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Abstract
It has been recently shown that supervised machine learning (ML) algorithms can accurately and
efficiently predict long-time population dynamics of dissipative quantum systems given only
short-time population dynamics. In the present article we benchmarked 22 ML models on their
ability to predict long-time dynamics of a two-level quantum system linearly coupled to harmonic
bath. The models include uni- and bidirectional recurrent, convolutional, and fully-connected
feedforward artificial neural networks (ANNs) and kernel ridge regression (KRR) with linear and
most commonly used nonlinear kernels. Our results suggest that KRR with nonlinear kernels can
serve as inexpensive yet accurate way to simulate long-time dynamics in cases where the constant
length of input trajectories is appropriate. Convolutional gated recurrent unit model is found to be
the most efficient ANN model.

1. Introduction

Simulation of the dynamics of quantum dissipative systems [1–3] is one of the most challenging problems in
physics and chemistry. Quantum dissipation arises from the coupling of a quantum system to a thermal bath
which consists of an infinite number of degrees of freedom (DOF). This results in a time irreversible
dynamics of the system.

A multitude of numerically exact methods has been developed for quantum dynamics simulations
including the hierarchical equations of motion (HEOM) [4, 5], multi-configurational time-dependent
Hartree [6, 7], quasi-adiabatic propagator path integral [8], time evolving density matrix using orthogonal
polynomials algorithm [9], time-dependent density matrix renormalization group [10], time-dependent
Davydov ansatz [11], diagrammatic quantumMonte Carlo [12, 13], tensor-train split-operator Fourier
transform [14], and the stochastic equation of motion approach [15–19]. In practice, however, none of these
methods can be used to simulate long-time dynamics of quantum systems coupled to realistic baths
containing large number of, generally, anharmonic DOFs.

Methods based on Nakajima–Zwanzig generalized quantum master equation (GQME) [20–26] including
transfer tensor method (TTM) [27–31], allow to obtain long-time dynamics of the reduced density matrix of
a quantum system at a significantly lower computational cost compared to numerically exact methods,
provided the GQMEmemory kernels are available. However, in general, it is difficult to numerically calculate
the exact memory kernel for GQME. TTM further reduces the computational cost compared to the direct
solution of GQME but it still requires an input set of dynamical maps to be generated by a numerically
accurate method rendering such approaches infeasible for systems with many DOFs. Machine learning (ML)
offers an alternative route to accurate, yet greatly accelerated quantum dynamics calculations with minimum
input information required [32–35].
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Predicting the future time-evolution of quantum mechanical observables based on past values can be
formulated as time series forecasting problem. A time series is a set of data points recorded in consecutive
time intervals. Forecasting is a challenging part of time series data analysis. Traditional approaches to
forecasting of time series utilize moving averages. One such approach, Autoregressive Integrated Moving
Average (ARIMA) is a linear regression-based method which, together with its variations (e.g. autoregressive
integrated moving average with explanatory variable, ARIMAX and seasonal autoregressive integrated
moving average, SARIMA) [36], have become the standard tools for various time series problems [37, 38].
These approaches perform reasonably well for short-term forecasting, but the performance of these methods
deteriorates severely for long-term predictions. Additionally, such methods require assumptions about the
underlying data that have to be incorporated into the model.

ML is artificial intelligence-based data analysis technique that is data-driven as opposed to traditional
model-driven approaches. Perhaps the most widely known ML tool is a feedforward neural network (FFNN)
which is an artificial neural network (ANN or simply NN) wherein connections between the nodes do not
form a cycle [39, 40]. In this kind of ANN the information moves only in one direction from the input
nodes, through the hidden nodes (if any), and to the output nodes without using any feedback from the past
input data. As a result, the output of any layer does not affect the training process performed on the same
layer. In practice, FFNNs are rarely used for sequential data. Instead, it is preferred to use ANNs specifically
developed for this type of data such as recurrent neural networks (RNNs).

RNNs [40–43] in general, are designed with built-in gates that function to store the previous inputs and
leverage sequential information. RNNs utilize a loop in the network to preserve some information and thus
function like a memory. This gives such feedback-based models the ability to learn from past data. RNNs are
known to outperform ARIMA-based models in the long-time forecasting problems [44–46].

RNNs have been successfully applied to time series classification [47–49] and forecasting across many
domains including financial data predictions [50–53], speech [54–59] and handwriting recognition [60, 61],
natural language processing [62, 63], machine translation [64–66], healthcare [67–70], traffic speed
prediction [71–73], music [74, 75], video [76], meteorology [77], molecular drug discovery [78, 79], demand
forecasting [80, 81], gaming [82], remote sensing [83, 84], computer code generation [85] and others.

There are several variations of RNN-based models differing in their capabilities to remember input data.
The vanilla RNN [40, 86], long short-term memory (LSTM) [40, 42, 55, 87, 88], and gated recurrent unit
(GRU) [40, 89] are the most commonly used types of RNNs. The vanilla RNN is the first model of recurrent
ANNs that was introduced [86]. Its ability to learn long-term dependencies is limited due to vanishing and
exploding gradient problems. LSTM-based models are extensions of RNNs with significantly improved
performance on long-term predictions. LSTM uses a set of gates to learn what information is worth to
remember. GRU is another gated variant of RNN model developed by Chung et al [90]. They showed that
GRU outperforms LSTM in some tasks. Josefowicz et al [91] also reported the superior performance of the
GRU-based models, but noticed that the performance of LSTM can nearly match that of the GRU if proper
initialization is performed.

Bidirectional RNNs (BRNNs) [92] are another extension of the standard unidirectional RNNs in which
two RNNs are applied to the input data. Firstly, an RNN is applied on the input sequence which is then
followed by the application of RNN on the reversed input sequence. This typically improves the accuracy of
the model [80, 93] at a cost of slower training times [46, 80]. Several variants of BRNNs exist differing in the
type of the underlying RNN cell. Bidirectional LSTMs (BLSTMs) [57] and bidirectional GRUs (BGRUs) [68]
have been applied to various tasks [52, 57, 62, 70, 80, 82]. In some applications [46, 73], such as speech
recognition, the better performance of BLSTM compared to unidirectional LSTM has been reported [57]
which was anticipated given the nature of the task (text parsing and prediction of next words in the input
sentence). In general, however, it is not clear what problems benefit from the bi-directional training.

Convolutional neural networks (CNNs) [94] are a special kind of ANNs designed for processing data that
has a known grid-like topology [40]. For example, time-series data can be thought of as a one-dimensional
(1D) grid taking samples at regular time intervals. One-dimensional CNNs (1D CNNs) have achieved
promising results in time-series classification tasks [49, 95–102] in many domains including healthcare
[103–105], speech recognition [59, 106], music classification [107, 108], natural language processing [63]
and others.

CNNs have also been combined with RNNs. Such hybrid models are called convolutional recurrent
neural networks (CRNNs). A CRNN is a deep ANN that contains a CNN layer(s) followed by an RNN
layer(s). Such architectures possess several advantages. Firstly, 1D CNN layers learn to sub-sample the data
and reduce the input vector that is passed to an RNN layer(s). This is important because GRU and LSTM
layers are computationally expensive and replacing at least some of them with convolutional layer(s)
improves the computational scaling of an algorithm. Secondly, 1D CNN layers extract local information
from neighboring time points and pass already detected temporal dependencies further down to RNN layers.
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CRNNs are being actively explored in various tasks [104, 107–110]. It has been reported that CRNNs can
outperform CNNs in some problems [107]. CNNs were combined with BLSTMs as well [111]. Note that
these methods are different from convolutional LSTMmodels [112] in which input transformations and
recurrent transformations are both convolutional.

Kernel methods represent another class of ML methods that are applied to time-series analysis
[113–115]. Such methods employ a function (kernel) that maps input data into a high dimensional space
and then perform a linear regression in that space. Kernel ridge regression (KRR) and support vector
regression are examples of such algorithms [116]. A crucial aspect of applying kernel methods to time series
data is to find appropriate kernels to distinguish between time series. A simple way is to treat time series as
static vectors, essentially as they are treated in FFNNs, ignoring the time dependence. In such cases standard
kernels such as Matérn [117] or Gaussian kernel function [116] can be used. However, such methods are
limited to input time-sequences of equal length, again similar to FFNNs, yet many applications involve time
sequences of varying length. To overcome this limitation, kernel functions such as autoregressive kernel have
been developed [118].

Recently, many ML models have been applied to simulate the dynamics of quantum systems [32–35,
119–128]. We note that ML can also be applied to quantum dynamics in a different context—namely as
surrogate models for quantum chemical properties such as potential energies and forces in different
electronic states as well as couplings between the states eliminating the need for expensive (excited-state)
electronic structure calculations [129–131]. Here we apply ML to propagate a quantum system assuming
potential energies are readily available. ML models are attractive because of their very low computational cost
and favorable scaling with respect to the size of a quantum system and bath. RNNs were used to simulate
dynamics of the spin-boson model and Landau–Zener transitions [121, 122], and to learn the
convolutionless master equation [123]. Rodríguez and Kananenka [32] used CNNs to accurately model
long-time dynamics of the spin-boson system based on short-time dynamical data. Later Ullah and Dral [33]
illustrated that KRR methods can also predict long-time dynamics of the spin-boson model very accurately.
Recently, CNNs were used to study the excitation energy transfer in Fenna–Matthews–Olson light-harvesting
complex [34, 35]. Wu et al [124] used a hybrid CNN/LSTM network to predict long-time semiclassical and
mixed quantum–classical dynamics of the spin-boson model. Lin et al [125, 132] trained a multi-layer LSTM
model to simulate the long-time dynamics of spin-boson model and used the bootstrap method to estimate
the confidence interval. In a recent study, the same authors used LSTM to predict semiclassical dynamics
based on symmetrical quasi-classical method [133]. We note that ML methods based on FFNNs have also
been recently applied to model quantum dynamics [119, 120].

The recent upsurge of applications of ML methods to dissipative quantum dynamics calls for a systematic
benchmark of such methods. In this article, we present a comprehensive comparison of 22 ML models for
predicting the long-time dynamics of an open quantum system given the short-time evolution data. We
consider all three most used types of unidirectional RNNs including the vanilla RNN, GRU, and LSTM, the
corresponding BRNNs (BRNN, BGRU, BLSTM), 1D CNN, CRNN, convolutional BRNNs (CBRNNs), as
well as KRR with eight different kernel functions. We test the ability of these ML methods to predict the
donor-acceptor population difference of a spin-boson model in symmetric and asymmetric regimes over a
broad range of temperatures, reorganization energies, and bath relaxation timescales.

