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Abstract

In the present article generalization of Weierstrass’s preparation theorem and the division

theorem for germs of holomorphic functions at a poinfleflimensional complex space are
considered. The author formulates the global theorem about division in terms of existence and
continuity of the linear operator.
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1 Introduction

Generalization of the concepts of direct and inverse spectra of objects of an additive semiabelian
categoryG (in the sense V.P.Palamodov) was introduced by E.Smirnov [1]: the concept of a
Hausdorff spectrum, analogous to thgoperation in descriptive set theory, so was solved
Grothendieck’s problem about iterated classes of locally convex spaces for closed graph theorem .
This idea is characteristic even for algebraic topology, general algebra, global analysis, category
theory and the theory of generalized functions. The construction of Hausdorff spectra
X={XsF,hss} is achieved by successive standard extension of a small category of iditas
categoryH of Hausdorff spectra turns out to be additive and semiabelian under a suitable
definition of spectral mapping. In particuldt, contains V. P. Palamodov's category of countable
inverse spectra with values in the categdbG of locally convex spaces. The-limit of a
Hausdorff spectrum in the categofy.G generalizes the concepts of projective and inductive
limits and is defined by the action of the functor Hadis TLC. The class oH-spaces is defined

by the action of the functor Haus on the countable Hausdorff spectra over the category of Banach
spaces; the closed graph theorem holds for its objects and it contains the category of Fréchet
spaces and the categories of spaces due to De Wilde, D. A. Rajkov and E. SmirnéklinTihe

of a Hausdorff spectrum éf-spaces is ahl-space.
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Weierstrass’s preparation theorem and the division theorem for germs of holomorphic functions at
a point wJC" allow us to establish a series of properties of local rjf@s and modules over

these rings (Noetherian, Oka’s Lemma on the exactness of homomorphiﬁﬁsmodules, etc.

[2]). The proofs have a number of algebraic characteristics, therefore consideration of a global
variant of the theorems is significantly different and uses topological results of linear analysis . A
more careful analysis makes it possible to formulate a global division theorem in terms of the
existence and continuity of a linear operator acting on locally convex spaces so that the local and
global variants of Weierstrass's theorem turn out to be in fact special cases of a more general
theorem. In this article we obtain a stronger form of Theorems 11.B.3 and 11.D.1 in [2] for the case

of H -spaces.C];* denotesCx..x Cx Cx..x Cand 77, : C" - C]'' is the projection of
—_— T — T

m-1 —m
C" onto C!* ; at the same timg7":C" — C_ and C"=C'x C_ so that/7" is the
projection of C" onto Cm. For notational convenience in what follows the germ of a

holomorphic function is denoted by capital Roman letlersG , H, ....

2 Methodology and Methods

Let{S,,0,} be a presheaf of abelian groups over a topological spac&) a nonempty
partially ordered set anff an admissible class fd (we may assume without loss of generality
that Q =| F|). Let us denote byH (S) a covariant functor fronOrdQ to OrdU , whereU

0
is a base of open sets @, and byH (S) a contravariant functor frofdrdU to the category

of abelian groups so that an abelian grdgp is defined for eack JU and a homomorphism

O ~
Pu S, - § is defined for each pald OV . ThenH = H(S)o H(S is a contravariant
functor of the Hausdorff spectruX (S) ={ §_,F, 0, , } . which we will call theHausdorff
spectrum associated with the preshé¢;, g,,} . Let X be the H -limit of the Hausdorff

spectrum X (S) in the category of abelian groups and let

A= u..

FOF S|F

The following statement is proved in [3].

Proposition 1.Let S be the sheaf of germs of holomorphic functions on an opeb §&tC",
associated with the preshef§,, 0} , and let X(S) ={ §_,F, 9, } be the associated

true Hausdorff spectrum. Then tid -limit of the Hausdorff spectrunX (S) is isomorphic to
the vector space of sectioh A, S) of the shealS over the setA.
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Proposition 2. Let X(S) ={I"(U,, $,F, 0, ,} be a true countable Hausdorff spectrum and

suppose thatA = ﬂFUF U, has a countable fundamental system of compact sets, is ceshnect

o -0
and A# 0. Then theH -limit X =|jm A,,,.T(Us, S) is a separatedH -space in the
0
F
topology " and is continuously embedded @), (OA is the algebra of holomorphic functions

on A).

