [21], temperat-
ure [22], force [23], and even gas composition [24].

Optical fibers present a powerful platform to both form and
interrogate FP cavities due to their small form factor, low-loss,
and well-behaved transverse optical mode structure. Prom-
ising applications for fiber integrated FP cavities include opto-
fluidic in-fiber lasers [25, 26] and miniaturized high sensitivity
sensors [21–24]. Poor lateral confinement and misalignment

Figure 1. Schematic views of the FP cavity devices. (a) The
single-cavity, (b) the released dual-cavity, and (c) the released
hemispherical dual-cavity devices on cleaved ends of optical fibers.

sensitivity continue to plague fiber based FP cavity devices,
and represent significant design challenges. The fiber itself is
also an exotic substrate due to its geometry, which renders it
incompatible with many planar microfabrication processes. A
variety of techniques have been explored to overcome these
challenges and create FP cavities on optical fibers. One device
was fabricated by splicing a segment of hollow-core optical
fiber (HOF) to a single-mode fiber (SMF), and capping the
HOF with a segment of photonic crystal fiber (PFC) [24].
While this design can interrogate gasses, liquids would have
difficulty reaching the cavity through the small openings in the
PFC. Splicing various types of optical fibers also requires pre-
cise alignment and may be difficult to repeat reliably. Another
successful on-fiber FP resonator was made by ion milling a
cavity into a tapered SMF probe [22]. While the environment
is easily accessed by this cavity, the fabrication process is
complex and laborious, involving CO2 laser pulling and metal
deposition before the ion milling. Another group used the
photo-active polymer SU-8 to construct a suspended polymer
cavity on a fiber tip [21]. The resulting device can interrogate
liquid or gas, and the fabrication process enables 2D freedom
with a digital mirror. But this process is also relatively com-
plicated, requiring a spray coat, bake, and UV exposure for
each individual layer. This also limits the 3D structures that
can be realistically built.

The devices presented in this work were fabricated using
a simple process that requires only mounting the fiber into
a two-photon polymerization (2PP) system from Nanoscribe
GmbH and chemical developing [27]. This technique enabled
us to realize 3D free-form geometries—a feat which cannot
be accomplished using other methods on this spatial scale.
This enables the use of nonplanar components to improve
device performance, such as in our use of curved mirrors
to create a hemispherical FP cavity to significantly reduce
misalignment susceptibility. Our method can create these 3D
components with submicron precision. The three on-fiber FP
cavity designs that were fabricated and tested are depicted in
figure 1. The hemispherical device achieved the greatest
extinction ratio of the three designs tested, and highlights the
power of the design freedom afforded by this process. The
unreleased device demonstrated an extinction ratio around
1.90, the released device achieved 61, and the hemispherical
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Figure 2. An example of the two-photon polymerization
microfabrication process flow (devices fabricated in this work were
centered on the fiber core). (a) The fiber tip was properly cleaned,
cleaved, and mounted on a laser machining station. (b)
Photosensitive IP-DIP resin (marketed by Nanoscribe GmbH) was
deposited on the fiber tip. (c) A femtosecond laser was then focused
in the resin to polymerize portions of resin layer by layer. (d) A
chemical developer was used to remove non-polymerized resin,
releasing the solidified structure.

device achieved 253, providing a strong signal to observe
changes in the FSR of the device. We were also able to extract
the reflectance of the photopolymer by fitting an Airy distri-
bution to the reflection spectrum. This yielded a reflectance
between 0.2 and 0.3 for the polymerized resin. The dual-cavity
devices allow for interrogation of an interstitial medium in the
first, open cavity while simultaneously referencing the static
reflection spectrum of the second, solid-polymer cavity. These
advanced features, which are very difficult or impossible to
achieve with traditional planar microfabrication techniques,
were fabricated in a single patterning step. The speed and sim-
plicity of fabrication enables rapid prototyping and iterative
design processes to realize complicated devices and advanced
features.

