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Abstract 

 
This paper presents stochastic volatility in the valuation of European options. Stochastic 

volatility models treat the volatility of the underlying asset as a random process rather than the 

constant volatility assumption of the Black-Scholes model. By changing the model parameters, 

almost all kinds of asset distributions can be generated by a negative correlation between the 

stock price process and the volatility process. It is observed that an asset’s log-return 

distribution is non-Gaussian which is characterized by heavy tails and high peaks. Heston 

model presents a new approach for a closed form valuation of options specifying the dynamics 

of the squared volatility as a square-root process and applying Fourier inversion techniques for 

the pricing procedure. Determination of the market growth rate of the stock share was 

considered. We also considered the effect of volatility and correlation parameter on the 

kurtosis and skewness of the density function. 

Keywords: European option, Heston model, Nigerian stock exchange, stochastic volatility model. 
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1 Introduction 

 
Derivative contracts are securities whose values are contingent on some other financial 

instruments or variable, called the underlier [1]. Volatility derivatives are products with volatility 

as the main underlying notion. These products are particularly important for market investors, as 

they are used to gain insight into the level of volatility in order to manage the market volatility 

risk [2]. 

 

The pricing methodologies proposed by [3,4] are the most significant and influential development 

in option pricing theory. However, the assumptions underlying the original works were questioned 

and became the subject of a wide theoretical and empirical study. Soon it became clear that 

extensions are necessary in order to fit the empirical data. Black and Scholes demonstrate how to 

price options under this assumption. Today this model is known as the Black-Scholes model and 

remains one of the most successful and widely used derivatives pricing models available. The 

main drawback of the Black-Scholes model is the rather strong assumption that the volatility of 

stock returns is constant. Under the assumption, when the implied volatility calculated from the 

empirical option data is plotted against option’s strike price and time to maturity, the resulting 

graph should be a flat surface. However, in practice, the implied volatility surface is not flat and 

the implied volatility tends to vary with the strike price and time to maturity. This disparity is 

known as the volatility skew [5]. This consequently leads to development of dynamic volatility 

modeling. A natural extension is so-called stochastic volatility model in which the volatility is a 

function of some stochastic variables [5]. The story of modeling financial markets with stochastic 

processes dates back to 1900 with research of Bachelier. He modeled the stock prices as a 

Brownian motion with drift. A more appropriate model is based on geometric Brownian motion 

[5]. 

 

There has been vast work on option pricing since the appearance of the celebrated Black and 

Scholes formula. The foundation of all these recent techniques had been laid long time before by 

Charles Castelli, who in 1877 talked about the different purposes of options in his book titled “The 

Theory of Options in Stocks and Shares”. The first known analytical valuation for options was 

presented in 1897 by Louis Bachelier in his mathematics dissertation “Theorie de la Speculation”. 

The pitfalls in his work were that the process he chose generated negative security prices and the 

option prices were in some cases greater than the prices of the underlying assets.  

 

Since the Black-Scholes formula was derived, a number of empirical studies have concluded that 

the assumption of constant volatility is inadequate to describe the stock returns. The volatility has 

been observed to exhibit consistently some empirical characteristics [5]: 

 

• Volatility tends to revert around some long term value; 

• Volatility clusters with time: large (small) volatility tend to follow large (small) price 

changes; 

• Volatility is correlated with stock returns. 

 

The stochastic volatility models have been put forward to model the variability of volatility and to 

capture the volatility skew [5]. 

 

One option valuation problem that has hitherto remained unsolved is the pricing of European call 

on a stock that has a stochastic volatility [6]. From the work of [7], the differential equation that 
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the option must satisfy is known. The solution of this differential equation is independent of risk 

preferences if the volatility is a traded asset or the volatility is uncorrelated with aggregate 

consumption. If either of these conditions holds, the risk neutral valuation arguments of [8] can be 

used in a straightforward way.  

 

[9] considered the pricing of options on asset with stochastic volatilities; in their paper they 

produced a solution series form for the situation in which the stock price is instantaneously 

uncorrelated with the volatility. They did not assume that the volatility is a traded asset and a 

constant correlation between the instantaneous rate of change of the volatility and the rate of 

change of aggregate consumption can be accommodated.  They also found that the Black-Scholes 

price frequently overprices options and that the degree of overpricing increases with time to 

maturity. The option price is lower than the Black-Scholes (B-S) price when the option is close to 

being at the money and higher when it is deep in or out of the money. The exercise price for which 

overpricing by Black-Scholes takes place is within about ten percent of the security price. This is 

the range of the exercise prices over which most option trading takes place. This effect is 

exaggerated as the time to maturity increases. The longer the time to maturity, the lower the 

implied volatility. 