Proof. First of all, by Proposition 1 we have the isomorphisii X - I'(A'S) ; because of

the connectedness @\ and the fact thatp\i [0 each holomorphic function o\, #[10,, is

generated by some holomorphic function on the opehJ€gt) ; moreover, any two holomorphic
functions ¢, 1Q, and ¢, 0Q, (U O AV O A which coincide onA must coincide on a

connected component of the intersectidnnV (see [1, p. 104]), which also implies the
isomorphisml" (A, S) = Q,. Since A has a countable fundamental system of compact subsets

K, (n=12..), KOKO.,

on putting

I#1l,=max|$ @) @LO,),

we obtain a seminorm oD, (or on N(A'S) , which is permissible according to the
construction). Furthermore, on putting

o) =3 2 121

0o,
= ], @oo)

for example, we obtain a quasinorm @, under whichO, becomes a separated locally convex
space with a countable base of neighbourhoods of zero, therafdrizable, but in general not
complete; we will denote this space (9,, p) -

We now show that oD, the locally convex topolog)TD of the H -limit of the Hausdorff
spectrum X (S) is not weaker tharp . In fact, letW ={@ 0O, :||@||\<& be some
neighbourhood of zero i{O,, p) and let FUF . Let us chooses, | F| such that
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Us) U K - this choice turns out to be possible because of the compactnk&sg ahd the

condition A[J] UF U, ; also we can find a compact sit® [ U, such thatK® O K, -

s

here the choice is possible because of the availability of a fundamental i)léﬁérﬁl in USO .

Hog(M")OW,

where

f:(fS)F,MF :{fDVFSJ SZ;JKgl f% (2)|< €}, Hoyp(é) = 9, f% |A:¢.

since (M ") is itself a neighbourhood of zero in the MVE ., and F LJF was chosen
arbitrarily, we have that

H(cd JyMF)OwW

and is a neighbourhood of zero in the topoI(TgDy This also shows thaf~ = p. The proposition
is proved.

Thus we obtain the following

Proposition 3.Every connected bounded subget] C" has a representation

A= Ju.. (1)

FOF sOF

where F is an admissible class for the countable &tand theU ; are connected open subsets
(domaing) in C".

In particular, for such a sef\ the Hausdorff spectrum
X(9={r(yY,, $.F,py,,}

is true (it suffices to apply the uniqueness theorem for holomorphic functions). In the
representation (1) it is natural to require thatdf NU,#0 (S, SO|F]) then it is a

connected set. Only such sefs will be considered further.

In what follows the spac®, of germs of holomorphic functions oA will be provided with the

topology P (in general not separated) of uniform convergence on the compact subfetsnof
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with the locally convex topology of théH -limit. As has already been noted above
(Proposition 1), for a connected bounded sutAétl C" we have the linear isomorphism

X=(A9= Q.

We also note that if the sef\ has an interior point theﬁ)A coincides with the space of

holomorphic functions orA (up to isomorphism).
2.1Weierstrass’s Global Division Theorem

We will say that the gernH 0O, (AOC") is a W-local Weierstrass polynomial iiZ,,
(I=m< n) of degreek (k>0) if there existswl] A and a functionhJH which is

holomorphic on an open neighbourhddd[] A and has representation bh

h(2=(z,- W) +a()( 7~ W'+ .+ &'k

)
A CAR RN ST S T

where the a(Z') are holomorphic functions oz, (U), a,(W)=0, and w=wxw,

(J=12..,Kk). Itis clear that the holomorphic functidm is regular of ordeK in Z,, at the
point Wl A.