2. Theory

2.1. Model system
We choose to test ML methods on the spin-boson model which has become a paradigmatic model system in
the study of open quantum systems due to the richness of its physics [3]. The spin-boson model was
exploited in a wide-range of applications in quantum computing [134], quantum phase transitions [135,
136], electron transfer in biological systems [137], and others. The spin-boson model describes a two-level
quantum system linearly coupled to a heat-bath environment. The bath is modeled as an ensemble of
independent harmonic oscillators. The total Hamiltonian in the system’s basis {|+⟩, |−⟩} is given by (ℏ= 1)

Ĥ=
ϵ

2
σ̂z +

∆

2
σ̂x + σ̂z

∑
α

gα
(
b†α + bα

)
+
∑
α

ωαb
†
αbα, (1)

where b†α (bα) is the bosonic creation (annihilation) operator of the αth mode with frequency ωα,
σ̂z = |+⟩⟨+| − |−⟩⟨−| and σ̂x = |+⟩⟨−|+ |−⟩⟨+| are the Pauli operators, ϵ is the energetic bias,∆ is the
tunneling matrix element, and gα are the coupling coefficients.

The impact of the bath is completely determined by the spectral density J(ω) = π
∑

α g
2
α δ(ωα−ω)

which, in this work, is chosen to be of the Debye form (Ohmic spectral density with the Drude–Lorentz
cut-off) [138]
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J(ω) = 2λ
ωωc

ω2 +ω2
c

, (2)

where λ is the bath reorganization energy which controls the strength of system-bath coupling, and the
cutoff frequency ωc which sets the primary timescale for the bath evolution τc = (ωc)

−1.
We consider the time evolution of the expectation value of σ̂z Pauli operator

⟨σ̂z(t)⟩= Trs [σ̂zρ̂s(t)] , (3)

which is often referred to as the population difference ⟨σ̂z(t)⟩= p+(t)− p−(t), where p±(t) = Trs
[|±⟩⟨±|ρ̂s(t)]. In equation (3) the trace is taken over the system DOFs as denoted by ‘s’, and ρ̂s is the system’s
reduced density operator

ρ̂s(t) = Trb
[
e−iĤtρ̂(0)eiĤt

]
, (4)

where ρ̂(0) is the total system plus bath density operator and the trace is taken over the bath DOFs. The
initial state of the total system is assumed to be a product state of the following form

ρ̂(0) = ρ̂s(0)⊗
e−βĤb

Zb
, (5)

where Ĥb =
∑

αωαb†αbα is the bath Hamiltonian, Zb = Trb[e−βĤb ] is the bath partition function,
β = (kBT)−1 is the inverse temperature, and kB is the Boltzmann constant. The initial density operator of the
system is chosen to be ρ̂s(0) = |+⟩⟨+|. These conditions correspond to situations where the initial
preparation of the system occurs quickly on the timescale of the bath relaxation.

2.2. MLmodels
In this section we provide a detailed description of all ML models used in the present study. We specialize our
discussion to modeling time-series data with the input sequence denoted as x=

(
x(1), . . . ,x(T)

)
where T is

the length of the time series. Each element x(t) of x can be a real-valued vector itself, x(t) ∈ Rn. Consider a
data setD = {(xi,yi)}Ni=1 containing N time series xi and their associated labels yi. In time-series
forecasting problems, labels can describe the future states of the input sequence xi as denoted by

yi =
(
x(T+1)
i , . . . ,x(T+m)

i

)
which corresponds tom next elements of the sequence xi. Time-series forecasting

in a supervised learning framework amounts to (i) training ML models on the subset ofD called a training
set and (ii) using trained ML models to make a prediction ŷi for a given test time series xi. In this work we
test the ability of ML models to predict a single real-valued scalar quantity, the population difference of the
spin-boson model ⟨σ̂z(t)⟩ for a single time step i.e. n= 1 andm= 1. Extension to multivariate time series
data (n> 1) and multi-step outputs (m> 1) is possible [35].

2.2.1. FFNNs
FFNNs or multiplayer perceptrons are the most used type of ANNs. FFNNs approximate a function g(x) by
defining a mapping ŷ= F(x;θ) and determining the value of parameters θ that best approximate g(x).
These models are called feedforward because information flows through the function being evaluated from
an input x through intermediate steps to the output ŷ. There are no feedback connections between the
output and the input of the model [40].

A crucial element of the success of ANNs is the use of deep architectures. Deep ANNs are created by
stacking multiple layers on top of each other, with the output of one layer forming the input for the next
layer. The first layer is called the input layer, the last layer is called the output layer; all layers in between are
called hidden layers.

Deep FFNNs are compositions of several functions: ŷ= F (L)(. . .F (2)(F (1)(x;θ(1)));θ(2));θ(L)) where
each function F (l) depends on its own set of parameters θ(l). Function F (l) connects lth and (l+ 1)th layers
of the network. It takes an input x(l) ∈ Rkl and generates the output according to

x(l+1) = F (l)
(
x(l);θ(l)

)
= f (l)

(
a(l)
)
, (6)

where f (l) : R→ R is the lth layer activation function which is applied elementwise. As seen from

equation (6) each layer of the network is vector valued. Each vector element a(l)j is called a neuron. Its value is
calculated from layer’s input and parameters
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a(l)j =

kl∑
i=1

w(l)
ij x

(l)
i + b(l)j , (7)

where w(l) ∈ Rkl×kl+1 and b(l) ∈ Rkl are called the weights and the biases of the lth layer, respectively, that
together constitute the set of trainable parameters of the lth layer θ(l) = {w(l),b(l)}. The output x(l+1) forms
an input into (l+ 1)th layer. The total number of trainable parameters, biases and weights, of a single FFNN
layer is kl(kl+1 + 1). It should be emphasized that FFNN models require input time sequences of a fixed
length, T. This, in particular, requires an a priori knowledge of the memory effects in a quantum system
under study which is non-trivial task. ANNs based on recurrent layers, discussed below, do not impose such
a restriction.

The strategy of deep learning is to find the set of model parameters {θ(1), . . . ,θ(L)} that best
approximates the target function g(x). The model parameters are adjusted during the training process which
is based on backpropagation algorithm [40].

Typically the activation function of the hidden layers is chosen to be nonlinear, e.g. logistic sigmoid
function σ(z) = (1+ e−z)−1. According to the universal approximation theorem [139–141] an FFNN with a
linear output activation function and at least one hidden layer with a nonlinear activation function can
approximate any Borel measurable function (continuous on the closed and bonded subset of the real
coordinate space) from one finite-dimensional space to another with any desired nonzero amount of error,
provided the network contains enough neurons. The theorem guarantees that regardless of the target
function, a single hidden layer FFNNs with many neurons will be able to represent this function with any
degree of accuracy. However, in general, there is no guarantee that the training algorithm can do so [40]. In
practice, increasing neural network depth (including more hidden layers) often allows for more flexibility,
although too deep neural networks may be difficult to train and easy to overfit. Thus, the number of hidden
layers, their size and type (activation function), is a subject of optimization [40].

2.2.2. 1D CNNs
Convolutional neural networks (CNNs) is a type of ANNs that can be applied to time-series data [40, 94].
CNNs are based on a mathematical operation called convolution. Let (g ∗w) be the result of a 1D discrete
convolution and the ith element of the result is given by

(g ∗w)i =
k∑

j=1

gi+j−1wk+1−j, (8)

where w ∈ Rk is referred to as kernel, or weight vector, and g is a time series. CNNs exploit two key ideas:
sparse connectivity and parameter sharing [40]. The former is accomplished by making the kernel size
smaller than the size of the input which allows to detect, for the time-series data, short-time correlations and
reduces the number of parameters to be stored in memory compared to FFNNs. The latter amounts to using
the same kernel parameters for all positions in the input which further reduces the storage requirements. In
the case of convolution, the parameter sharing leads to equivariance—a property that causes the output to
change in the same way the input changes. Specifically, in the case of time-series data, the convolution
captures a timeline for different features to appear in the input [40].

In practical implementations of CNNs, the convolution operation given in equation (8) is often replaced
by the so-called cross-correlation operation [40] which we denote by a ‘⋆’

(g ⋆w)i =
k∑

j=1

gi+j−1wj. (9)

It should be noted that equation (9) is given for the step size of the kernel, as it is applied across the sequence,
equal to 1. The step size is called stride s(s ∈ Z+). In general, for the stride s⩾ 1, equation (9) is modified to

(g ⋆w)i =
k∑

j=1

g(i−1)s+jwj. (10)

Let’s consider a two-layer 1D CNN architecture. An input sequence x is processed through K1 1D kernels
of the first layer whose weights are denoted as w(1) ∈ Rk1 . The result of this operation is tensor Z(1) whose
elements are given by

Z(1)
ij = f (1)

[(
x ⋆w(1)

j

)
i
+ b(1)j

]
, (11)
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where f (1) is the activation function, b(1) ∈ RK1 are the bias parameters and w(1)
j , j= 1, . . . ,K1

is the jth kernel of the first layer. The output tensor Z(1) has dimensions ofM1×K1 with
M1 = ⌊(T− k1 + 2p1)/s1 ⌋+ 1, where s1 is the stride, p1 is the amount of zero padding, and
⌊x⌋=max{m ∈ Z|m⩽ x} is the floor function. Zero padding parameter p1 denotes the number of zeros to
be added to the start and the end of the input sequence. For example, for p= 0 the input sequence is not
padded with zeros and, consequently, the kernel is allowed to visit only positions where it is contained
entirely within the input sequence. This type of zero padding is called valid padding.

Because convolution of input data with a single kernel can extract only one kind of features, albeit at
many locations, in practice, many filters are used. Each element of a kernel is a trainable parameter and the
same parameters of each kernel are shared across the entire sequence. Therefore, the total number of
trainable parameters of the first 1D CNN layer is K1(k1 + 1).