 

The most popular stochastic volatility model was introduced by Heston. In his influential paper he 

presents a new approach for a closed form valuation of options specifying the dynamics of the 

squared volatility (variance) as a square-root process and applying Fourier inversion techniques 

for the pricing procedure. The characteristic function approach of this model turned out to be a 

very powerful tool. 

 

According to [10], in a stochastic-volatility model, volatility is driven by a random source that is 

different from the random source that drives the asset return process, even when the two random 

sources may be correlated. In contrast to a deterministic-volatility model in which the investor 

incurs only the risk from a randomly evolving asset price, in a stochastic-volatility environment, 

an investor in the options market bears the additional risk of a randomly evolving volatility. In a 

deterministic volatility model, an investor can hedge the risk from the asset price by trading an 

option and a risk-free asset based on a risk exposure computed using an option pricing formula. 

They also gave an overview of different specifications of asset price volatility that are widely used 

in option pricing models.  

 

Stochastic volatility models assume that volatility itself is a random process and fluctuates over 

time. Stochastic volatility models were studied by [11,12,13]. Other models for the volatility 

dynamics were proposed by [14,15,16,17,18,19,20] just to mention a few. In all these models the 

stochastic process governing the asset price dynamics is driven by a subordinated stochastic 

volatility process that may or may not be independent [21]. 

 

In this paper, we shall investigate Heston model and its accuracy for the valuation of options 

under stochastic volatility. The paper is structured as follows; Section 2 provides the theoretical 

background on which the models rely on and the derivation of Heston model. Numerical 

calculations are made in Section 3, where the results of the tests are presented as well as 

comments on the results. Section 4 concludes the paper. 
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2 Stochastic Volatility 

 
Volatility refers to the amount of uncertainty or risk about the size of changes in security's value. 

This is also the key to understanding why option prices fluctuate and act the way they do. In fact, 

volatility is the most important concept in the valuation of options and it is denoted byσ . 

 

A model of volatility is needed for managing portfolios containing options (including derivatives 

and other securities containing options) for which market quotes are not readily available and that 

consequently must be marked to model rather than marked to market. Accurate assessments of 

volatility are also key inputs into the construction of hedges, which limit risk exposures, for such 

portfolios. Because of the central role that volatility plays in derivative valuation and hedging, a 

substantial literature is devoted to the specification of volatility and its measurement. Modeling 

volatility is challenging because volatility in financial and commodity markets appears to be 

highly unpredictable. There has been a proliferation of volatility specifications since the original, 

simple constant-volatility assumption of the famous option pricing model developed by Fischer 

Black and Myron S. Scholes.  

 

Volatility is one of the factors affecting option pricing. The greater the expected movement in the 

price of the underlying assets due to high volatility, the greater the probability that the option can 

be exercised for a profit and hence the more valuable is the option [22]. 

 

A higher volatility means that a security's value can potentially be spread out over a larger range 

of values. This means that the price of security can change dramatically over a short time period in 

either direction. 

 

A lower volatility means that a security's value does not fluctuate dramatically but changes in 

value at a steady pace over a period of time. For options, volatility is ‘good' because the greater 

the volatility of the underlying, the greater the value of the option while for some financial 

derivatives, volatility is `bad'. This is due to the fact that the purchases of options enjoy only the 

upside potential not downside risk. Other financial derivatives have both risks. 

 

There are two types of volatility namely implied and historical volatilities [22]. Implied volatility 

measures the price movement of the option itself. Historical volatility is also called statistical 

volatility that measures the rate of movement in the price of the underlying asset. 

 

2.1 Stochastic Volatility Model 

 
The popularity of stochastic volatility in option pricing grew out of the fact that distributions of 

the asset returns exhibit fatter tails than those of the normal distribution [23,24]. Thus, the 

observed frequency of extreme asset returns in fat tail distribution is much higher than would 

occur if returns were described by a normal distribution. Stochastic volatility models can be 

consistent with fat tails of the return distribution. The occurrence of fat tails would imply, for 

example, that out-of-the-money options would be underpriced by the Black-Scholes model, which 

assumes that returns are normally distributed. 