Theorem 1. (Weierstrass’s global division theoremipt ALl C" be a nonempty connected
bounded set such that"(A) is closed and leH 0O, be aW-local Weierstrass polynomial

in z,, of degreek (K >0) with representatior}, 0 H such that
{zOm'lom(ANnU:h(2=0t0 A
Then there exists a continuous linear operatorO, — O, % O, , where

L(F)=(G,P), F=GH+ P,

P=Y R(D)7, POIQ.

k-1
j=0
First of all we recall [2, Chapter 2, §5] th@A has the topologypP of uniform convergence on
the compact subsets, which in general is neither separated nor comple€d, #d, has the

usual product topology. In the course of the proof of Theore, Will also be given another
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stronger locally convex topology, again in general not separated, under which iHsspace.
Therefore we first present a lemma for Theorem 1.

Lemma 1.Let A: X - Y be a closed linear operator, whet¥ is an H -space under the
locally convex topology "~ and (Y, 0) is an H -space(in general X, Y are not separated
spaceg . Then A is continuous.

Proof. Let M, N be the respective nonseparated partsXof Y and X/ M , Y/ N the
separated quotient spaces with quotient mgpsX — X/ M and77:Y — Y/ N. Then the

quotient topologyé7~ on X / M is in general weaker than the topolof§z )", the limit of the
corresponding Hausdorff spectrum (see, for example, [4])]¢&tbe the quotient topology on

Y / N. Then the diagram

X _— ¥ (3)

is commutative and the induced mappina @xists because of the closedness of the opeftor

In fact, the closedness d\ implies thatN = ﬂ {U+ AV} | whereU , AV are bases of
Uy vv

neighbourhoods of zero for the topologigs Ar” respectively. ButAM [0 AV for anyV [
V. And 00U , therefore AM OU+ AV (OU,V) and, consequentlyAM O N .

Moreover, the induced mappinéD is clearly linear; we will show thaf” is a closed operator.
For this we have to show that

0= (] {U+A8}.

Uty viv

Since7A= A&, this is equivalent to the relatidd= ﬂu V/7{U + AV} . Let us suppose that
aDﬂU JRU+ A, thenngan (U+ AV) 0 (0OU,V). But using the closeness Af

and for some//U we haverp'a= y+ N and because of the absolute convexitjJofr AV
and Theorem 1.3 of [3] we obtap 'ad U + AV (0U,V). This implies thatp™a 0 N ;

consequentlya = 0 and A" is a closed operator.
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Thus by the Closed Graph Theorem for the-space(Y / N,/70) and complete MVGs the

closed operatorA” is continuous from{ X / M, (7)) to (Y / N,70). The existence of the
Hausdorff spectrum foY / N,770) follows from Proposition 4.10 and [4].

Now we will establish the continuity of the operatdr: X — Y. LetW be a closed absolutely
convex neighbourhood of zero ¥ and (VnF) a base of absolutely convex neighbourhoods of

zeroin the TVGX ¢, (FOF), where

If it is shown thatA: X, — Y is continuous, then by the definition of the topoldgy and
the local convexity of(Y,0) this will imply that A: X - Y is continuous. Therefore let
. EN - .

FUF be fixed. Then(§V,") is a base of neighbourhoods of zero for the TG/ M),
(see Proposition 4.10) angW is a neighbourhood of zero ifY/ N,70) . By the
commutativity of Diagram (3)A¢éV." =7 AVF (OnON) and by the continuity ofA™ there
exists NN such thatADg‘VNF UnW or I7AVNF LW . Hence, AVNF OW+ N, but
sinceW is a closed set anl 0 W, thenW + N O W and the continuity ofA: X ., — Y

is established. This means thAt. X — Y is continuous and the lemma is proved.

(F)

Lemma 2. Let L:(O,,p) - (O, P be a closed linear operator. Then
L:(O,, p) - (O,, P) is continuous(A is a nonempty connected bounded subs& 0.