The output of the first layer Z(1) is then processed through K1×K2 1D kernels whose weights are
denoted as w(2) ∈ Rk2 . The output of the second layer is tensor Z(2) whose elements are given by

Z(2)
ij = f (2)

[
K1∑
u=1

(
Z(1)u ⋆w(2)

uj

)
i
+ b(2)j

]
, (12)

where f (2) is the activation function of the second layer and b(2) are the bias parameters of the second

layer. In equation (12) w(2)
uj is to be understood as the uth kernel (weight vector) applied to the output

of jth kernel (also called channel) of the first layer. The dimensions of Z(2) areM2×K2 where
M2 = ⌊(M1− k2 + 2p2)/s2 ⌋+ 1 with p2 and s2 being the zero-padding and the stride of the second 1D CNN
layer, respectively. It is worth emphasizing that a separate set of kernels is applied to the output of each kernel
of the preceding (in this case first) layer. Thus, the total number of trainable parameters of the second 1D
CNN layer is K2(K1k2 + 1).

A pooling layer is commonly found in CNN architectures. Its function is to subsample (shrink) the input.
Pooling function replaces the output of a CNN layer at a certain location with a neighborhood-dependent
information. For example, the maximum pooling (MaxPooling) operation [142] outputs the maximum
value in a neighborhood of a specified size. This helps to make representation approximately invariant to
small translations of the input and improves the computational efficiency in a deep CNN by reducing the
number of trainable parameters of the next convolutional layer. A 1D MaxPooling layer with the kernel size
kp, stride sp, operates independently on every depth slice of the input Zin and resizes it by taking only the
maximum value

Zout
ij =max

(
Z in
(i−1)sp+1,j, . . . ,Z

in
(i−1)sp+kp,j

)
, (13)

where i= 1, . . . ,⌊(M2− kp)/sp⌋+ 1. Note that equation (13) is written, for simplicity, for the zero padding
but other kinds of padding can be used as well. MaxPooling layers do not employ any trainable parameters.

2.2.3. RNNs
RNNs are a family of neural networks specifically designed for processing sequential data [143]. Similarly to
FFNNs, RNNs have the universal approximation ability [139, 144]. Similarly to CNNs, RNNs are based on
the idea of parameter sharing but, unlike CNNs, RNNs share parameters through recursion. Formally, given
a sequence x at each time step, an RNN updates its hidden stateH=

[
h(1), . . . ,h(T)

]
recursively based on the

current input x( j) and the previous hidden state h( j−1) as follows

h( j) =R(h( j−1),x( j)), (14)

whereR is a nonlinear function. Each element of the hidden state vector, h( j) is, in general, a vector itself.
Recursive application of equation (14) results in the sharing of parameters across an ANN architecture.
Training of such an ANN amounts to selectively emphasizing some aspects of the past sequence inputs that
deemed more important than others.

All RNN models used in this work contain two stacked recurrent layers and are schematically illustrated
in figure 1(a). The number of RNN cells in the first layer equals to the length of an input vector such that
each cell processes a single time step t= 1, . . . ,T and updates the corresponding hidden state vector
h(t) ∈ Rk1 . The size of the hidden state vector k1 is a hyperparameter that needs to be optimized. Note that
various software packages use different terminology. In this work RNN models are built with KERAS [145]
software whose argument UNITS corresponds to the size of the hidden state vector. An RNN layer outputs a
tensor,H ∈ RT×k1 , containing all hidden states and it serves as an input to the following RNN layer.
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Figure 1. (a) Basic structure of a two-layer unidirectional recurrent neural network. Blue rounded rectangles represent cells and xt
is the tth element of an input sequence x. Hidden state vector h(t) is passed between the cells within a layer as well as between the
layers; (b) the vanilla RNN cell with tanh activation function; (c) LSTM cell; (d) GRU cell. Green and yellow circles denote
hyperbolic tangent and sigmoid activation functions correspondingly. Dark blue circles denote element-wise arithmetic
operations shown on the circle. See text for details.

Each RNN cell of a layer processes the corresponding slice of the preceding layer’s outputHLj, where

j ∈ [1,k1] and L is the number of cells of the second layer, and transforms it into the state vector h(t)2 ∈ Rk2 ,
where k2 is the number of units of the second RNN layer. The last RNN layer can either return the hidden
state vector at only the final time step T or the entire sequence of hidden states.

Various RNN architectures differ by the functionR in equation (14). A simple RNN cell, also known as
vanilla RNN is illustrated in figure 1(b) with the hyperbolic tangent activation function. It receives an input
x(t) corresponding to the time step t and uses the state vector from the chronologically previous RNN cell
h(t−1) ∈ Rk to generate the hidden state h(t) according to the following update equation

h(t) = tanh
(
b+wh ·h(t−1) +wx · x(t)

)
, (15)

where bh ∈ Rk are the bias parameters, wh ∈ Rk×k, wx ∈ Rk×m are the coefficient matrices, and the tanh
activation function is applied element-wise. The functionR(h( j−1),x( j)) in case of the vanilla RNN amounts
to iterative application of equation (15) to the input sequence x from t= 1 to t=T.

The hidden state h(t) is then passed to the next RNN cell. Weights wh,wx and biases b in equation (15)
are updated iteratively via the back-propagation algorithm. In a multilayer RNN architecture all hidden state
vectorsH are passed to the next layer. For RNNs whose output is used directly to predict the next value of a
sequence the hidden state corresponding to t=T is the desired predicted value of the next time step ŷ= h(T).

The total number of trainable parameters of the vanilla RNN cell is k(k+ n+ 1), where k is the size of the
hidden state vector, which is the same for all RNN cells within a layer, and n is the dimension of each element
of an input sequence x(t) which, in this work is 1 for the first RNN layer and k1 for the second RNN layer.
Note that if RNN is not the first layer, as e.g. in convolutional recurrent neural networks discussed below, n,
for the first RNN layer, would be different from 1. It should also be noted that the total number of trainable
parameters of the whole RNN layer does not depend on the number of RNN cells because b,wh, and wx are
shared across all RNN cells within the given layer. The total number of trainable parameters in a two-layer
vanilla RNN architecture is k2(k1 + k2 + 1)+ k1(k1 + 1+ 1).

In spite of being simple and powerful ANN model, the vanilla RNN described above is plagued by the
vanishing gradient and exploding gradient problems when trained via backpropagation [40, 146–148]. The
exploding gradients problem refers to the large increase in the norm of the gradient during training. The
vanishing gradients problem refers to the opposite behavior, when long term components decay
exponentially fast to zero norm, limiting the model’s ability to learn long-range dependencies. The exploding
gradient problem can be easily addressed by gradient clipping [149]. The vanishing gradient problem is,
however, much more difficult to address.

2.2.4. LSTM
In general, learning long-term dependencies is one of the most important problems in deep learning [40].
The difficulty in dealing with long-memory sequences in RNNs arises from the exponentially smaller weights
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given to long-term correlations compared to the short-term ones [40, 146–148]. This problem is particular
to simple RNN cell described above. It was shown that very deep FFNNs can avoid the vanishing and
exploding gradient problems [150] but, in order to store memories, RNNs must enter a region of parameter
space where gradients vanish [147, 148].

To overcome the vanishing gradient problem various gated RNN architectures such as LSTM [42, 55,
87, 88] were developed. Gated RNNs are based on the idea of creating paths through time such that the
derivatives are neither vanish nor explode. LSTMmodel was developed by Hochreiter et al [42] and is based
on the idea of using self-loops to produce paths where the gradient can flow for long duration. This is
achieved by adding the cell state denoted by C(t) ∈ Rk and data-dependent gates, that control the flow of
information, to the standard RNN architecture [42, 87]. Both hidden state and cell state control the memory
of the network. The cell state carries relevant information throughout the processing of the sequence such
that even information from the earlier time steps can make its way to later time steps, reducing the effects of
short-term memory. The information is added or removed to the cell state via gates. The gates are simple
FFNNs that decide which information is allowed on the cell state. Thus, the gates can learn what information
is relevant to keep or forget during training.

Although a number of variants of the LSTM cell have been produced, a large-scale analysis shows that
none of them outperforms the standard LSTM architecture [42, 55, 87]. The block diagram of the LSTM cell
is shown in figure 1(c). It contains three gates: the forget gate, the input gate, and the output gate. All gates
have a sigmoid [logistic σ(z) = (1+ e−z)−1], nonlinear activation function (yellow circles). The tth
element(s) of the input sequence x(t) enters the cell and is concatenated with the hidden state vector from the
chronologically previous cell h(t−1). The total vector is passed through the forget gate

F(t) = σ
(
bF +WF

h ·h(t−1) +WF
x · x(t)

)
, (16)

where bF ∈ Rk are the biases andWF
h ∈ Rk×k,WF

x ∈ Rk×m, are the corresponding weights. The forget gate
was the crucial addition to the original LSTM cell extending the length of sequences that can be processed
[87]. The forget gate learns to reset memory blocks once their contents are out of date. The output vector
F(t) ∈ Rk contains the values between 1 and 0 emphasizing or diminishing the importance of the elements of
the hidden state vector, correspondingly. In two separate branches, the current input vector and the previous
hidden state vector are processed through the input gates: the external input gate

I(t) = σ
(
bI +WI

h ·h(t−1) +WI
x · x(t)

)
, (17)

and the new candidate gate

G(t) = tanh
(
bG +WG

h ·h(t−1) +WG
x · x(t)

)
, (18)

where bI ∈ Rk, bG ∈ Rk,WI
h ∈ Rk×k,WG

h ∈ Rk×k,WI
x ∈ Rk×m, andWG

x ∈ Rk×m are the corresponding biases
and weights of the input and new candidate gates. The external output gate uses the sigmoid activation
function to obtain a gating value between 0 and 1 which is then element-wise multiplied by the
corresponding element of the new candidate vector G(t) effectively deciding which elements of the input
vector are the most important. Given F(t), I(t), G(t), and the cell state of the previous time step C(t−1), C(t) is
updated as follows

C(t) = F(t)⊙C(t−1) + I(t)⊙G(t), (19)

where⊙ denotes the element-wise vector (Hadamard) product. The first term in equation (19) removes
parts of the previous cell state through the forget gate and the second term adds new information yielding
the new cell state.

Finally, the hidden state h(t) is updated as follows

O(t) = σ
(
bO +WO

h ·h(h−1) +WO
x · x(t)

)
, (20)

h(t) =O(t)⊙ tanh
(
C(t)
)
, (21)

where O(t) is known as the output gate which uses the sigmoid activation function for gating and the
corresponding bias parameters bO ∈ Rk and weightsWO

h ∈ Rk×k andWO
x ∈ Rk×m. The new hidden state h(t)

is then used to compute what to forget, input, and output by the cell in the next time step. Thus, while both
hidden state and cell state control the memory of the network, the cell state carries information about the
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entire sequence and the hidden state encodes the information about the most recent time step. Similarly to a
deep vanilla RNN architecture, in a deep LSTM ANN the hidden state of each LSTM cell is passed to the next
layer, as shown in figure 1(a).