2. Fabrication process

The maskless 2PP fabrication process used to fabricate all
devices demonstrated in this work is outlined in figure 2.
First the optical fiber was stripped, cleaned, and cleaved to
create a flat platform with access to the core of the fiber,
as illustrated in figure 2(a). The optical fiber used in this
work was F-SM1500-9/125-P fiber from Newport Corpora-
tion. The cleaved fiber was secured into a Newport FPH-S fiber
chuck and mounted into a custom jig that aligned the cleaved
fiber face orthogonally to the laser aperture of the Nanoscribe
GmbH system. The uncured, liquid photoactive polymer resin
(Nanoscribe’s IP-DIP) was deposited onto the cleaved fiber
face, as shown in figure 2(b). The resin can be deposited in

any thickness or shape that encloses the desired build volume.
Thus, several traditional photoresist deposition steps, such as
spin-coating and pre-baking, were eliminated.

Once mounted, the resin was selectively exposed to
ultrashort laser pulses with a wavelength of 780 nm, a repe-
tition rate of 80 MHz, and a pulse duration of 120 fs by
the Nanoscribe GmbH laser writing system. The resin only
solidified when subjected to the nonlinear optical process of
2PP. Simultaneous absorption of two photons was necessary
to polymerize the resin, which only occurred in a small por-
tion of the focused laser beam [28]. The volume of the beam
initiating 2PP can be scaled to offer a balance of resolu-
tion and speed. The minimum volume for this system was
150 nm wide by 150 nm long by 200 nm tall. This focal
point was scanned through the resin according to a computer-
aided design file to solidify the desired structure. This is pic-
tured in figure 2(c). This system has a maximum scan speed
of 2 mm s−1, but small features and optical quality curvatures
require significantly slower scan speeds. The FP cavity devices
in this work were fully polymerized in less than 15 min.
The x-y aspects of each layer were controlled by a galvano-
meter, while the z direction was controlled with a piezoelectric
actuator.

Once the desired volume had been polymerized, the fiber
tip was submerged in propylene glycol methyl ether acetate
(PGMEA) for 20 min. This common solvent removed the
unexposed resin, releasing the polymerized structure. Finally,
the fiber tip was submerged in isopropanol for another 20 min
to clean off the PGMEA. The result was the desired 3D struc-
ture of polymerized resin as illustrated in figure 2(d).

While significantly faster than other fabrication methods,
the stepwise nature of the laser scanning process introduced
striations into the surface finish of the devices. Planar FP cav-
ities require a flat reflective surface, and hemispherical FP cav-
ities require a smooth spherical mirror, and it was not known if
the devices created here had an optical-quality surface finish.
Also of concern, features with a height equal to one half or one
quarter of the wavelength of interest could introduce destruct-
ive interference and create an antireflective surface. To ana-
lyze the surface finish, we fabricated a sample structure onto
an indium-tin-oxide coated glass slide to mount into an atomic
force microscope (AFM).

The resultant AFM scans are included in figure 3. The
expected striations from the scanning process were present
at regular intervals. The surface finish, including these fea-
tures, was found to have a roughness of approximately 60 nm,
with the peak to peak difference averaging 120 nm. This
work focused on using wavelengths in the 1460–1640 nm
range to probe the FP structures fabricated on the fiber ends.
Therefore, the fabrication variations in surface roughness
are significantly smaller than the wavelengths of interest,
and far less than one half or one quarter wavelength inter-
val which would lead to their own interference effects. In
fact, the structures fabricated by this process were con-
firmed to have a roughness below λ/10 which is consistent
with an optical quality surface finish in the wavelengths of
interest.
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Figure 3. Surface analysis of an optical flat fabricated with two-photon polymerization by ultrashort laser pulses. (a) AFM image of the
surface interrogated. (b) A 3D rendering of the AFM scan showing surface topography. (c) Three cross sections throughout the surface to
quantify roughness.