Proof. We recall that the locally convex topologyp of the H -limit of a Hausdorff spectrum on

the space of germs of holomorphic functionsAnis not weaker than the locally convex topology
P of uniform convergence on the compact subsets Af. Therefore the operator

L:(O,, p) - (O,, p) is closed. Moreover, by Propositon 3.10 the st has a
representation

A=(1Uu.,

FOF sOF

where F is an admissible class for the countable@ek’:mdUs is a domain inC" ; moreover,
eachU_ (SU|F|) has a countable fundamental system of compact sufke}3;_, with
Ky OK;O.... We will show that each spacf0,), (FUF) is complete and so
(O,, p) is an H -space.
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We recall that

X={JNwM)

FOF sOF
andk: X - (A § = Q is an isomorphism. The TV@O,) ¢, is an isomorphic image of

the restriction of the complete TVG of countable chara&&r) (notation of 3.2) toX .

Therefore it is enough to establish the closednes/s_b(OA)(F) in S, . The arguments are

carried out more easily for the germs of holomorphic function$\on

Let FOF, U. OA, U, =Ug]FUS (F is no more than countable and is totally linearly
ordered forS). Further, Iet(Gn) be a sequence of germs of holomorphic functionsfowhich

is fundamental in(O, ), - Since (O,) ¢, is a quotient group (up to isomorphism) of the
complete MVG(l_I . OUS)(F), WhereOUS is the Fréchet space with the topology of uniform
convergence on the compact s(alérf)f it follows from Proposition 4.10 that there exists a
subsequencg, [ |_| - Q. (k=12..) such thatg, converges |r(|_| - Qu.) ) to some
elementg [J |_| - Q) andyg, =G, (k=12..). The last condition implies in particular
that g, =(f*)ge, where f} |, =1 (ssppdF), p=pK. (k=12..). Pu

P, =inf, p(K, p, O F. Then, clearly,fx |, = f* (s< p, k=12 ..); we will denote
by f, = fp';k the holomorphic functions on the open connectedUsgt (k=1,2..). Since
lim, .9, =g and g =(gJgr » then, in particular,f, converges to@po in QJPO and
moreoverg — g, OVE (sOF,n =n (9, 1=12 .). The last observation means that for
$> [, the holomorphic functiong, — f, has a unique extension to the kb (SLF).
However, each elemergjnk is equivalent to elementa, [] I_I F, QUS, i.e. (,[/gnk =y a, and
moreovera, Dﬂﬂﬁ VFSk (k=1,2..). Furthermore, we may assume without loss of generality
that F, < F, <.... Thus the holomorphic functiorfnkl has a unique extension to the set
U,ﬁq OA (1=12..) and, consequently, the holomorphic functief]wpo has a unique
extension to the sdf_ N Uﬁq (s> p,sd P. sinceU, nU 3 :UqDFKI U,nU, and

UnU,0OUNU, (9sd) , then USmUFN is a connected open set
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(1=242...k =k (9), and since the s§tiS[] F: s> p} can be enumerated, let its points be
S)S em

Thus on each nonempty open connected ket U R 2 holomorphic functiong bys is defined
such that gposlupo= g, (s>p,sJ P . But since each nonempty intersection

U,nU)nU g N U ) is connected by construction and has nonempty intersection with
i |

Upo’ then a holomorphic functio) is defined on the open s@; (Us n UFk) such that

gluaﬂuai =0, (=12..). Theng |UFD generates an element ﬁfLDFEVFSD such that

g =¢3gl, and, consequentlyyg =GO, andlim, G, =G inthe TVG(O,)q, -

Thus the space (O,),, is complete and (O, p) is an H -space (
® O

U.. OUL WU, nUg ) FIOF).

Continuity of the operatoA now follows from the Closed Graph Theorem, Lemma 1 and the
closedness of the operatés: (O, p’) — (O, P). The lemma is proved.

Proof of Theorem 1Let H O, be aW-local Weierstrass polynomial i@, of degreek and
let hOH be a holomorphic function on the open connectedUsétl A which satisfies the
conditions of the theorem and the relation (2). Furthermord; IEtOA be an arbitrary germ, let

f OF and suppose thaf is a holomorphic function on the domaih J U, (it may be
assumed without loss of generality thgt U ). Let us fix a pointa’ D]Tm(A) and a closed
(according to the condition) cross-sectitp(A) LI r,(U) and choose a closed piecewise-
smooth Jordan contodr, which enclosed, (A) and lies inf, (V) and has length(I" ).

