
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Unified representation of molecules and crystals
for machine learning
To cite this article: Haoyan Huo and Matthias Rupp 2022 Mach. Learn.: Sci. Technol. 3 045017

 

View the article online for updates and enhancements.

You may also like
Robust and scalable uncertainty
estimation with conformal prediction for
machine-learned interatomic potentials
Yuge Hu, Joseph Musielewicz, Zachary W
Ulissi et al.

-

Incompleteness of graph neural networks
for points clouds in three dimensions
Sergey N Pozdnyakov and Michele Ceriotti

-

Convolutional neural network analysis of x-
ray diffraction data: strain profile retrieval
in ion beam modified materials
A Boulle and A Debelle

-

This content was downloaded from IP address 106.213.28.225 on 07/07/2023 at 12:49

https://doi.org/10.1088/2632-2153/aca005
/article/10.1088/2632-2153/aca7b1
/article/10.1088/2632-2153/aca7b1
/article/10.1088/2632-2153/aca7b1
/article/10.1088/2632-2153/aca1f8
/article/10.1088/2632-2153/aca1f8
/article/10.1088/2632-2153/acab4c
/article/10.1088/2632-2153/acab4c
/article/10.1088/2632-2153/acab4c


Mach. Learn.: Sci. Technol. 3 (2022) 045017 https://doi.org/10.1088/2632-2153/aca005

OPEN ACCESS

RECEIVED

2 August 2022

REVISED

27 October 2022

ACCEPTED FOR PUBLICATION

3 November 2022

PUBLISHED

21 November 2022

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Unified representation of molecules and crystals for machine
learning
Haoyan Huo1,4 and Matthias Rupp2,3,5,∗

1 School of Physics, Peking University, Beijing, People’s Republic of China
2 Fritz Haber Institute of the Max Planck Society, Berlin, Germany
3 Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
4 Present address: Department of Materials Science and Engineering, University of California, Berkeley, CA, United States of America.
5 Present address: Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Belvaux,
Luxembourg.

∗ Author to whom any correspondence should be addressed.

E-mail: mrupp@mrupp.info

Keywords:many-body tensor representation, machine-learning potential, atomistic simulations

Supplementary material for this article is available online

Abstract
Accurate simulations of atomistic systems from first principles are limited by computational cost.
In high-throughput settings, machine learning can reduce these costs significantly by accurately
interpolating between reference calculations. For this, kernel learning approaches crucially require
a representation that accommodates arbitrary atomistic systems. We introduce a many-body tensor
representation that is invariant to translations, rotations, and nuclear permutations of same
elements, unique, differentiable, can represent molecules and crystals, and is fast to compute.
Empirical evidence for competitive energy and force prediction errors is presented for changes in
molecular structure, crystal chemistry, and molecular dynamics using kernel regression and
symmetric gradient-domain machine learning as models. Applicability is demonstrated for phase
diagrams of Pt-group/transition-metal binary systems.

1. Introduction

The computational study of atomistic systems such as molecules and crystals requires accurate treatment of
interactions at the atomic and electronic scale. Accurate first-principles methods, however, are limited by
their high computational cost. In settings that require many calculations, such as dynamics simulations,
phase diagrams, or high-throughput searches, machine learning (ML) [1, 2] can reduce overall costs by
orders of magnitude via accurate interpolation between reference calculations [3–5]. For this, the problem of
repeatedly solving a complex equation such as Schrödinger’s equation for many related inputs is mapped onto
a non-linear regression problem: instead of numerically solving new systems, they are statistically estimated
based on a reference set of known solutions [6, 7]. This ansatz enables, among other applications, screening
larger databases of molecules and materials [5, 8], running longer dynamics simulations [9], investigating
larger systems [10], and increasing the accuracy of calculations [5, 11].

Kernel-based ML models [12–15] for data-efficient accurate prediction of ab initio properties require a
single space in which regression is carried out. Representations [16] are functions that map atomistic systems
to elements in such spaces, either directly or via a kernel [17]. Representations should be (a) invariant against
transformations preserving the predicted property, in particular translations, rotations, and nuclear
permutations of same elements, as learning these invariances from data would require many reference
calculations; non-scalar properties can require equivariance instead of invariance; (b) unique, that is, variant
against transformations changing the property, as systems with identical representation that differ in
property would introduce errors [18]; (c) continuous, and ideally differentiable, as discontinuities work
against the smoothness assumption of the ML model and model gradients are often useful; (d) general in the
sense of being able to encode any atomistic system, including finite and periodic systems; (e) fast to compute,
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Figure 1. Visualization of many-body tensor representation. Top panels show distributions of inverse distances (k= 2, quadratic
weighting) for aspirin (C9O4H8, left) and distributions of angles (k= 3, exponential weighting) for fcc salt (NaCl, right). Bottom
panels show derivatives of the representation, obtained by differentiating with respect to the Cartesian coordinates of C atom r6
connecting the ester group (left) and the Na atom r1 at lattice point (right).

as the goal is to reduce computational cost; (f) data-efficient in the sense of requiring few reference
calculations to reach a given target error. Constant size is an advantage, [19] as is the ability to encode the
whole system as well as local atomic environments. Requirements (e) and (f) are in practice determined
empirically. See [16, 20–22] for details on these and further requirements.