Because each of the four gates is based on a perceptron the total number of trainable parameters of the
LSTM variant shown in figure 1(c) is 4k(k+m+ 1) and, since bF,bI,bO,WF

h,W
I
h,W

O
h ,W

F
x ,W

I
x, andW

O
x are

shared across all LSTM cells, this is also the total number of trainable parameters of the first LSTM layer
comprised of any number of LSTM cells. The total number of trainable parameters of a two-layer LSTM
architecture is 4[k2(k1 + k2 + 1)+ k1(k1 +m+ 1)]. Thus, such LSTMmodels contain exactly four times more
trainable parameters than the vanilla RNNmodels with the same number of UNITS (length of the hidden state
vector).

2.2.5. GRU
LSTM has become a popular off-the-shelf architecture that effectively solves the vanishing gradient problem.
However, LSTM is often criticized for its ad hoc nature. Furthermore, the purpose of its many components is
not apparent and there is no proof that LSTM is even the optimal structure. Jozefowicz et al [91] showed that
the forget gate is crucial element of the LSTM architecture, while the output gate is the least important.

GRU [89–91, 151] ANNs are another example of gated RNNs. GRUs were introduced as a simplified
version of LSTM that uses one less gate and, thus, has fewer trainable parameters. The main difference
between LSTM and GRU cells is that forget and input gates that appear in the LSTM architecture are
combined together in one gate in the GRU cell. Additionally, the hidden state and cell state are combined as
well. The information between GRU cells is transferred via the hidden state vector. Due to the reduction in
trainable parameters and complexity, models based on GRU cells tend to converge faster.

There exist several variants of a GRU cell. Figure 1(d) illustrates the GRU cell used in this work. The
update equations are discussed below. An input vector x(t) is concatenated with the previous cell hidden state
h(t−1) and passed through the update Z and reset R gates both using the sigmoid activation function

Z(t) = σ
(
bZ +WZ

h ·h(t−1) +WZ
x · x(t)

)
, (22)

R(t) = σ
(
bR +WR

h ·h(t−1) +WR
x · x(t)

)
, (23)

where bZ(R) = bZ(R)Wh
+ bZ(R)Wx

∈ Rk are the biases andWZ(R)
h ∈ Rk×k,WZ(R)

x ∈ Rk×m are the weights of the

update (reset) gate. The update gate controls the update of the memory state h(t). The reset gate controls the
influence of the hidden state h(t−1) on G(t) introducing additional nonlinear effect in the relationship
between past and future states. The two gates can individually ‘ignore’ parts of the hidden state vector [40].

Next, the input vector x(t) is concatenated with the element-wise product of the hidden state vector
h(t−1) and the output of the reset gate which, after passing through hyperbolic tangent activation function,
produces the so-called proposed new candidate state

G(t) = tanh
(
bG +WG

h ·
(
R(t)⊙h(t−1)

)
+WG

x · x(t)
)
, (24)

where bG = bGWh
+ bGWx

∈ Rk,WG
h ∈ Rk×k, andWG

x ∈ Rk×m are the corresponding bias vector and weights.

The hidden state is updated by combining the previous cell hidden state h(t−1) with the output of the update
gate as well as with the product of the output of the update gate and the proposed candidate gate

h(t) =
(
1−Z(t)

)
⊙h(t−1) +Z(t)⊙G(t). (25)

The total number of trainable parameters of a single GRU cell described above, as implemented in
TENSORFLOW software library, is 3k(k+m+ 2). Note the use of the two separate sets of biases bWh and bWx .
The total number of trainable parameters is independent of the number of GRU cells due to parameter
sharing. Two-layer GRU models contain 3[k2(k2 + k1 + 2)+ k1(k1 +m+ 2)] trainable parameters. Thus,
given the same k1, k2, andm, GRU models contain approximately three times more trainable parameters
than the corresponding vanilla RNN models and ca. 1/4 less trainable parameters than LSTMmodels with
the same number of layers.

2.2.6. BRNNs
In all the RNNs, described above the state at time T uses information from the past

(
x(t)
)
, t= 1, . . . ,T− 1 as

well as the current state x(T) to make a prediction. Such RNNs are said to have ‘causal’ structure [40] and are
called unidirectional RNNs. RNN architectures that combine an RNN that moves forward through time
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Figure 2. Bidirectional recurrent neural networks. Blue rounded rectangles represent cells and xt is the tth element of an input
sequence x. The input sequence x is processed by the two disconnected RNNs from beginning to the end and vice versa.

Correspondingly, two hidden state vectors: forward
−→
h (t) and backward

←−
h (t) are updated and passed between the cells of the

same layer.

from t= 1 to t=T with another RNN that moves backward through time from t=T to t= 1 are called
BRNNs [40, 57] (figure 2). This is realized by duplicating each recurrent layer in the network. The two

resulting layers have separate forward
−→
h and backward

←−
h hidden state vectors. Forward and backward layers

are not connected to each other. An input time sequence is provided in the chronological order to the first
RNN layer and is fed in the reversed chronological order to the second RNN layer. Applying RNNs twice
increases the amount of input information available to the network and leads to better capturing long-term
dependencies and, thus, improves the accuracy of the model [93].

Bidirectional recurrent ANNs can be built from the vanilla RNN, LSTM, and GRU cells resulting in
BRNN, BLSTM [92], BGRU models [68], respectively. In each case the update equations are similar to
equations (15)–(25) but applied separately to forward and backward hidden state vectors. For example, for

BRNN with tanh activation function,
−→
h and

←−
h , assuming they have the identical size,

−→
h ,
←−
h ∈ Rk, are

updated as follows

−→
h (t) = tanh

(
b−→

h
+W−→

h
·
−→
h (t−1) +W

x
−→
h
· x(t)

)
, (26)

←−
h (t) = tanh

(
b←−

h
+W←−

h
·
←−
h (t+1) +W

x
←−
h
· x(t)

)
, (27)

where b−→
h
,b←−

h
∈ Rk are the bias parameters for the forward and backward hidden states, respectively;

W−→
h
,W←−

h
∈ Rk×k andW

x
−→
h
,W

x
←−
h
∈ Rk×m are the coefficient matrices. In deep BRNN architectures, forward

and backward hidden states of a previous layer are combined

y(t) = G
(−→
h (t),

←−
h (t)

)
, (28)

and passed to the following layer. In equation (28) G is a function that combines the two hidden state vectors.
It can be a concatenating function (this work), element-wise addition, multiplication, or
averaging [145, 152]. Thus every hidden RNN layer receives and input from both forward and backward
layers of the preceding layer.

The total number of trainable parameters of the first layer of BRNN is exactly twice the number of
trainable parameters in the first layer of a unidirectional RNN with the same length of the hidden state vector
and same type of RNN cell. In a deep BRNN architecture an ith hidden layer withm RNN cells and the
length of hidden vectors ki outputs to the next RNN layer a tensor Z ∈ R2ki×m, assuming G is a concatenating
function. The next (i+ 1) layer uses 2ki+1(2ki + ki+1 + 1) trainable parameters, where ki+1 is the length of
the hidden state vector of the (i+ 1)th layer. Therefore, deep BRNNs, in general, use more than twice the
number of trainable parameters than the corresponding unidirectional RNN with the same number of cells
and length of the hidden state vector.

2.2.7. CRNNs
CRNNs are deep ANNs that combine convolutional layers with recurrent layers. In this work, we build
two-layer CRNN models by adding one recurrent layer (vanilla RNN, GRU, LSTM) to 1D CNN layer
resulting in three models denoted as CRNN, convolutional GRU (CGRU), and convolutional LSTM
(CLSTM). The update equations of each of these types of neural networks are exactly those of the
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corresponding individual layers described above. For example, in the CRNN architecture, the first layer
(1D CNN) processes input sequence of length T through convolution, or rather, cross-correlation, operation
as given by equations (10) and (11) and generates the output tensor Z(1) formed by the output of K1 kernels
(filters) each of sizeM1 = ⌊(T− k1 + 2p1)/s1⌋+ 1, where s1 is the stride and p1 is the zero padding. The
output tensor Z(1) is then passed to an RNN layer which is comprised ofM1 vanilla RNN cells with the

hidden state vector of (user-specified) length k2. Each RNN cell receives an input x(t) ≡ Z(1)
t,1:K1

, t ∈ 1, . . . ,M1

from the preceding 1D CNN layer and processes it according to the corresponding update equations.
In this work the recurrent layer of CRNN models is configured to output the whole sequence of hidden

states from all RNN cells, Z(2) ∈ RM1×k2 which is then passed to fully-connected layers. The total number of
trainable parameters of the two-layer architecture described above is K1(k+ 1)+NRNN, where k1 is the size
of the kernel of 1D CNN layer and NRNN the number of trainable parameters of an RNN layer.

2.2.8. CBRNNs
It is possible to fuse a 1D CNN layer and a BRNN layer. Resulting architectures are called CBRNNs. Such
models are expected to combine the benefits of CRNNs with the improved description of long-term
dependencies pertinent to BRNNs. In this work, three convolutional bidirectional ANN models are build by
combining one 1D CNN layer with each of the three recurrent ANN architectures discussed above: the
vanilla RNN, GRU, and LSTM. The resulting models are denoted as CBRNN, convolutional bidirectional
GRU (CBGRU), and convolutional bidirectional LSTM (CBLSTM). Similarly to CRNNs the update
equations of convolutional bidirectional ANNs can be deduced from the corresponding update equations of
1D CNN and BRNNs given above. Specifically for CBRNN, an input sequence is first passed through an 1D
CNN layer where it is transformed according to equations (10) and (11) into an output tensor Z(1) which is
formed by the output of K1 kernels (filters) each of sizeM1 = ⌊(T− k1 + 2p1)/s1⌋+ 1, where s1 is the stride
and p1 is the zero padding. Then, Z(1) is fed separately into forward and backward vanilla RNN layers where
the corresponding forward and backward hidden states are updated as shown in equations (26) and (27). In
the two-layer architecture described above, the total number of trainable parameters is simply the sum of the
total number of trainable parameters of the 1D CNN layer and the total number of trainable parameters of a
bidirectional recurrent layer.