 

One problem arising with the assumptions of a model such as the Black-Scholes is volatility smile 

(or volatility skew in some markets). If we consider options on an underlying equity with different 
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strike prices, then the volatilities implied by their market prices should be the same. They measure 

the risk for the same underlying asset. Similar patterns are found by altering time-length to 

maturity when the market prices are used to find the implied volatilities. These patterns are very 

difficult to explain in a Black-Scholes world. Both constant- and stochastic volatility models 

assume the stock price follows a stochastic process. A general representation of the continuous-

type stochastic volatility model is given by the stochastic differential equation: 

 

1

( )

t t t t

t t

dS S dt SdW

f Y

µ σ

σ

= + 


=               

     (1) 

 
2

1 2

( , ) ( , )t t t t

t t

dY a t Y dt b t Y dW

dW dW dtρ

= + 


=                                                                          

(2) 

 

Here tS is called the stock price at time t , the variable µ is the drift or expected rate of return and 

t
σ  is the volatility of the stock price. 

1

tW and
2

tW  are two correlated standard geometric 

Brownian motion which can be defined as the process for the price of the underlying asset. By 

dynamics of historical prices, we assume that the volatility follows a stochastic process. 

 

The constant parameter ρ is the correlation coefficient between these two Brownian motions

1

tdW and 
2

tdW in (1) and (2) respectively.  We can also express
2

tW as 

 

2 1 21t t tW W Wρ ρ= + −
                

                  (3) 

 

where t
W is a standard Brownian motion independent of

1

tW . There are some economic arguments 

for a negative correlation between stock price and volatility shocks.  

 

2.1.1 The valuation of options in the stochastic volatility model 

 
To price options in the stochastic volatility model, we shall apply no-arbitrage arguments method. 

The riskless portfolio is constructed as in the Black-Scholes model but the construction method is 

different. In the stochastic volatility option valuation model, there is only one traded risky asset 

S but two random sources 
1

tW and
2

tW . So the market is incomplete. Since no-arbitrage 

arguments are enough to give the option price, we need additional assumptions. In the following 

derivation, equilibrium arguments are also employed. The market is complete when we have two 

traded assets, the underlying asset S and a benchmark option G . Then all other options can be 

replicated by these two traded assets. A riskless portfolio θ consists of an option F which we 

want to price, 1−∆ shares of the underlying asset S and 2−∆ shares of the benchmark option G . 

Then we have that  

 

1 2F S Gθ = − ∆ − ∆                         (4) 
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The portfolio is self-financing, so that 

 

1 2d dF dS dGθ = − ∆ − ∆             (5) 

 

F and G are functions of variables , tt S S= and tY Y= . By applying the two-dimensional It o
)

’s 

formula, we have for dF and dG respectively as follows 

 
2 2 2

2 2 2

2 2

1 1
( ) ( )

2 2

F F F F F F
dF f Y S b f Y Sb dt dY dS

t S Y S Y Y S
ρ

 ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂      

  (6) 

 
2 2 2

2 2 2

2 2

1 1
( ) ( )

2 2

G G G G G G
dG f Y S b f Y Sb dt dY dS

t S Y S Y Y S
ρ

 ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂          

(7) 

 

Substituting (6) and (7) into (5), we have 

 

2 2 2
2 2 2

12 2

2 2 2
2 2 2

2 2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

F F F F F F
d f Y S b f Y Sb dt dY dS dS

t S Y S Y Y S

G G G G G G
f Y S b f Y Sb dt dY dS

t S Y S Y Y S

θ ρ

ρ

 ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + − ∆  

∂ ∂ ∂ ∂ ∂ ∂ ∂  


  ∂ ∂ ∂ ∂ ∂ ∂  −∆ + + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂    
            (8) 

 

Therefore, (8) can be written as  

 

2 2 2
2 2 2

2 2

2 2 2
2 2 2

2 2

2

2 1 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

F F F F
d f Y S b f Y Sb dt

t S Y S Y

G G G G
f Y S b f Y Sb dt

t S Y S Y

F G F G
dS dS dY

S S Y Y

θ ρ

ρ

 ∂ ∂ ∂ ∂
= + + + +  

∂ ∂ ∂ ∂ ∂  
  ∂ ∂ ∂ ∂

+ + + +   
∂ ∂ ∂ ∂ ∂  −∆  
∂ ∂ ∂ ∂    − ∆ − ∆ + − ∆    ∂ ∂ ∂ ∂                    

  (9) 

 

To make the portfolio riskless, we choose 

 

2 1

2

0

0

F G

S S

F G

Y Y

∂ ∂ 
− ∆ − ∆ = ∂ ∂


∂ ∂ − ∆ =

∂ ∂ 

      (10) 
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To eliminate dS and dY terms, solving (10) gives 