Since the functiorh(2) is continuous on the open neighbourhood of the compact set
Q={zOV: zOr,,m( = &,

there exists an open bdB(0,d) such that forz, O , and Z O 77 [(d, z,) + BO,J)] we
have the inequality

I(2)- N4 z)lsinf] ka2 (4)

and the inclusion
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(@.,2,)+ B0,8)0V (70r,).

Moreover, by the compactness @ we can choose a polydigk'(0,d, ) [ C"™ such that

[a+2°0,5,)1xT, O | [(d, 7) + BO,9)]. (5)

pANE g

In fact, we cover the compact 9& with the open ball{a’, Z,) + B(0,0) (z, 0TI ), in each
of which we choose a polydiska’, z,) + A(0,d,) (z,0Tl 4,0, =(d,4,0,)) with these
taken together also coverif@. Put R, = d +A'(0,d, ). Then

U [@.z) +40,6)1=[{J (7,+ 0,0 )] R OT ,x R,

Znl 4

from which (5) follows.

The inclusion (5) allows us to conclude in particular that (4) and the incllisjob] r, (V') are
valid for ZOR, . Now for the indicatedZ 0 R, the function h, =h(Z, z) as a
holomorphic function of one variablg, has exactlyk zeros inside the contodr, by Rouché’s
Theorem for the domait, (V) n r (V) ; in particular,h, Z 0 on I",, and outside this contour
in the domaint, (V) (and evenr, (U)).

We will denote byD,, the domain bounded bly, and put

D= U (Da’er-,\')'

A, (A)
Itis clear thatD is an open connected set such thet] DOV O U, .

Further, for each open s&®, X R, (a' U7z, (A)) we define a holomorphic function (see [1])

(2.0), &

L
%A=l vz Tz,

and a holomorphic functio, (2) = f(2— g,( 2 § k. Therefore

_ 1 f@ZINZ.-H2 7)
P (2) 2deh@@3{ 702 }f,
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where
P:(2=2, R, (D7~ W',
_ 1 h(Z.9)

P =ik, gy (2O & (1201 k)

and the holomorphic functionlsjD (j =0,1...,k—=1) are defined from (2) by consideration of
the expression

h(z,{)-hz 7)
(-1,
The uniqueness of the functior@, and P, is established similarly to [1, p. 93] by using
Rouché’s Theorem.
if (D, xR;)n(D;xR,)#0 , then for zO(D,xR)N(D,x R) we have

7zmUD, n D, . Because the contours, and [, are homotopic this implies that the
following identity holds:

| fZ,d), 9 = f(2) &
« NZ,{) {~2n T« WZ{) (-~

Thus 9, (2) = @, (7 and, consequently, a holomorphic functigf2) can be defined on the
domain D such thatg |5 .o, = 94 (&' L77,(A). In the same way a holomorphic function
P(2) can be defined such tha | ., = p, (2 U77,(A) and

K="

P(D=. p(H(z- W',

i=0

LN

so that we have the unique representation
f(=oH2+ b (2 P (6)

Thus a linear operatol:0, - O,%x O, is defined by the relationL(F)=(G, P) ,
F=GH+P, fOF , gOOG, hOH , pOP . The operatorL has components
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L:F - GandL,:F - P, whose continuity in the respective topologies will also imply
that of L. Let us therefore investigate the continuity of the operatorand L, .
It follows clearly from the relation (6) thdt, and L, are closed linear operators fro(rﬁ)A, p)

into (O,, p) . Thus by Lemma 2 the operatds : (O,, p’) —» (O,, pP)) is continuous
(1=1,2), as also is the operator

L: (O, P) - (O, P)x(Q, P).