3. Device characterization

3.1. Measurement setup

The FP cavities were characterized according to the measure-
ment setup pictured in figure 4. All experiments were per-
formed in a in a temperature-controlled laboratory that has a
temperature of 20 ◦Cwith fluctuations of less than 2 ◦C. A tun-
able laser source (Agilent 81600B) was connected to the first
port of an optical circulator. This was swept from 1463 nm
to 1634 nm during each measurement. The SMF with an FP
cavity device was fusion spliced to another SMF terminating
in an FC/APC connector using a Fujikura FSM-100P ARC
Master fiber splicer. This was connected to the second port
of the optical circulator. The third port of the optical circu-
lator was connected to a Newport universal fiber optic detector.
This photodetector interfaced with a Newport 1830-C optical
power meter, whose output was visualized and stored using a
Keysight D509254A digital storage oscilloscope.

The variable laser source was then swept from 1463 nm
to 1634 nm and the reflection from the FP cavity device was
isolated by the optical circulator. The photodetector and power
meter transduced the optical power into a voltage which was
recorded by the oscilloscope. Optical resonances within the
FP cavity caused a peak in transmission through the cav-
ity which was observed as a dip in reflection intensity. This

technique allowed the devices to be used remotely, with the
bulky input andmeasurement components geographically sep-
arated from the device. In this work the optical circulator and
input fiber were polarization maintaining, while the device
fiber (and the fabricated FP cavities) were not. Polarization
maintaining fibers can be used to insure operation using a
single polarization which could prove important for very long
standoff detectors where polarization mode dispersion could
reduce fringe visibility.

The reflection spectrum of each device was measured in
volts read by the oscilloscope at a given wavelength. The
extinction ratio reported for each device was calculated using
the ratio between the mean of the four lowest reflection dips
and the mean of the four highest reflection peaks. The mean
of the four highest peaks is referred to as the high reflection
intensity, and the mean of the four lowest dips is referred to
as the low reflection intensity. Assuming incident light nor-
mal to each cavity, the theoretical FSR of a FP cavity is cal-
culated according to∆λFSR = λ2

0/2nl, where λ0 is the central
wavelength of the transmission peak (and reflection dip), n is
the RI of the cavity medium, and l is the length of the cavity.
For our devices, we considered a hypothetical transmission
peak at 1550 nm, an IP-DIP refractive index of 1.504, and a
refractive index of 1 in air. The RI was calculated by interpol-
ating data provided by Nanoscribe, and 1550 nm is a common
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Figure 4. Diagram of the experimental setup used to characterize the reflection spectrum of each device in air at room temperature.

telecomwavelength in themiddle of our laser’s bandwidth. All
calculations assume room temperature.

The transmission through a FP resonator can be modelled
by the Airy distribution, which calculates the internal res-
onance enhancement factor for light of a given wavelength
based on the physical properties of the cavity [29]. The gen-
eric Airy distribution for two mirrors of equal reflectance

is calculated with, A=
[
(1−R)2 + 4Rsin2 (ϕ)

]−1
, where R

is the reflectance of the mirrors, and 2ϕ is the single-pass
phase shift between the mirrors [29]. This is calculated
with, 2ϕ= 2πν/∆νFSR ≈ 2πλ/∆λFSR. The intensity of light
reflected back from the cavity, as was measured in this work,
is inversely proportional to the transmission intensity.

We extracted the reflectance of the mirrors in our devices
by fitting an Airy distribution to the measured reflection
spectrum. To create a comparable waveform, we selected the
FSR and first λ0 from our measurements, and centered the
phase shift at the initial resonant wavelength by subtracting
it from λ to determine the single-pass phase shift in relation to
the resonant wavelength, 2ϕ′ = 2π (λ−λ0)/∆λFSR. The dis-
tribution was also normalized and scaled to the maximum and
minimum voltage readings for each device. For the dual-cavity
devices, the FSR and initial resonant wavelengths of each cav-
ity were used to calculate two Airy distributions, which were
added together, then normalized and scaled to the magnitude
of the measured reflection. This showed the ideal response of
each device given the measured FSR, resonant wavelength,
andmagnitude.With this waveform, different values of Rwere
chosen until the magnitude and shape closely resembled the
measured response. The value that provided the best match
was taken as the reflectance.