 

1

2

F GF G

Y YS S

F G

Y Y

∂ ∂ ∂ ∂ 
∆ = −   ∂ ∂∂ ∂  


∂ ∂  ∆ =   ∂ ∂  

           (11) 

 

The portfolio is riskless if we rebalance it according to (11). On the other hand, the riskless 

portfolio must earn a risk-free rate; otherwise there would be an arbitrage opportunity. So  

 

2 2 2
2 2 2

2 2

2 2 2
2 2 2

2 2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

F F F F
d f Y S b f Y Sb dt

t S Y S Y

G G G G
f Y S b f Y Sb dt

t S Y S Y

θ ρ

ρ

 ∂ ∂ ∂ ∂
= + + + + 

∂ ∂ ∂ ∂ ∂  


  ∂ ∂ ∂ ∂ −∆ + + +   ∂ ∂ ∂ ∂ ∂   

              (12) 

 

Substituting (11) into (12), we have 

 

2 2 2
2 2 2

2 2

2 2 2
2 2 2

2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

F F F F
d f Y S b f Y Sb dt

t S Y S Y

G G G GF G
f Y S b f Y Sb dt

Y Y t S Y S Y

θ ρ

ρ

 ∂ ∂ ∂ ∂
= + + + +  

∂ ∂ ∂ ∂ ∂  


  ∂ ∂ ∂ ∂∂ ∂    − + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂    

       (13) 

 

Since the portfolio is riskless then it must earn a return similar to other short term riskless 

securities such as bank account. Therefore, we have  

 

d r dtθ θ=                                        (14) 

 

Substituting (4) and (13) into (14), yields 

 

2 2 2
2 2 2

2 2

2 2 2
2 2 2

2 2

1 1
( ) ( )

2 2

1 1
( ) ( )

2 2

F F F F F F
f Y S b f Y Sb rF rS

t S Y S Y S Y

G G G G G G
f Y S b f Y Sb rG rS

t S Y S Y S S

ρ

ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + + − + = ∂ ∂ ∂ ∂ ∂ ∂ ∂  


 ∂ ∂ ∂ ∂ ∂ ∂ + + + − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 (15) 

 

Notice that the left hand side is a function of F only and right hand side is a function of G only. 

Let the function ( , , )L t S Y which is independent of any particular option be denoted by:  
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( , , ) ( , ) ( , ) ( , , )L t S Y a t Y b t Y t S Y= − Ω           (16) 

 

where ( , )a t Y is called the drift term of the driving process Y  and ( , , )t S YΩ is called the 

market volatility risk. ( , , )t S YΩ cannot be determined by the arbitrage theory alone but rather it 

is completely determined by the benchmark option G . So the market determines the price of 

volatility risk.Now setting the left hand side of (15) to ( , , )L t S Y− , then the equation for the 

option F is given by 

 
2 2 2

2 2 2

2 2

1 1
( ) ( ) ( , , )

2 2

F F F F F F
f Y S b f Y Sb rF rS L t S Y

t S Y S Y S Y
ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + + − + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂    

(17)

         

Substituting (16) in (17), we have the partial differential equation for the option of the form 

 
2 2 2

2 2 2

2 2

1 1
( ) ( ) ( ) 0

2 2

F F F F F F
f Y S b f Y Sb rF rS a b

t S Y S Y S Y
ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + + − + + − Ω =

∂ ∂ ∂ ∂ ∂ ∂ ∂    

(18) 

 

Given the terminal condition for F , (18) is solvable under some driving processes. 

 

Remarks: Risk-neutral valuation method can also be applied to the stochastic volatility model 

above, but the problem here is how to construct equivalent martingale measures and what the asset 

price process and the volatility process will be under these measures. To change measure from the 

objective measure P to an equivalent martingale measure Q , we need to use the Gisarnov 

Theorem. 

 

2.2 Heston’s Stochastic Volatility Model  

 
Many traders have used stochastic volatility model for the valuation of options. Heston model is 

the most popular one among several existed stochastic volatility model. This model assumes that 

t
v follows a Cox-Ingersoll-Ross (CIR) process of the form 

 

( )

( )

t t t t

t t

dv v dt v dW

f v v

κ π σ = − + 


= 

          (19) 

 

We rewrite the model in the following way as follows: 

 

*

t t t t t
dS S dt S dWµ ν= +                  (20) 

 

**( )
t t t t

d dt dWν κ π ν σ ν= − +           (21) 

 
* **

t tdW dW dtρ=             (22) 
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Where 
*

tW and 
**

tW are two standard Brownian motions with correlation [ 1,1]ρ ∈ − , π the 

long-run variance, κ the rate of mean reversion and σ  the volatility. The drift term of the 

specified process in (21) is an affine function of the state variable itself. The affinity makes the 

model easier to solve. Here we assumed no dividend paying stock and the interest rate is constant. 