2.2.9. KRR
In KRR [153–155] the approximating function f(x) for a vector of input values x is defined as

f(x) =
N∑
i=1

αik(x,xi) , (29)

where N is the number of training points and α= {αi} is a vector of regression coefficients. The covariance
function k(x,xi), commonly referred to as a kernel function or simply kernel, can be understood as a
similarity measure between two vectors x and xi from the input space. The kernel performs an implicit
mapping to a higher-dimensional feature space.

Because input time-sequences employed in this work have the same length we focus on standard kernels
[116]. One of the most common kernel functions is the Matérn kernel [117, 156], which in the MLATOM
software package [154, 158] used in this work is defined as: [157]

k
(
xi,xj

)
= exp

(
−
∥xi− xj∥2

σ

) n∑
k=0

(n+ k)!

(2n)!

(
n

k

)(
2∥xi− xj∥2

σ

)n−k

, (30)

where σ is a positive hyperparameter which defines the characteristic length scale of the covariance function,
n is a non-negative integer, and ∥ . . .∥2 is the Euclidian distance which is taken to be the L2 norm. For n= 0
the Matérn covariance function reduces to exponential kernel function [117, 156]

k
(
xi,xj

)
= exp

(
−
∥xi− xj∥2

σ

)
. (31)

Another popular choice of a covariance function is the squared exponential (Gaussian) kernel function
[156]

k
(
xi,xj

)
= exp

(
−
∥xi− xj∥22

2σ2

)
. (32)
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Because quantum dissipative dynamics often resembles periodically-decaying time-series, we also test a
decaying periodic kernel (our adaptation based on [156, 159]):

k
(
xi,xj

)
= exp

(
−
∥xi− xj∥22

2σ2
− 2

σ2
p

sin2
(
π

p
∥xi− xj∥2

))
, (33)

where p is the period and σp is a length scale for the periodic term (both are hyperparameters).
Given the kernel function, the regression coefficients α are found by minimizing a squared error loss

function

min
α

N∑
i=1

( f(xi)− yi)
2
+λαTKα, (34)

where y= {yi} is the target output vector, K ∈ RN×N is the kernel matrix with elements Kij = k
(
xi,xj

)
and λ

denotes a non-negative regularization hyperparameter. In equation (34), the second term is usually added to
prevent KRR model from assigning large weight to a single point. The optimization of parameters
(regression coefficients α) amounts to solving a system of linear equations

(K+λI) = y, (35)

for which analytical solution is known. Here I is the identity matrix. The computational scaling of solving
this system isO(N3) [156, 157].

KRR is a kernelized version of ridge regression and when linear kernel function

k
(
xi,xj

)
= xTi xj (36)

is used, KRR becomes equivalent to ridge regression, i.e. the approximating function f(x) is simply a multiple
linear regression with regression coefficients β shrunk (see the second term in equation (34)) using
regularization:

f(x) =
N∑
i=1

αix
T
i x=

N∑
i=1

αi

T∑
s=1

xisxs =
T∑

s=1

(
xs

N∑
i=1

αixis

)
=

T∑
s=1

βsxs. (37)

As shown in the above equation, regression coefficients β can be conveniently derived from α coefficients
and training input data and are printed out by MLATOM.

3. Computational details

3.1. Data sets for training, validation, and testing
The data set used in this work was generated as detailed below [33]. Firstly, HEOM
calculations for all combinations of the following parameters: ϵ/∆= {0,1},
λ/∆= {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}, ωc/∆= {1,2,3,4,5,6,7,8,9,10}, and
β∆= {0.1,0.25,0.5,0.75,1}, were performed with QuTiP software package [160]. In our calculations we set
∆= 1.0. The total propagation time was tmax∆= 20 and the HEOM integration time-step was set to
t∆= 0.05. In total, 1000 HEOM calculations, 500 for symmetric (ϵ/∆= 0) and 500 for asymmetric
(ϵ/∆= 1) spin-boson Hamiltonian were performed. Time-evolved reduced density matrices (RDM) are
saved every dt∆= 0.1. Secondly, ⟨σ̂z(t)⟩ are calculated from RDMs and processed into shorter sequences of
length T by window slicing [32, 33, 125]. Namely, for a time series x=

(
x(1), . . . ,x(L)

)
, where ⟨σ̂z(t)⟩ is

denoted by x(t) for compactness, a slice is a subset of the original time series defined as si:j =
(
x(i), . . . ,x( j)

)
,

1⩽ i⩽ j⩽ P. For a given time series x of length L, and the length of the slice P, a set of L− P+ 1 sliced time
series {s1:P,s2:P+1, . . . ,sL−P+1:L} is generated. Finally, the total data setD = {(xi,yi)}Ni=1 containing time
series xi and their corresponding labels yi is obtained by setting 1, . . . ,T elements of each slice, with
T= P− 1, to an input time-series xi and the last (Pth) element of each slice to the associated label yi.

In general, the size of the window P− 1, or equivalently T, should be treated as a hyperparameter but,
following previous work [33], we set T= 0.2L. The window slicing is applied to all 1000 RDMs obtained in
HEOM calculations with different system and system-bath parameters. For each set of parameters the
initially calculated set of time-evolved ⟨σ̂z(t)⟩ with L= tmax/dt= 200 generates 160 data points for the data
set with T= 41 (including t∆= 0 point).

From the raw HEOM data set of 1000 trajectories, 100 randomly chosen trajectories are taken as the
hold-out test set, which is used for testing and generating the results presented in section 4. The remaining
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set of 900 trajectories are transformed into 144 000 trajectories by window slicing described above. In total
72 000 short-time ⟨σ̂z(t)⟩ trajectories for symmetric and 72 000 for asymmetric spin-boson models were
generated. Each trajectory has a time length of t∆+ dt∆= 4.1 (t∆= 4.0 is a part of a trajectory used as
input vector xi and the last point at time t∆+ dt∆= 4.1 is used as a label yi). Following previous similar
works [32, 33] the input data was not normalized. This data set of supervised trajectories is the training set
which is randomly partitioned into two subsets: a sub-training set, which contains 80% of the data and a
validation set containing 20% of the data. ML model parameters (weights and biases in ANNs and regression
coefficients in KRR) are (initially) fitted on the sub-training set and the validation set is used for monitoring
the performance of the models (mainly, to prevent overfitting and tune hyperparameters). Thus initially
fitted ANN parameters were not further re-fitted and resulted in final ANN models which were tested on a
hold-out test set. In case of KRR models, we did not stop at this initial training and after hyperparameter
optimization, we used these hyperparameters to fit KRR regression coefficients on the entire training set
including the validation set, resulting in our final KRR models used for performance evaluation. The
performance of KRR models with the initial regression coefficients fitted only on the sub-training set is
similar to the final KRR models trained on the entire training set (appendix A). By ‘fitting’ in case of ANN we
mean backpropagation optimization of parameters, while in case of KRR – analytical solution of the
regression problem formulated for a given set (training or sub-training). These are typical ways of training
ANN and KRR models, respectively, which are different due to differences in the formalism and training
procedures of these types of models. To emphasize, in all cases, ANN models, initial and final KRR models,
the validation set is thus also used for training, either directly (final KRR models) or indirectly (ANN and
initial KRR models).

3.2. ANNmodels
3.2.1. Details of the models
In this work fourteen deep ANN models are built and tested. In general, each ANN model is comprised by
the input layer, the total of two convolutional and/or recurrent layers followed by one fully-connected layer,
and the output layer. The exception is the FFNN model which is comprised of an input layer, and two
fully-connected hidden layers followed by the output layer. The fully-connected layer in each model, except
for FFNN, has 256 neurons and the rectified linear unit (ReLU) function f(z) =max(0,z) is used as the
activation function. Fixing the properties of fully-connected layer allows to compare the performance of
recurrent and convolutional layers. The output layer contains one neuron with the linear activation function
f(z) = z. The details of all ANN models studied in the present Article are summarized below.

• 1D CNN model contains two 1D CNN layers followed by a MaxPooling, one fully-connected and output
layers. ReLU is used as the activation function in each 1D CNN and fully-connected layers. For the Max-
Pooling layer a pool size kp = 2 (see equation (13)) is used. The stride of s= 1 and zero padding are used in
both 1D CNN and MaxPooling layers. The number of filters and the filter sizes of each layer are optimized
using Particle Swarm Optimization (PSO) algorithm as described in section 3.2.2.
• FFNNmodel contains two hidden fully-connected layers followed by the output layer. The ReLU activation
function is used.
• Three recurrent ANN models comprised of the two recurrent layers of the same type: the vanilla RNN,
LSTM, and GRU. The whole sequence of hidden state vectors from all cells is passed from the first to the
second recurrent layer as well as from the second recurrent layer to the fully-connected layer.
• Three BRNNmodels comprised of the two bidirectional recurrent layers of the same type: the vanilla BRNN
(denoted simply as BRNN hereafter), BLSTM, and BGRU. The whole sequence of hidden state vectors from
all cells is passed from the first bidirectional recurrent layer to the second bidirectional recurrent layer as
well as from the second bidirectional recurrent layer to the fully-connected layer.
• Three CRNN models comprised of one 1D CNN layer followed by one recurrent layer of each type: the
vanilla RNN, LSTM, and GRU. The resultingmodels are denoted as CRNN, CLSTM, and CGRU. The recur-
rent layer returns the whole sequence of hidden state vectors from all cells to the fully-connected layer. The
stride s= 1, zero padding, and the ReLU activation function are used in the 1D CNN layer. The number of
filters and the filter size is the same as in the first layer of the 1D CNNmodel.
• Three CBRNN models comprised of one 1D CNN layer and one bidirectional recurrent layer of each type:
the vanilla RNN, LSTM, and GRU. The resulting models are denoted as CBRNN, CBLSTM, and CBGRU.
The stride s= 1, zero padding, and the ReLU activation function are used in the 1D CNN layer. The number
of filters and the filter size are the same as in the first layer of the 1DCNNmodel. The bidirectional recurrent
layer returns the whole sequence of the forward-backward hidden state vectors from all cells to the fully-
connected layer.
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3.2.2. Hyperparameter optimization
The goal of this work is to compare the performance of ML models including ANN models with different
architectures as described above. Depending on the overall objective, one can envision several approaches for
comparing performances of different ANNs. For example, the hyperparameters of each ANN model can be
adjusted using grid search, random search, or other optimization techniques, including evolutionary
algorithms, to achieve the best performance of each ANN model on a given data set. However, given the
fundamentally different types of ANN models considered in the present Article, this approach may result in
several models with approximately the same prediction accuracy but requiring drastically different resources
such as CPU (or graphics processing unit (GPU)) time and memory. In such case, it might be reasonable to
use ANN models that are not the most accurate, but those that provide an acceptable accuracy, require less
computational resources and yield faster training and prediction times. The notion of the optimal running
time, however, strongly depends on the problem under study. One can also set the desired accuracy and
systematically adjust the hyperparameters of each model to achieve the desired accuracy and then analyze the
resulting ANN models. This approach, however, requires specifying the fixed accuracy level which might not
be achievable for some ML models and relies on a priori knowledge of the dynamics of the system of interest.