3.2. Measurement results

A scanning electron microscope (SEM) image of the fabric-
ated single-cavity device is presented in figure 5(a), while the
measured reflection intensity is presented in figure 5(b). The
cavity was formed by a 17.58 µm long, 40 µm by 40 µm rect-
angle, resulting in a theoretical FSR of 45.43 nm. The meas-
ured average∆λFSR was 42.09 nm, showing a variation of only
3.34 nm. The device’s high reflection intensity was 19.29 µW
corresponding to a voltage of 132.58 mV. The low reflection
intensity was 10.17 µW with a voltage of 69.89 mV, yielding
an extinction ratio of 1.90. Fitting the Airy distribution to these
results gave a reflectance of 0.01. This low value was caused
by the thicker fiber-polymer interface, as the released devices
show significantly higher reflectance. The corresponding Airy
distribution is included in figure 5(c).

The single-cavity device confirmed that the 2PP method
successfully produced optical elements for planar FP reson-
ators. The released dual-cavity device represents a signific-
ant improvement in functionality over the single-cavity device
because its first cavity is open to the environment. The dual-
cavity device also improved the extinction ratio of the reflec-
tion spectrum, which is demonstrated in figure 6(b). The first
cavity was 35 µm tall and filled with air, leading to a theor-
etical FSR of 34.32 nm. The polymer cavity was formed by
a 56 µm diameter, 20 µm tall disk with a theoretical FSR of
39.94 nm. The device is pictured in figure 6(a). When meas-
ured, the air cavity had an average FSR of 36.24 nm and the
polymer cavity had an average FSR of 36.07, agreeing within
five nanometers of the theoretical values. The high reflected
intensity of this device was 68.24 µW, corresponding to a
voltage of 468.98 mV, and the low reflected intensity was 1.12
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Figure 5. Measurement results from the single-cavity device. (a)
SEM image of the device, a 40 µm by 40 µm and 17.58 µm tall
rectangle. (b) Measured reflection intensity as a function of
wavelength. (c) Airy distribution with R = 0.01.

µW reading a voltage of 7.67 mV. This gives the device an
extinction ratio of 61. Fitting the Airy distribution, which is
included in figure 6(c), yielded a reflectance of 0.3.

Suspending the polymer structure over an air-gap allows
various interstitial media to be introduced into the first cav-
ity. Optofluidic dies, quantum dot suspensions, or other gain

Figure 6. Measurement results from the flat dual-cavity device. (a)
SEM image of the dual-cavity device, a 56 µm diameter, 20 µm tall
disk suspended above a 35 µm air cavity. These cavity lengths
match the hemispherical device. (b) Measured reflection intensity as
a function of wavelength. (c) Airy distribution with R = 0.3.

media could be inserted to create fiber-tip lasers. The RI of an
unknown gas or liquid can also be determined by immersing
the dual-cavity device and comparing the shifted FSR to a
reference.
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Furthermore, by including both a solid polymer cavity and
an open cavity, an RI sensor with this device would be self-
referencing and temperature immune. If a single open cavity
sensor was exposed to both a change in temperature and inter-
stitial medium, the FSR of the device would shift due to the
new RI of the cavity, and the new cavity length introduced
by thermal expansion of the polymer. It would be very diffi-
cult to decouple each effect from the observed FSR shift. The
released dual-cavity device would be able to isolate a change
in RI from the effect of thermal expansion because the solid
cavity would only experience the thermal effects. One could
determine the thermal effects from the FSR shift in the poly-
mer cavity, calculate the corresponding effects on the open
cavity, and subtracting them from the open cavity FSR shift
to isolate the changes in the interstitial medium.