By the same argument above, the value of any option ( , , )U S tν must satisfy the equation,  

 

[ ]

2 2 2
2 2

2 2

1 1

2 2

( ) ( , , ) 0, 0 , 0, 0

U F U F U
S S rU rS

t S v S v S

U
S t t T S v

ν νσ ρν σ

κ π ν ν σ ν
ν

∂ ∂ ∂ ∂ ∂
+ + + − + +∂ ∂ ∂ ∂ ∂ ∂


∂ − − Ω = ∀ ≤ ≤ > >

∂          

      (23) 

 

( , , )S tνΩ is called the market price of volatility risk. Heston model chooses the market price of 

volatility risk to be proportional to the volatility, i.e. ( , , )S tν κ νΩ = or

( , , )S tν σ ν κσνΩ = . Let λ κσ= , so the coefficient of 
U

ν

∂

∂
in (23) becomes

[ ]( )κ π ν λν− − . This choice of market price of volatility risk gives us analytical advantages. It 

helps the model to have a closed form solution. 

 

2.2.1 A closed form solution 

 

Heston modelis used to solvethis equation for a European option by using a technique based on 

characteristic functions. This model can also be used to solve some other important models, so we 

give a brief introduction here. The solution of the equation has the form which is similar to the 

Black-Scholes formula 
 

( )

1 2( , , ) r T t
U S t SP Ke Pν − −= −                                                                                (24) 

 

Suppose  

lnz S=          (25) 
 

and substitute the proposed solution (24) into (23), then we have partial differential equation 

which 1P and 2P should satisfy; 

 
2 2 22

2 2

1
( ) ( ) 0

2 2

j j j j j j

j j

P P P P P P
r u a b

z z z t

σ ν
ρσν ν ν

ν ν ν

∂ ∂ ∂ ∂ ∂ ∂
+ + + + + − + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
   (26) 

 

For 1, 2j = , where  

 

1 2

1 2

1 1
, , ,

2 2

,

u u a

b b

κπ

κ ρσ λ κ λ


= = − = 


= − + = + 

      (27) 
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The partial differential equation must be solved subject to the terminal condition 

 

{ }ln
( , , , ln ) 1

j z K
P z T Kν

≥
=                                                                                     (28) 

 

They can be interpreted as “risk-neutralized probabilities”. The corresponding characteristic 

functions 1( , , ; )f z tν φ and 2( , , ; )f z tν φ for risk-neutralized probabilities 1P  and 2P  

respectively will satisfy similar partial differential equation (26) with the terminal condition 

 

( , , ; )
i z

jf z t e
φν φ =             (29) 

 

We guess a functional form due to linearity of the coefficients  

 
( ; ) ( ; )

( , , ; ) j jC T t D T t i z

j
f z t e

φ φ φ
ν φ

− + − +
=        (30) 

 

Substituting this functional into (26), we have two ordinary differential equations 

 

2 2 21 1
0

2 2

j

i j j j j j j

C
C C u b C

t
φ ρσφ σ φ

∂
+ + + − − =

∂
   (31) 

 

0
j

i j

D
r aD

t
φ

∂
+ + =

∂
       (32) 

 

subject to the terminal conditions given by (0; ) 0, (0; ) 0C Dφ φ= = . The solutions to these two 

ordinary differential equations are  

 

( )

2

1
( ; ) ( ) ( )( ) 2 ln

1

jd T t

j

j i j i j

j

g ea
C t r T t b d T t

g
φ φ ρσφ

σ

−  − 
= − + − + − +   

−    

         (33) 

 

( )
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1
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1

j

j
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j i j
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j

b d e
D t

g e

ρσφ
φ

σ

−

−

 − + −
=  

−  
                             (34) 

 

and  

 

2 2 2( ) (2 )

j j j

j

j j j

j i j j i

b d
g

b d

d b u

ρσφ

ρσφ

ρσφ σ φ φ

− + 
= − − 


= − − − 

        (35) 
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Then the risk-neutral probabilities 1P and 2P  can be recovered by inverting the corresponding 

characteristic functions 

 
ln

0

( , , ; )1 1
( , , ; ln ) Re

2

i K

j

j

e f z t
P z t K d

i

φ ν φ
ν φ

π φ

−∞  
= +  

  
∫     (36) 

 

The only part that poses a slight problem is the limits of the integral in (36). This integral cannot 

be evaluated exactly, but can be approximated with reasonable accuracy by using some numerical 

integration techniques such as Gauss Lagendre or Gauss Lobatto integration. 