The following approach is adopted in the present study. We compare the performance of ANN models
with approximately the same number of trainable parameters. Hyperparameters of each ANN model
described above are scanned using a grid search approach and models with the pre-determined number of
trainable parameters are selected and their performance is reported in section 4. The number of trainable
parameters is chosen as follows. In [32, 34] we illustrated that deep 1D CNNmodels can approximate
long-time dynamics of a molecular dimer system (spin-boson-like model) and the Fenna–Matthews–Olson
photosynthetic complex accurately. Therefore, the 1D CNNmodel from [32] is taken as a base model. The
hyperparameters of this model associated with convolutional layers, specifically, the number and the size of
the kernels of each layer, are optimized using PSO algorithm. All other hyperparameters such as the number
of neurons of a fully-connected layer and the activation functions of all neurons are fixed to 256 and ReLU
correspondingly. PSO calculation is performed with three particles and for 50 steps. At each step of the PSO
calculation, three 1D CNNmodels, one for each particle, are trained and validated using the above
mentioned data set. During training, the deviation between predicted ŷi and reference values yi is minimized.
In this work, we use the mean squared error (MSE) as the loss function in the minimization

MSE=
1

Nb

Nb∑
i=1

(yi− ŷi)
2
, (38)

where Nb is the batch size. Adaptive moment estimation (Adam) algorithm [161] is used with the initial
learning rate set to 1.0× 10−4. The initial values of the weights are randomly sampled using Xavier
initialization [162]. The biases are initialized to zero. KERAS [145] software package with the TENSORFLOW
[152] backend was employed for calculations. The batch size is set toNb = 64 and the training for each model
is performed for 30 epochs. As will be shown later this is sufficient for the MSE to drop below 10−5–10−6.

For each trained 1D CNNmodel, the mean absolute error (MAE) for the validation set is calculated and
used as the fitness value in the PSO. Then the hyperparameters of 1D CNNmodels are adjusted based on the
algorithmic details of PSO which can be found in appendix B. After 50 steps of PSO, the 1D CNNmodels
stop improving and the PSO calculation is terminated. The optimized number of kernels of the final 1D
CNNmodel is 235 and 125 with the kernel sizes 16 and 7 of the first and second layer, respectively. The 1D
CNNmodel described above contains a total of 530 258 trainable parameters. This number is taken as
reference and the hyperaprameters of all other 13 ANN models are selected to generate models with
approximately the same number of trainable parameters. Note, however, that according to the formulas given
in section 1, it is not possible to set hyperparameters in all models to achieve exactly the desired number of
trainable parameters. Therefore, some variation in the number of trainable parameters across the reported
ANN models is to be expected.

Even though the number of trainable parameters is straightforwardly connected to the hyperparameters
of each ANN architecture, a grid search is performed over hyperparameters with the goal to understand the
sensitivity of the model performance to small variations in the hyperparameters. In all models containing
(bidirectional) recurrent layers the number of units is scanned from 5 to 100 with the step of 5. Additionally,
in all ANNmodels containing 1D CNN layers and (bidirectional) recurrent layers, the number of kernels and
kernel sizes of the 1D CNN layer is taken to be same as in 1D CNNmodel while the number of units in the
recurrent layer is scanned from 5 to 100 in steps of 5. All the models are trained, validated, and tested using
the data set for the symmetric spin-boson model. KERAS software package and Adam algorithm is used for all
ANN calculations. The initial learning rate is fixed to 1.0× 10−4, the batch size is set to 128, and the training
for each model is performed for 30 epochs.
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Figure 3. Learning curves for selected ANNmodels: training (left) and validation (right). Note the logarithmic scale of the vertical
axis.

Usually more than one set of hyperparameters generates ANN models with the number of trainable
parameters close to the target number. In such cases, models with the number of trainable parameters within
±5% of the reference number are examined. Among selected models, the models that perform significantly
different than the average model are discarded. The number of outliers in each case is found to be small. We
attribute outliers to finite training time and nonuniform decay of the MSE during the training, which in case
of RNNs is a manifestation of the vanishing gradient problem. We will return to this issue in section 4. The
model with the closest number of trainable parameters to the target number is saved and its performance is
reported.

3.2.3. Training and validation curves
To illustrate the learning process of ANN models, in figure 3 we plot the training and validation curves for
several such models. Such curves are a widely used tool to examine the performance of supervised learning
algorithms. In general the learning is found to be stable in each case. The apparent noisiness in the data
should be attributed to the logarithmic scale of the vertical axis. Several conclusions can be drawn by
examining figure 3. Firstly, none of the models overfits which is illustrated in lower and in, general, decaying
validation MSE (figure 3 right panel) compared to the training MSEs (figure 3 left panel). Secondly, the
learning process is fast even with the learning rate of 1×10−4. It should be noted that decreasing learning
rate to 1×10−5 does not result in noticeable improvement in accuracy for all the ANN models studied in this
work but the increase of the learning rate to 1×10−3 usually results in increasing MSE. Furthermore, FFNN
model reaches the lowest MSE rapidly in less than 10 training epochs while the MSE of other models e.g. 1D
CNN, B(LSTM,GRU) continues to decay over all shown 30 training epochs. The same behavior is manifested
in the validation MSEs. This suggests that 30 training epochs used in this work is justified for 1D CNN and
other convolutional and recurrent models but seems unnecessarily too many for the FFNN model. This
observation further illustrates the efficiency of simple FFNN models. We note that in the case of the BRNN
model the validation MSE exhibits large-magnitude changes over the course of training. This can be
attributed to the vanishing gradient problem of the vanilla RNNs.

3.3. KRRmodels
In addition to 14 ANNmodels, 8 KRR models are investigated in the present Article. Each KRR model differs
by the choice of the kernel. The following kernels are studied: the linear kernel denoted as KRR-L
(equation (36)), Gaussian kernel (equation (32), KRR-G), exponential kernel equation (31) (KRR-E),
Matérn kernel, equation (30) with n= 1,2,3,4 (KRR-M1, KRR-M2, KRR-M3, KRR-M4), and a
periodic-decaying kernel, equation (33) (KRR-DP). It should be noted that unlike RNNs, KRR (and FFNN)
models studied in this work require a fixed-size input. Therefore, to enable the comparison between ANN
and KRR models studied in this work, we focused on the input ⟨σ̂z(t)⟩ trajectories of the same length. We
note that extending RNN models built in the present work to variable size input is straightforward and will
be discussed elsewhere.

In KRR models, optimization amounts to finding regression coefficients α as shown in equation (35).
Therefore, one can interpret each regression coefficient αi as a trainable parameter. The total number of such
coefficients is the same as the number of elements of the training set, which in this work is 72 000 for both
symmetric and asymmetric spin-boson models. This number of trainable parameters of KRR model is far
fewer than the target number of trainable parameters for ANN models. We emphasize that the number of
trainable parameters for KRR models is, by construction, set to the size of the training set, while it is variable
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in ANN models. This further makes the faithful comparison of fundamentally different ML approaches
studied in this work non-trivial. As will be shown in the following, the fewer number of trainable parameters
of KRR does not adversely impact the performance of KRR models.

KRR approaches have analytical solution to optimal parameters (regression coefficients α), but they still
require adjusting a (small) number of hyperparameters. All KRR models used here contain the regularization
hyperparameter λ which is the only hyperparameter in KRR-L. Other KRR models have additional
hyperparameters in their kernel functions, i.e. all nonlinear models have length-scale hyperparameter σ,
KRR-Mn also have the integer hyperparameter n (not optimized here), KRR-DP has two more
hyperparameters compared to KRR-G: p and σp. Due to the small number of hyperparameters, they are
optimized on a logarithmic grid as described elsewhere [154] for all models except for KRR-DP which has
four hyperparameters. Hyperparameters in KRR-DP are optimized using the tree-structured Parzen
estimator [163] via interface to the HYPEROPT package [164]. All hyperparameters of KRR models are
optimized using grid search method for KRR.

The hyperparameters of each ML model are optimized only for the data set for symmetric spin-boson
model as already indicated above. The optimized models are then re-trained on the asymmetric spin-boson
data set keeping the hyperparameters unchanged. MLATOM software package [154, 157] is used for all KRR
calculations.

4. Results and discussion

4.1. Symmetric spin-bosonmodel
The details and performance of all ANN and KRR models are summarized in tables 1 and 2, respectively. As
seen from table 1, the two best performing ANN models on the symmetric spin-boson data set, are the
CLSTM and CBLSTM while the two least accurate ANN models are unidirectional RNN and bidirectional
vanilla RNN models. Worse performance of simple vanilla RNN layers compared to LSTM and GRU layers is
the expected result. It has been observed in other applications that in contrast to LSTM and GRUmodels, the
performance of vanilla RNN models degrades with the increasing length of input sequence [165, 166]. We
note that the weak performance of RNN models is despite the increased number of units or length of the
hidden state vector compared to other recurrent ANN models.

A better performance of CRNNmodels is an illustration of the power of sub-sampling of the initial input
data which is then more efficiently learned by the LSTM layer. Comparing the unidirectional or bidirectional
recurrent ANN models whether taken separately or as the second layer on top of 1D CNN layer confirms the
trend. The best performing model is an (C,B,CB)LSTMmodel, followed by the (C,B,CB)GRU, and
(C,B,CB)RNN. It is also worth mentioning that recurrent ANN models based on bidirectional layers do not
outperform their unidirectional counterparts. This is observed for both unidirectional recurrent models
compared to bidirectional recurrent models as well as when convolutional unidirectional recurrent models
are compared to the corresponding convolutional bidirectional recurrent models.

Focusing on KRR models, whose details and performance is illustrated in table 2, we note that these
models generally outperform ANNmodels with the exception of a KRR model with linear kernel.
Furthermore, the KRR-L is the worst performing of all ML models studied in the present work. This is,
perhaps, not surprising because it is expected that quantum dynamics of such a complex system as the
spin-boson model is highly non-trivial and cannot be captured by simple linear regression.