While the dual-cavity device enables many applications,
there was a risk that the response from one cavity would
interfere with the response from another. If the resonant
wavelengths are too close and the width of the resonance
is too large, different peaks could not be resolved. Further-
more, light reflected from one cavity could destructively inter-
fere with light resonating in another, removing part of the
signal. Fortunately, this kind of interference can be avoided
by properly designing the constituent optical cavities. The
thickness of all FP cavities and interstitial medium gaps were
specifically designed to produce a good number of distinct
optical resonances around 1550 nm wavelength. The afore-
mentioned equation of ∆λFSR = λ2

0/2nl was used as a theor-
etical guideline to define the thickness of the polymer cavity
and interstitial medium. Peaks from both cavities are clearly
resolvable, as seen in figure 6(b), and the extinction ratio
improved markedly over the single-cavity device. Since the
signal quality improved with the addition of the second cav-
ity, interference between the cavities does not seem to degrade
the response.

The hemispherical device enjoys all the utility of the flat
dual-cavity device while adding the many benefits of curved
mirrors. The hemispherical mirrors reduced diffraction losses
and improved lateral confinement to produce a more consist-
ent peak transmission. Within the reflection dips, the flat dual-
cavity device showed a variance of 0.53 mV, while the hemi-
spherical counterpart achieved a variance of only 0.026 mV.
The hemispherical FP cavity also had the largest extinction
ratio observed, with a high reflection intensity of 78.162 µW
reading 537.17 mV, and a low reflection intensity of 0.31
µW reading 2.12 mV. This gave the hemispherical device
an extinction ratio of 253. An SEM image, and the reflec-
tion spectrum of the hemispherical FP cavity are shown in
figures 7(a)–(b) respectively. The distance between the center
of the inner mirror and the face of the fiber was 35 µm, with
a theoretical FSR of 34.32 nm. Within the polymer gap, the
concave-convex resonator was 20µm long between centers for
a theoretical FSR of 39.94 nm. The FSR of the air cavity was
measured to be 36.31 nm, and the FSR of the polymer cavity
was measured to be 36.19 nm. The Airy distribution fit the

Figure 7. Measurement results from the hemispherical dual-cavity
device. (a) SEM image of the device, a 56 µm diameter, 20 µm tall
cylinder measured from each center of curvature. The top mirror has
a 75 µm radius and the inner mirror has a 35 µm radius. The center
of the inner mirror is suspended 22.5 µm above the face of the fiber.
(b) Measured reflection intensity as a function of wavelength. (c)
Airy distribution with R = 0.2.
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Figure 8. (a) Schematic of the measurement setup to characterize the thermal sensor on an optical fiber tip. (b) Wavelength shifts as
responses to temperature variations demonstrated by the single-cavity sensor. (c) Wavelength shifts as responses to temperature variations
demonstrated by the flat dual-cavity sensor.

measured response with a reflectance of 0.2. This value is
lower than the flat cavity, although the curved mirror reduces
losses. The drop is likely caused by the thin polymer feature
fabricated over the surface of the fiber. While the feature does
not function as intended, as a third curved mirror, the fiber-
polymer interface it creates explains the loss in reflectance.

Like all curved-mirror FP cavities, hemispherical resonat-
ors are significantly less sensitive to misalignment, making the
device more robust in the face of vibrations or impacts to the
fiber. In addition, they can be used at higher incident intensities
without the loss of resolution that occurs in planar FP cavities.
The hemispherical device represents the power of our fabric-
ation technique to utilize 3D freedom to create advantageous
geometries that cannot otherwise be realized.

4. Fiber tip 3D remote sensors

The successful outcome of this work will bring a new gener-
ation of 3D monolithically integrated multifunctional fiber tip
remote sensors that have plethora of applications. As a proof of
concept, we characterized the FP resonant wavelength shifts of
the single-cavity device (the device shown in figure 5(a)) and
the flat dual-cavity device (the device shown in figure 6(a)) due
to fluctuations in the surrounding temperature.