 

Hence the price of European call option is given by (24), (30) and (36).  

 

Remarks: 

  

• The price of European put options can be obtained using the put-call parity.  

• The essence of the characteristic function methodology is using Fourier series.  

• Fast Fourier transform algorithm is introduced by [25] 

• Heston model incorporates the stochastic interest rates into the model and apply the 

stochastic volatility model to bond currency options. 

 

In the sequel we shall give the expressions of the following Greeks namely delta, gamma and 

Vega respectively as follows 

 

Differentiating (23) with respect to S we have: 

 

1

( , , )U S t
P

S

ν∂
∆ = =

∂
            (37) 

 

By differentiating (37) with respect to Syields 

 
2

1

2

( , , ) 1 PU S t z

S S z S S z

ν ∂∂ ∂∆ ∂∆ ∂
Γ = = = =
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        (38) 

 

ln1

0

1
Re ( , , ; )

i K

j

P
e f z t d

z

φ ν φ φ
π

∞
−∂

 =  ∂ ∫                              (39) 

 

For convenience, in Heston model we define Vega as the first derivative of the option price 

in(23)with respect to the spot variance 

 

( )1 2( , , ) r T tP PU S t
S Ke

ν

ν ν ν
− −∂ ∂∂

= −
∂ ∂ ∂

                                                          (40) 

 

Where 
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ln

0

( ; ) ( , , ; )1
Re , 1, 2

i K

j j j
P D T t e f z t

d j
i

φφ ν φ
φ

ν π φ

−∞  ∂ −
= = 

∂   
∫    (41) 

 

The above formula is quite ‘explicit’ and easy to code in MATLAB. 

 

2.2.2 Parameter estimation 

 

The parameter to be estimated is µ which was defined earlier as the drift parameter in (1). The 

log of likelihood is given by  

 

( )
2

0 0 0

( ) (0)
2 2

T T T

i i i i i
dS S d S T S S d

µ µ µ µ

σ σ σ

 
− = − − 

 
∫ ∫ ∫    (42) 

 

Where the maximum likelihood estimate of µ is 

 

00

( ) (0) ( ) (0)
T T

ii
i

S T S S T S

SS di

µ

=

− −
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∑∫
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         (43) 

 

The approximation is a Riemann sum using the observed values 1 2, ,...,
T

S S S . The approximate 

variance of µ
)

is given by

2

0

T

iS di

σ

∫
. In order to estimate σ , let us consider ln S , which is a 

diffusion with differential equation 

 

21
ln ( ) ln (0) ( )

2
S t S dt dW tµ σ σ

 
− = − + 

 
         (44) 

 

So that we can compute 
2σ from a path using the quadratic variation as  

 

2
2

0

1 (2 )
ln

( 1)2

n nT

n
i

S i

n S i
σ

−

−
=

 
=  
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∑             (45) 

 

The data are only observed to precision 0n = yielding the approximate estimate. 

 

2 2

0 1

1
ln

T
i

i i

S

n S
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 
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2.2.3 Determination of the market growth rate 

 

The following result describes the growth rate of the market. 

 

Theorem 1:  For a twice continuously differentiable ( )F S , i.e.
1,2

[(0, ), ]F C T R∈ , the solution 

of the time homogeneous investment equation  

 
2

2 2

2

1 ( ) ( )
( )

2
t

d F S dF S
S S r F S S

dS dS
σ µ+ − = −          (47) 

 

is given by 
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0, 0
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           (49) 

 

and  

 

1
( )

(1 ) 0
2 ( )t

dF S A S
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λ

µ
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−

)
) )

         (50) 

 

where ,A B are constants. S
)

is the expected equilibrium price of the primary security for a period

t . 
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λ

σ σ σ

µ µ
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      = − + − +          


     = − − + − +    
      

         (51) 

 

1λ and 2λ are positive and negative characteristic roots of (47) respectively.  