The differences in accuracy between ML models noted above are, however, not significant in the case of
symmetric spin-boson model. This is illustrated in figure 4 where the exact population difference ⟨σ̂z(t)⟩ is
compared to the ML-predicted ⟨σ̂z(t)⟩. We stress that only short ⟨σ̂z(t)⟩ trajectory of t∆= 4 is used as an
input. The rest of the dynamics is predicted recursively as done in [32, 33]. Figure 4 compares the
performance of the 1D CNNmodel, whose number of trainable parameters is used as a reference for other
ANN models, to the best and the worst performing ANN and KRR models. One notices that the prediction
accuracy of the KRR-L model degrades slowly over time but still remains acceptable. This can only be seen in
figures 4(a) and (b) where the chosen system and bath parameters generate the oscillatory dynamics of the
RDM. In the cases of incoherent relaxation dynamics KRR-L results are indistinguishable from the exact
HEOM dynamics.

We stress that even the worst performing ML model, KRR-L, as illustrated in Figure 4 still provides an
acceptable accuracy. Therefore, we conclude that all ML models benchmarked in the present article can be
trained to provide a sufficient long-time prediction accuracy. One suspected drawback of the recursive
propagation approach proposed in [32, 33] is that the prediction error would grow over many time steps
possibly leading to significant accuracy loss in the long-time dynamics. However, as shown above such errors
can be made small enough to make long-time predictions reliable all the way until the dynamics reaches
equilibrium.
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Table 1.Hyperparameters, mean absolute prediction errors, total number of trainable parameters, training, and average single step
prediction times for all ANN models studied in this work. For each recurrent layer the number of units is shown. The number of kernels
X and kernel sizes Y for each convolutional layer are shown in parenthesis as (X,Y).

Trainable
parameters

Layers Mean absolute error Time (s)

Model Layer 1 Layer 2 Symmetric Asymmetric Training Prediction

1D CNN 530 258 (235,16) (125,7) 1.55×10−3 4.84×10−2 465 3.8
FFNN 520 045 754 646 1.32×10−3 3.70×10−2 82 3.3

Recurrent Neural Networks

LSTM 528 577 15 49 1.58×10−3 2.35×10−2 623 6.1
GRU 553 453 60 50 2.05×10−3 2.57×10−2 668 4.4
RNN 535 468 65 50 3.00×10−3 6.17×10−2 302 4.2

Convolutional Recurrent Neural Networks

CLSTM 501 965 (28,16) 71 1.17×10−3 2.50×10−2 279 4.1
CGRU 515 806 (55,16) 73 1.38×10−3 2.14×10−2 294 4.7
CRNN 513 673 (243,16) 73 1.46×10−3 3.61×10−2 197 5.4

Convolutional Bidirectional Recurrent Neural Networks

CBLSTM 568 022 (109,16) 39 1.17×10−3 2.84×10−2 333 3.8
CBGRU 514 860 (55,16) 37 1.54×10−3 3.68×10−2 325 5.3
CBRNN 508 842 (297,16) 36 2.50×10−3 3.58×10−2 256 3.9

Bidirectional Recurrent Neural Networks

BLSTM 511 809 6 24 2.12×10−3 2.56×10−2 635 5.2
BGRU 534 991 14 25 2.28×10−3 2.48×10−2 1109 6.7
BRNN 511 959 37 24 6.95×10−3 4.27×10−1 396 5.4

Table 2.Mean absolute prediction errors, training, and average single step prediction times of all KRR models used in this work. KRR-L,
KRR-G, KRR-DP, KRR-E, and KRR-Mn (n= 1,2,3,4) denote kernel ridge regression models with linear kernel, Gaussian kernel,
decaying-periodic kernel, exponential kernel, and Matérn kernel with n= 1,2,3,4, respectively.

Trainable
parameters

Mean absolute error Time (s)

Model Symmetric Asymmetric Training Prediction

KRR-L 72 000 1.2×10−2 6.5×10−2 196 1.6
KRR-G 72 000 4.7×10−4 1.2×10−3 220 1.6
KRR-DP 72 000 4.3×10−4 2.0×10−3 257 1.4
KRR-E 72 000 2.1×10−3 3.3×10−3 222 1.6
KRR-M1 72 000 2.4×10−4 1.3×10−3 260 1.6
KRR-M2 72 000 2.2×10−4 2.7×10−3 259 1.7
KRR-M3 72 000 2.0×10−4 2.3×10−3 279 1.7
KRR-M4 72 000 2.3×10−4 2.1×10−3 273 1.7

4.2. Asymmetric spin-bosonmodel
The results reported so far are encouraging but not discriminative. To unravel the differences between the
studied ML models we devise a more stringent test. All the ANN and KRR models are re-trained on the
asymmetric spin-boson model data set without any hyperparameter adjustment. The increased difficulty of
this test stems from the richer dynamics of the asymmetric spin-boson model which might require more
training parameters or even different ANN architecture (more hidden layers, longer hidden state vectors, and
memory T). Additionally, from a practical standpoint it is highly desirable to avoid optimization of yet
another ML model for asymmetric spin-boson system unless necessary, particularly, if one needs to perform
large-scale calculations for many different values of the energy bias ϵ. The purpose of the following
discussion is to assess the viability of this approach.

The proposed test clearly indicates that some models predict the long-time dynamics much more
accurately than others. The performance of each model on the hold-out test set is reported in tables 1 and 2.
There is a noticeable increase in the mean absolute error (MAE) of all studied ML models compared to the
symmetric spin-boson model. Generally, KRR models are more robust than ANN models. On average, the
MAE of KRR models increases by a factor of 6. KRR models based on Mátern kernels with n= 2,3,4 exhibit
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(a) (b)(b)(b) (c)

(d) (e) (f)

Figure 4. Expectation values ⟨σ̂z(t)⟩ for symmetric spin-boson model as a function of time. Results predicted by an indicated ML
model are compared to the HEOM results (black triangles) for the following parameters: (a) λ= 0.2,ωc = 8.0,β = 1.0;
(b) λ= 0.4,ωc = 10.0,β = 1.0; (c) λ= 0.2,ωc = 10.0,β = 0.25; (d) λ= 0.1,ωc = 4.0,β = 0.1; (e) λ= 0.8,ωc = 3.0,β = 1.0;
(f) λ= 1.0,ωc = 2.0,β = 0.1. All parameters are in the units of∆.

(a) (b) (c)

(d) (e) (f)

Figure 5. Expectation values ⟨σ̂z(t)⟩ for asymmetric spin-boson model with ϵ= 1 as a function of time. Results predicted by an
indicated ML model are compared to the HEOM results (black triangles) for the following parameters: (a) λ= 0.1,ωc = 6.0,
β = 0.75; (b) λ= 0.3,ωc = 8.0,β = 1.0; (c) λ= 0.2,ωc = 10.0,β = 0.25; (d) λ= 0.4,ωc = 8.0,β = 0.75; (e) λ= 0.8,
ωc = 10.0,β = 1.0; (f) λ= 0.7,ωc = 10.0,β = 0.1. All parameters are in the units of∆.

the most significant,∼10-fold, performance drop. The average decrease in performance of ANN models is
∼18-fold. Interestingly, the most significant performance reduction, among the ANNmodels, is observed for
the models that do not contain recurrent layers: 1D CNN and FFNN while models containing bidirectional
recurrent layers revealed to be the most robust ANN models. On average the MAE of B(LSTM, GRU, RNN)
models decreased by a factor of∼10 while, for example, the FFNNmodel became∼30 times less accurate for
the asymmetric spin-boson model.

Figure 5 shows ML-predicted dynamics of ⟨σ̂z(t)⟩ for the most and least accurate ANN and KRR models
for the asymmetric spin-boson model as well as for the ‘reference’ ANN model, 1D CNN. Analogously to the
symmetric spin-boson model, BRNN model is found to be the least accurate. The difference is, however,
more dramatic. Clearly, BRNN model is overall no longer acceptable ANN model even though it provides an
accurate prediction for some parameters, see figures 5(d) and (e), but even in these cases one can easily
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distinguish an unphysical oscillatory behavoir building up beyond relatively short times of t∆≈ 10. All other
ANN models provide more accurate and stable predictions without noise and unphysical artifacts. The
CGRU model is the most accurate matching the HEOM dynamics nearly exactly. The worst KRR model is,
once again, the one with the linear kernel. It is however, able to capture the dynamics qualitatively, and in
some, cases fairly accurately. It seems to be less reliable in predicting the oscillatory dynamics typically
observed in low temperature and small reorganization energy regimes. The most accurate KRR model is the
one with the Gaussian kernel. This model predicts the reference HEOM dynamics very accurately. The
promise of the KRR-G model has been already pointed out in [33].

4.3. Training and prediction times
The accuracy and robustness of ML models are clearly very important but our analysis would be incomplete
without discussing the timings associated with all studied ML models. In large-scale applications, such as
computational materials screening that requires optimization with respect to long-time value of a
dynamically-changing physical property (e.g. population transfer, charge-transfer efficiency, etc) a separate
quantum-dynamical calculation for each candidate is required in the search for the optimal solution
[34, 167]. These studies require huge, often a priori unknown, number of repetitive time-consuming
quantum-dynamical calculations. If a fraction of each calculation, beyond short initial time, can be replaced
with ML this would significantly speed-up the screening.

All models are trained on the same machine with 2× 20 C Intel Xeon Gold 6230 2.1GHz processor and
192Gb DDR4 memory. Training times are reported in tables 1 and 2 (only times for training are shown, in
practice, the cost is higher if the hyperparameter optimization is performed). We note that training of ANNs
can be greatly accelerated by using GPUs. While we have not used GPUs in the present study, we anticipate
our conclusions, but not the actual values of training and prediction times, to hold the same as if our ML
models were trained on GPUs. One should also be mindful that different software packages are used for
ANN and KRR models which makes the direct comparison somewhat dubious. Nonetheless both KERAS and
MLATOM are state-of-the-art software widely used in the community so we will proceed with the comparison.

According to table 1, the accuracy of FFNN and CBGRU models for the asymmetric spin-boson model is
the same but the training time of the FFNN model is nearly 4 times shorter. Furthermore, for the symmetric
spin-boson Hamiltonian, FFNN model outperforms all ANN models comprised of only recurrent layers but
shows similar performance to CRNNs and BRNNs and it does so faster: FFNN model is 3 times faster to
train than the best performing CLSTM and CGRU models.