As the background temperature changes, the FP reson-
ant wavelength shifts because the cavity undergoes a spec-
tral shift due to the changes in refractive index (thermo-optic
effect) and thermal-expansion (thermo-elastic effect) of the
sensing material. The changes in resonant wavelength at mode
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order m due to thermo-optic and thermo-elastic effects can be
expressed as ∆λ0/λ0 =∆n/n+∆l/l.

The unreleased or single-cavity heat sensor was first char-
acterized according to the measurement setup described in fig-
ure 8(a). The unreleased sensor exhibited a linear wavelength
shift as a function of temperature with a sensitivity of ~46
pm ºC−1 from 20 to 60 ºC and ~ 5.5 pm ºC−1 from 60 to 120 ºC
as shown in figure 8(b). The released or dual-cavity heat sensor
was then characterized according to the same measurement
setup. The released sensor demonstrated a linear wavelength
shift as a function of temperature with a sensitivity of ~50
pm ºC−1 from 20 to 120 ºC as presented in figure 8(c).

The solidly-mounted sensor showed a linear response
up to around 60 ºC as shown in figure 8(b). We have
performed multiple measurements on the solidly-mounted
sensor and obtained very similar results. Our measurements
of the solidly-mounted sensors consistently indicated linear
responses with slopes range from 45 to 50 pm ºC−1 and
from 5 to 6 pm ºC−1 for temperature variations from 20 to
60 ºC and 60 to 120 ºC, respectively. We believe this is due
to the anchoring scheme of the device. The solidly-mounted
sensor was anchored to the fiber tip by the entire bottom of
the 3D fabricated structure. This anchoring scheme has lim-
ited the linear expansion of the device due to an increase in
temperature.

According to the data provided by Nanoscribe GmbH,
the thermo-optic coefficient of the IP-DIP is approxim-
ately− 2.6× 10–4/K at 1550 nm. Using the experimental data
and the thermo-optic coefficient of the IP-DIP given by Nano-
scribe GmbH, the coefficient of thermal expansion of the IP-
DIP was calculated to be 2.9 × 10–4/K.

5. Conclusion

In conclusion, we have demonstrated three FP resonator
designs fabricated directly onto the cleaved ends of low-loss
optical fibers. Our fabrication technique is simple, fast, and
enables true 3D freedom to realize complex features, such
as optical elements, which are difficult or impossible to cre-
ate with traditional microfabrication methods. Two-photon
polymerization with ultra-fast laser pulses creates devices on
fiber tips in less than 15 min with a single writing step.
Each device improved the quality of the FP cavity’s reflec-
tion response. The single-cavity featured an extinction ratio of
1.90, the released dual planar cavity device obtained an extinc-
tion ratio of 61, and the hemispherical cavity device obtained
an extinction ratio of 253. The reflectance of the direct fiber-
polymer interface was estimated to be 0.01, while the reflect-
ance of IP-DIP was estimated to be between 0.2 and 0.3, both
over 1463 nm to 1634 nm. The dual-cavity device promises
increased utility as the open cavity is able to interact with
its environment and reference changes in RI to the solid cav-
ity. The hemispherical device brings the benefits of a curved-
mirror FP resonator such as improved alignment insensitiv-
ity and constant resolution at increased intensity, while also
providing a consistent resonant intensity across the spectrum
of interest.

We have demonstrated the usability of the single-cavity
and dual-cavity FP resonators as thermal radiation sensors.
Although the single-cavity sensor has a better structural
robustness, the dual-cavity sensor has demonstrated a better
extinction ratio, thermal sensitivity, and linearity compared to
the single-cavity sensor.