 

Also , 0, [0,1]
t

r tµ σ µ σ= + > ∈ , t
r is a decreasing (or increasing) linear function of time t  

as t increases. Now, let us denote 
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( )
SdF

F S
dS

=                                              (52) 

Differentiating (52), we have,

2 2( )
0

dF S dF d F d F dF dF
S S

dS dS dS dS dS dS
= + ⇒ = − =  

 

Therefore,  
 

2

0
d F

S
dS

=          (53) 

 

Substituting (52) and (53) into (47) then, we have that  

 

( ) ( )
t

dF S dF S
S r S

dS dS
µ − = −            (54) 

 

Dividing through by S ,  
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( ) 1
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dF S dF S
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dS dS r
µ η
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−
 

But, t t
r µ σ= +  thus  

1 1

t t
η

µ σ µ σ
= =

+ −
 

1

t
η

σ
=        (55) 

 

Equation (55) is called the market growth rate of the stock shares. 
 

3 Applications and Numerical Example 

 
We utilize the following data to interpret the above model equations. The data of United Bank for 

Africa (UBA) and Zenith Bank PLC quotations on the Nigerian Stock Exchange (NSE) between 

1st November, 2011 and 1st January 2012 are presented in the Tables 1 and 2 below. 

 

3.1 Fitting Analysis for the Model 

 
(a)  For Fitness of Table 1 (United Bank for Africa), we take t as a trading frequency and 

61T = days with 
10

0.164
61

n
t t

T
= ⇒ = =  
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Table 1. United bank for Africa quotation on Nigerian stock exchange (NSE) market 
 

S/No Number of deals Quantity Value (N) Share price (s) 

1 266 22128090 56158178 2.55 

2 155 51551481 118551842 2.26 

3 166 81793301 177672927 2.17 

4 231 43811777 107672927 2.50 

5 197 83115894 227809283 2.60 

6 272 47983738 153076719 3.16 

7 209 37829415 113739208 2.99 

8 244 22522995 66814563 3.00 

9 207 10023772 28028523 2.77 

10 250 48939528 156797970 3.25 
 

Table 2. Zenith bank PLC quotation on Nigerian stock exchange (NSE) market 
 

S/No Number of Deals Quantity Value (N) Share Price (s) 

1 230 69798494 807375205 11.60 

2 229 30348200 348413167 11.50 

3 236 100076408 1150822455 11.50 

4 207 4746149 57652153 11.30 

5 180 44893463 529388520 11.99 

6 215 65398291 842600794 12.90 

7 301 38838291 489413638 12.60 

8 316 31598675 394843225 12.40 

9 315 16186423 197097419 12.30 

10 406 92800309 1146994885 12.30 
 

From (43), we have that 
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Therefore, 0.0134σ =  
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We recall that; 

 

0.026 0.0134(0.164)

0.02813

t
r tµ σ= +

= +

=

 

 

Also from (51) 
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The market growth rate of the stock share is given by 
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469.04
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From (43), we have that 
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Therefore, 0.0138σ =  

 

We recall that; 
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Also from (51) 
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The market growth rate of the stock share is given by 
 

1 1
435.54

0.0138(0.164)t
η

σ
= = =

 

 

 

3.2 Numerical Example 

 

We examine the effect of correlation coefficient, volatility and kurtosis on European options using 

the parameters below: 

 

0 00.1, 0, 0.04, 2, 0.04, 0.01, 1, :0.5 3r S Maturities yearsσ ρ θ κ ν= = = = = = = −  

The effect of correlation coefficient on the skewness of the density function is shown in Fig. 1 

with strike price K = 0.092-0.11, the effect of varying volatility on the kurtosis of the distribution 

is shown in Fig. 2 with strike price K = 0.092-0.11and the effect of changing the kurtosis of the 

distribution impacts on the implied volatility are shown in Figs. 3, 4 and 5 with strike price K = 

0.8 – 1.2.The Figs. 1, 2, 3, 4 and 5 are shown in the appendix below. 
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3.3 Discussion of Results 

 
From the Tables 1 and 2 above, we have the quotations of United Bank for Africa, Nigeria Plc. 

and Zenith Bank of Nigeria on NSE market respectively.The market growth rates of the stock 

share of United Bank for Africa, Nigeria Plc. and Zenith Bank of Nigeria between 1st November 

2011 and 1st January 2012 were obtained to be 469.04 and 435.54 respectively.This result shows 

that the market growth rates of the stock share of United Bank for Africa, Nigeria Plc. is greater 

than that of its counterpart; Zenith Bank of Nigeria  

 

Fig. 1 shows the effect of varying σ . The volatility, σ affects the kurtosis (peak) of the 

distribution. When 0σ = , the volatility is deterministic and the log-returns will be normally 

distributed. Increasing σ will then increase the kurtosis only, creating heavy tails on both sides.  