Continuing the comparison of the training times we note that, due to their simplicity, the vanilla
(unidirectional) RNN models are also fast to train. Oppositely, BRNNs of all kinds are among the slowest
models to train. Given that using bidirectional architecture does not reduce the error compared to their
unidirectional counterparts while the increased training time of bidirectional layers makes such models
disfavored for, at least, the problem of predicting the long-time dynamics of the spin-boson problem. This
result is interesting given that BRNNs have some success in other domains as described in Introduction.

Training times of KRR models are relatively fast compared to most of the ANN models except for FFNN
and CRNN. The average single-step prediction times for each ANN and KRR models are calculated on the
same machine used for training and are shown in the last column of tables 1 and 2. It is clear that KRR
models take less time to make a single time-step prediction than ANN models, although this can be
attributed to the software nuances. Expectedly, the FFNN model is the fastest ANN model while BGRU is the
slowest. Similar to the training time we observe that (C,B)GRU models are slower than (C,B)LSTMmodels
which is counterintuitive given that GRU cell is less complex than the LSTM one. We attribute this
inconsistency to the implementation details of both cells in KERAS. Overall, recurrent layers require more time
to evaluate than other layers as should be anticipated. BRNNs take even more time to make a prediction
compared to their unidirectional counterparts. CRNN models make predictions faster compared to their
two-layer recurrent counterparts as they replace one computationally more expensive recurrent layer with a
cheaper 1D CNN layer.

4.4. Model efficiency
To illustrate the tradeoff between accuracy and training/prediction time, in figure 6 the training and
single-step prediction times are plotted against the MAE for each ML model built in the present work. For
ease of illustration, the models of similar kind are highlighted with the same color, e.g. all KRR models are
depicted by green circles, magenta color is used for all convolutional recurrent models, etc. Clearly, KRR
models are the most efficient models showing high accuracy and requiring the shortest amount of time to
train and make a prediction. Among the ANNmodels, convolutional recurrent models are the most efficient.
According to figure 6 convolutional bidirectional NNs, specifically, CBLSTM constitute the second most
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(a) (b)

Figure 6. The mean absolute single-step prediction errors of ⟨σ̂z(t)⟩ of machine learning models studied in this work plotted
against the corresponding training (a) and single-step prediction (b) times. Bidirectional recurrent neural network model is not
shown because its error is much too big compared to other models (see table 1 and figure 5).

efficient set of ANN models. In contrast, because of the longer training times and not much improved
accuracy, bidirectional recurrent ANN models are least efficient.

5. Conclusions and outlook

We performed a benchmark study of 22 supervised ML methods comparing their ability to accurately
forecast long-time dynamics of a two-level quantum system linearly coupled to harmonic bath. We illustrate
that many of the studied ML methods can achieve a good agreement with the exact population dynamics.
Our study reveals that if the memory time of a quantum dynamical system under study is known, the models
based on KRR are the most accurate and should be preferred. The commonly employed Gaussian kernel is
confirmed to be the most efficient yielding the accuracy on a par with other nonlinear kernels while
requiring somewhat less than training time.

An excellent performance of KRR models tested here compared to ANN models specifically designed for
a task of learning time-series may come as a surprise. While it may be due to the nature of an investigated
problem (deterministic time series), kernel-based methods such as KRR and closely related Gaussian process
regression are known to outperform ANNs in different tasks from several independent studies [168–171]. In
addition, in some cases kernel-based methods can be considered as infinitely large FFNNs which is a
manifestation of the power of kernel-based approaches [156].

CRNNs appear to be the most promising ANN models. One scenario where such models are suitable are
the problems when the memory time of the problem is not available and flexible ML models allowing
variable size input are needed. Such investigation is beyond the scope of this work and will be performed and
reported in future studies. Based on the present study we conclude that particularly CGRU are the most
promising ANN models for long-time quantum dynamics simulations.

All ANNmodels are however less accurate than KRR methods with nonlinear kernels and take more time
to train and predict. Often quoted poor computational scaling of KRR with the increasing system size may
pose some technical problems for large data sets which may be needed for large systems, longer and larger
number of training trajectories. Nevertheless, many approaches have been suggested to mitigate this problem
[172–177] and we are also working on implementation of alternative approaches for large data sets.

One can reasonably anticipate that our results might depend on the strategy used to compare ML models
based on ANNs. Here we chose to build and compare ANN models with approximately the same number of
trainable parameters. There is however no proven best way to compare the performance of ANNs with
fundamentally different types of layers. We believe that the strategy chosen in this work should provide a
faithful comparison of ANN models. Additionally, our conclusion advocating for KRR methods holds
irrespective of the strategy used to compare ANN models because KRR models studied in this work, are both
faster and more accurate than ANN models. Addition of more layers to ANN models will likely make them
more accurate (although overfitting should be carefully checked in this case) but it will necessarily make such
models more computationally expensive.
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FFNN may seem as a reasonable compromise between accuracy and computational cost. However, one
needs to bear in mind that FFNN models require a fixed-size input. Of course an input to FFNN models can
be padded with zeros, but it necessarily alters the representation of the underlying physics in the input data
and, therefore, the performance of such models is not expected to be strong.

It is important to note that the actual performance of a computational method depends on many factors
such as algorithmic and implementation details, program optimization, parallelization, hardware, and on the
computational task itself. This makes benchmarking of ML methods implemented in different software
packages difficult. Furthermore, many performance metrics can be chosen for benchmarking software
efficiency such as floating-point operations, scaling, speedup, and efficiency of memory use. In this study, we
focused on the clearest and most important metric which is time-to-solution measured as a wall-clock time
for performing simulation for two tasks (quantum dynamics of symmetric and asymmetric spin-boson
models) on the same machine and using state-of-the-art ANN and KRR implementations in KERAS

(TENSORFLOW) and MLATOM, respectively. Despite the limitations of our approach and compromises
associated with the comparison of many fundamentally different ML models, our results already uncover
somewhat surprising underperformance of popular methods. Undoubtedly, more benchmarks are still
needed, e.g. focusing on more complicated systems, different performance metrics, software, and hardware.
Nonetheless this work begins to unravel the advantages and disadvantages of different ML methods in
unexplored area of ML algorithms for quantum dissipative dynamics.

Finally, although many popular ML methods have been studied in the present article, the field of artificial
intelligence and ML is growing rapidly making it nearly impossible to cover all recently developed
algorithms. Our future work will focus on novel approaches to time-series modeling such as transformers
[178]. Additionally, the CNN model employed in this work uses kernels of the same size. Even though the
kernel size was optimized for the given task, the use of inception modules [179] that include multiple filters
of varying size might improve the performance of CNNs and will also be tested.
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Appendix A. Comparison of performance of initial and final KRRmodels

As obvious from table 3, initial and final KRR models are very close. Regression coefficients of the initial
KRR models were fitted only on the sub-training set (the validation set was only used for hyperparameter
optimization), while regression coefficients of the final models were optimized on the entire training set. By
‘fitting’ we mean analytical solution of the regression problem formulated for the respective set (training or
sub-training). Note that both models were trained on the entire training set which includes the validation set
(used directly for training in the final model and indirectly in the initial model). Fitting on the entire training
set is a common practice in KRR model training with the rationale that it is desirable to include all points to
ensure that no points are ‘wasted’.
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Table 3.Mean absolute prediction errors (MAEs), training, and average single step prediction times of all KRR models used in this work.
KRR-L, KRR-G, KRR-DP, KRR-E, and KRR-Mn (n= 1,2,3,4) denote kernel ridge regression models with linear kernel, Gaussian
kernel, decaying-periodic kernel, exponential kernel, and Matérn kernel with n= 1,2,3,4, respectively. The MAEs are shown for both
symmetric and asymmetric spin-boson models. The regression coefficients of the final and initial KRR models were respectively fitted
on 100% training set and sub-training set (80% of training set, i.e. the same approach that was used for training of all ANN models).

Mean Absolute Prediction Error

Model Symmetric (initial | final) Asymmetric (initial | final)

KRR-L (1.2 | 1.2)×10−2 (6.5 | 5.8)×10−2

KRR-G (4.7 | 3.8)×10−4 (1.2 | 1.3)×10−3

KRR-DP (4.3 | 4.5)×10−4 (2.0 | 2.2)×10−3

KRR-E (2.1 | 2.5)×10−3 (3.3 | 3.9)×10−3

KRR-M1 (2.4 | 2.0)×10−4 (1.3 | 1.6)×10−3

KRR-M2 (2.2 | 3.2)×10−4 (2.7 | 2.6)×10−3

KRR-M3 (2.0 | 2.3)×10−4 (2.3 | 2.1)×10−3

KRR-M4 (2.3 | 2.4)×10−4 (2.1 | 2.0)×10−3

Appendix B. Particle swarm optimization

The hyperparameter optimization of the 1D CNNmodel was performed using the heuristic particle swarm
optimization (PSO) algorithm [180]. The PSO algorithm was inspired by the observation of the motion of
swarms of birds and insects, where each swarm member is guided not only by the best solution for itself but
also by the best solution seen by the entire population.

An object of a swarm that moves around in the search space is called a particle. A new update of the
swarm is called a new generation. The particle in the swarm includes variables (hyperparameters of the
model) updated during the optimization based on the information about the previous best (test MAE) states
of the particle and the swarm itself. Each variable of an individual particle has velocity v(t), position x(t), and
the best particle’s position xp(t) which has generated the smallest MAE during the coarse of its trajectory.
Additionally, there is a global variable that contains the best global position xg(t) of the swarm. Each
generation the position and velocity of a particle are updated according to

vi(t+ 1) = wvi(t)+ cp
(
xpi(t)− xi(t)

)
+ cg

(
xgi(t)− xi(t)

)
xi(t+ 1) = xi(t)+ vi(t),

(B1)

where cp, cg, and w are cognitive, social, and inertia coefficients. These coefficients quantify how much the
particle is directed toward the best solution seen by itself, by the swarm, and in the previous direction.

In the present work, the search space is conformed by the space of hyperparameters of the 1D CNN
model as described in section 3.2.2. The values of the parameters are restricted to be positive at each step. If a
parameter takes a negative value it is replaced by a random number in an interval of values initially set for the
parameter. The following values of the coefficients are used w= 0.729, cp = 1.49445, cg = 1.49445.
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