These FP cavity devices invite numerous applications,
such as on-fiber lasers and various sensors. Our future work
specifically hopes to explore reflective coatings to improve
the reflectance and quality factor of the reflection spectrum.
Micron scale plano and hemispherical cavities with have
demonstrated quality factors as high as 105 by adding a reflect-
ive coating [2], and the next devices we are producing aim to
achieve a reflectance of 0.9 or higher. The speed of our fabrica-
tion process enables us to take an iterative design approach and
explore several reflective coating options. Amore reflective FP
cavity will have much higher resolution and produce measur-
able responses for small changes in the RI or length of the cav-
ity to detect different phenomena such as electromagnetic radi-
ations, acoustic waves, temperature and pressure changes, dis-
placements, and hazardous material concentrations in both gas
and liquid form. Future work includes determining the suit-
ability of the next generation devices to sense some of these
phenomena.
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Photon. 6 2470–8

[3] Wang W, Zhou C, Zhang T, Chen J, Liu S and Fan X 2015
Optofluidic Laser Array Based on Stable high-Q
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Fabry-Pérot resonator: spectral line shapes, generic and
related Airy distributions, linewidths, finesses, and
performance at low or frequency-dependent reflectivity Opt.
Express 24 16366

10

https://doi.org/10.1063/1.3679721
https://doi.org/10.1063/1.3679721
https://doi.org/10.1039/C6LC01457G
https://doi.org/10.1039/C6LC01457G
https://doi.org/10.1038/nature01353
https://doi.org/10.1038/nature01353
https://doi.org/10.1364/OE.16.016670
https://doi.org/10.1364/OE.16.016670
https://doi.org/10.1109/JQE.2010.2050299
https://doi.org/10.1109/JQE.2010.2050299
https://doi.org/10.1109/JSTQE.2006.884082
https://doi.org/10.1109/JSTQE.2006.884082
https://doi.org/10.1063/1.3152286
https://doi.org/10.1063/1.3152286
https://doi.org/10.1364/OE.16.002387
https://doi.org/10.1364/OE.16.002387
https://doi.org/10.1063/1.2387965
https://doi.org/10.1063/1.2387965
https://doi.org/10.1364/OE.17.008319
https://doi.org/10.1364/OE.17.008319
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1103/PhysRevApplied.9.031002
https://doi.org/10.1038/nature06331
https://doi.org/10.1038/nature06331
https://doi.org/10.1364/OE.26.022249
https://doi.org/10.1364/OE.26.022249
https://doi.org/10.1088/1367-2630/17/1/013053
https://doi.org/10.1088/1367-2630/17/1/013053
https://doi.org/10.1088/0264-9381/21/5/097
https://doi.org/10.1088/0264-9381/21/5/097
https://doi.org/10.1109/JMEMS.2012.2211577
https://doi.org/10.1109/JMEMS.2012.2211577
https://doi.org/10.3390/s18061825
https://doi.org/10.3390/s18061825
https://doi.org/10.1364/OE.18.014245
https://doi.org/10.1364/OE.18.014245
https://doi.org/10.1364/BOE.3.001062
https://doi.org/10.1364/BOE.3.001062
https://doi.org/10.1364/OL.40.004891
https://doi.org/10.1364/OL.40.004891
https://doi.org/10.1063/1.3565242
https://doi.org/10.1063/1.3565242
https://doi.org/10.1109/JSTQE.2017.2712622
https://doi.org/10.1109/JSTQE.2017.2712622
https://doi.org/10.1109/TRANSDUCERS.2019.8808673
https://doi.org/10.1016/j.progpolymsci.2008.01.001
https://doi.org/10.1016/j.progpolymsci.2008.01.001
https://doi.org/10.1364/OE.24.016366
https://doi.org/10.1364/OE.24.016366

	Three-dimensional Fabry–Pérot cavities sculpted on fiber tips using a multiphoton polymerization process
	1. Introduction
	2. Fabrication process
	3. Device characterization
	3.1. Measurement setup
	3.2. Measurement results

	4. Fiber tip 3D remote sensors
	5. Conclusion
	Acknowledgments
	References