 

Fig. 2 shows the effect of different values of correlation coefficient ρ on the skewness of the 

density function. The effect of changing the skewness of the distribution also impacts on the shape 

of the implied volatility surface. Also different values of ρ have effect on the implied volatility. 

 

Figs. 3, 4 and 5 show the effect of changing the kurtosis of the distribution impacts on the implied 

volatility. The volatility σ affects the significance of the smile and skew. Increase in volatility 

makes the skew more prominent. This means that the market has a greater chance of extreme 

movements and that the volatility is more volatile. 

 

4 Conclusion 
 
Empirical studies have shown that an asset’s log-return distribution is non-Gaussian. It is 

characterized by heavy tails and high peaks. There is also empirical evidence and economic 

arguments that suggest that equity returns and implied volatility are negatively correlated (also 

termed ‘the leverage effect’). This departure from normality plagues the Black-Scholes with many 

problems. There are major differences between the stochastic volatility model and the well-known 

Black-Scholes model. The stochastic volatility model is superior to the Black-Scholes model. 

Theoretically, stochastic volatility models make more realistic assumptions; and empirically, 

researchers also find that the stochastic volatility model performs much better than the Black-

Scholes model in pricing options. But stochastic volatility models are too technical and therefore 

not simple enough with respect to implementation. It is easy to understand and implement the 

Black-Scholes model. In contrast, Heston’s model can imply a number of different distributions. 

The correlation parameter
ρ

can be interpreted as the relationship between the log-returns and 

volatility of the asset. Intuitively, if
0ρ >

, then the volatility will increase as the asset price 
increases, this will spread the right tail and squeeze the left tail of distribution creating a fat right-

tailed distribution. Conversely, if
0ρ <

, then then the volatility will increase as the asset price 

decreases, this will spread the left tail and squeeze the right tail of distribution creating a fat left-

tailed distribution (emphasizing the fact that equity returns and its related volatility are negatively 

correlated). Hence
ρ

, therefore, affect the skewness of the distribution. The effectsof implied 

volatility σ and the correlation 
ρ

on the skewness, kurtosis on the density function are shown in 
the appendices below. 
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For many stochastic models, closed form solutions are not available. Some numerical methods are 

used. But usually it is time consuming to get the price using these numerical methods. Although 

Heston’s stochastic option pricing model has a closed form solution, the infinite integral is still 

solved by a numerical method. It is much faster than other stochastic volatility models, it takes 

into account the leverage effect, its volatility updating structure permits analytical solutions to be 

generated for standard plain vanilla European options and thus the model allows a fast calibration 

to given market data. However, there remain some drawbacks such as; the integral needed for the 

computation of the option prices do not always converge fast enough. The standard Heston model 

usually fails to create a short term skew as strong as the one given by the market. In the real 

financial markets, prices exhibit jumps rather than continuous changes. Large price changes 

cannot be generated by pure diffusion processes in stochastic volatility models. [26] found that 
some parameters of Heston model need to be implausibly high when fitting the market data. One 

explanation for this is the absence of price jumps. The correlation parameter, 
ρ

controls the level 

of skewness and the volatility of variance, σ controls the level of kurtosis. But the ability of 

Heston’s model to generate enough short term kurtosis is limited. And a high level of σ means 
the short-term kurtosis is very high. 

 

Modelling volatilities in a stochastic way corrects the simple constant volatility assumption of the 

Black-Scholes model. By changing the model parameters, almost all kinds of asset distributions 

can be generated by a negative correlation between the stock price process and the volatility 
process. The stochastic volatility model can also have an implied volatility surface which is 

similar to the one generated by market data. Among several stochastic volatility models, Heston 

stochastic model is the most popular. 

 

Some further research may be done by incorporating dividend paying stocks in the dynamics of 

the underlying price process. Also to investigate the relationship between prices of participating 

contracts for which a separate hedge portfolio exists and those contracts for which it does not 

exist. 
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Appendices 
 

 
Fig. 1. The effect of σ on the kurtosis of the density function 

 

 
Fig. 2. The effect of ρ on the Skewness of the density function 
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Fig. 3.  Implied volatility surface when 0.5ρ = −  

 

 
Fig. 4. Implied volatility surface when 0ρ =  
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Fig. 5. Implied volatility surface when 0.5ρ =  
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