We now establish the continuity of the operator (O,, p) — (O,, P*(O,, . First of all,

let us fix an open séD" constructed by the method indicated above for the holomorphic function
h(2) on the domainU, ; then by the compactness @\ we choose a finite subcover

N L . :
Uizl (R;‘ X D;) , Where by the construction it may be assumed without loss of generality that on

the distinguished boundary of the pondiE!éT the functionh(Z,{)=0 only for { O DE:
(i=12..,N). Therefore h(2) #0 on the distinguished boundary of the polydomain

&T X D,: , which is part of the boundary of the dom@itl(R;‘ X D;) = U, . If we now put

h'(Z,
M = sup sup |M

I
Osjsk—lUi’il(@xra ) h( Z’, Z)

then M < 400,

Now let F JO,, Lyi:F -G, Ly:F —P and choosef LJF with domain of definitionV O U, ;

construct the domailD" OV such thatD" OV , while the functionsp(2) and g(2) are

defined onD" (pOP, g0 G and the relation (6) holds. It is clear ti@t 0 A and the
following diagrams are commutative:

Lo L

B cosinmed D B omsasnssngede 0
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We will establish the continuity of the operatog:l(O,, p) - (O,, P, the continuity ofL;
being obvious. Le®' 77, (A) . Then

R = KEIR IS [ 12010 41
B M kisupl 1 .00 )
T Df

Now we choose a sequende=V [V, [J .. which is fundamental fo/A and compact sets
Bm: Dn: , where Dn: Vv, such that A = ﬂ:le_r; and, moreover, the sequen(p )

converges toA in the Hausdorff metric for all compact subsets3¥. This means in particular
that for f JQ, we have the relation

WS}JPI f@2)< sAuq fe).

In fact, let us assume the contrary, i.e. there existO and a sequenc@T),) such that

sup| f @)l+e<suj f €) &I N)

Dm

From this we find a sequendg,, ) such thatz, DBW and
supl f @)+e <] T(z, ) (kO N

but then we can find a subsequen@m) such thatZD=!im Z, - Then Z'0A and,

consequently, we have the inequality

sup| f @)l+e<| @),
A
which is impossible.

Therefore
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IPll, = Sgpl p@)
< |lim s;n{pl P@Flim ign R @)
KIMK— , o
< - lim!T)fim surlf &)l
T m- o m-oe Dm
< K, ng” @)= Ky OOF ]

Thus the operatok, : (O,, p) —» (O,, P is continuous. The theorem is proved.

3 Results and Discussion

We can use Weierstrass’s global division theorem in the following situations:

1.

Generalization of classical results of B. Malgrange [5] and L. Ehrenpreis [6] on the
solvability of the unhomogeneous equatigD)D'=D’, where p(D) is a linear
differential operator with constant coefficients R and D’=D’ (S is the space of
generalized functions on a convex dom&in R", can be extended to the case of Sets
which are not necessarily open or closed.

Using homological methods one can establish the generalization of Palamodov’s theorem
[7] for vanishing at zero, Hal@)=0, for the functor Haus of a Hausdorff limit
associated with the representation (1), wh¢iie the Hausdorff spectrum of the kernels

of the operatorg(D):D’(Ty) - D’ (Ts) (sI|F|). The condition HadéX)=0 is equivalent to

the condition that the operat@(D):D’ (S - D’ (9 is an epimorphism.

We should learn a space of test functions on suctSseR” and prove that it is aH-
space (generally nonmetrizable), that is

XS = U N D(T), ™

FOF sOF

where {ns#Ter forms a fundamental system of compact subse&aofdD(T) is the
Fréchet space of test functions with supports in the closed TRER", where
S=0r£nsrTs (S — not necessarily open or closed).

We should prove the closed graph theorem for D(S)Zii8) for such S and consider
some important applications to approximation theory [8-9].

4 Conclusion

Using of new concept of H-spaces in technique on the solvability of the unhomogeneous equation
p(D)D’=D’, where p(D) is a linear differential operator with constant coefficient®Rirand

D'=D’ (9 is the space of generalized functions on a convex do@aiR", we can extend it to the

case of set$ which are not necessarily open or closed. So Weierstrass’s global division theorem
will be the main instrument for proving of an epimorphism of opena(dj and the search for a
fundamental solutions of tempered distributions
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