Some representations fulfill these requirements only partially, such as the Coulomb matrix (CM) [6] and
bag of bonds (BoB) [23] discussed below. State-of-the-art representations often fulfill these requirements in
some limit, such as infinite expansion order. See [16] for a comprehensive and detailed discussion. The
descriptors used in cheminformatics, [24] and sometimes in materials informatics, often violate (b) and (c),
in particular if they do not include atomic coordinate information or rely on cutoff-based definitions of
chemical bonds. Such descriptors serve the different purpose of directly predicting derived properties that
are not functions of a single conformation, such as solubility or binding affinity to a macromolecule.

We introduce a many-body tensor representation (MBTR) derived from CM/BoB and concepts of
many-body expansions. It is related [16] to Behler–Parrinello symmetry functions [25] and histograms of
distances, angles, and dihedral angles [26]. MBTR fulfills the above requirements in the limit, is
interpretable, allows visualization (figure 1), and describes finite and periodic systems. State-of-the-art
empirical performance is demonstrated by us for organic molecules and inorganic crystals, as well as
applicability to phase diagrams of Pt-group / transition metal binary systems, and by others for predicting
and optimizing various molecular [27–33] and crystalline properties [34–37]. Implementations of MBTR are
publicly available (see Code Availability section at the end).

2. Method

We start from the CM [6, 10, 38], which represents a moleculeM as a symmetric atom-by-atom matrix

Mi,j =


1
2Z

2.4
i i= j

ZiZj

di,j
i ̸= j

, (1)

where Zi are atomic numbers and di,j = ||Ri−Rj|| is Euclidean distance between atoms i and j. To avoid
dependence on atom ordering (in the input), which would violate (a),M is either diagonalized, loosing
information which violates (b) [18], or sorted, causing discontinuities that violate (c). Another shortcoming
is the use of Z, which is not well suited for interpolation [39] as it overly decorrelates chemical elements from
the same column of the periodic table.

The related BoB [23] representation uses the same terms, but arranges them differently. For each pair of
chemical elements, corresponding CM terms are stored in sorted order, which can be viewed as an
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Ne ×Ne × d tensor, or an Ne × (Ne + 1)/2× d tensor if symmetry is taken into account, where Ne is number
of elements and d is sufficiently large. Unlike the CM, it can not distinguish homometric molecules [21],
which might distort its feature space [40]. While the BoB tensor itself does not suffer from discontinuities, its
derivative does.

To derive MBTR, we retain stratification by elements, but avoid the sorting by arranging distances on a
real-space axis:

fBoB
(
x,z1,z2

)
=

Na∑
i,j=1

δ
(
x− d−1

i,j

)
δ(z1,Zi)δ(z2,Zj), (2)

where x is a real number, z1,z2 are atomic numbers, Na is number of atoms, δ(·) is Dirac’s delta, and δ(·, ·) is
Kronecker’s delta. f BoB has mixed continuous-discrete domain and encodes all (inverse) distances between
atoms with elements z1 and z2. For a smoother measure, we replace Dirac’s δ with another probability
distributionD, ‘broadening’ or ‘smearing’ it [20, 41]. In this work, we use the normal distribution. Other
distributions can be used, in particular symmetric and short-tailed ones, for example, the Laplace
distribution or the uniform distribution. We did not observe significant differences in performance, however.
Adding a weighting function w2 and replacing the Kronecker δ functions by an element correlation matrix
C ∈ RNe×Ne yields

f2
(
x,z1,z2

)
=

Na∑
i,j=1

w2(i, j)D
(
x,g2(i, j)

)
Cz1,ZiCz2,Zj (3)

of which equation (2) is a special case. In general, g2 describes a relation between atoms i and j, such as
their inverse distance,D broadens the result of g2, and w2 allows to weight down contributions, for example,
from far-away atoms. Building on the idea of many-body expansions, [42, 43] we generalize from f 2 in
equation (3), which encodes two-body terms, to the MBTR equation

fk(x,z) =
Na∑
i=1

wk(i)D
(
x,gk(i)

) k∏
j=1

Czj,Zij
, (4)

where z ∈ Nk are atomic numbers, i= (i1, . . . , ik) ∈ {1, . . . ,Na}k are index tuples, and wk, gk assign a scalar to
k atoms inM [44]. Canonical choices of gk for k=1,2,3,4 are atom counts, (inverse) distances, angles, and
dihedral angles. The element correlation matrices C allow exploitation of similarities between chemical
element species (‘alchemical learning’), for example, within the same column of the periodic table [45–47].

We measure the similarity of two atomistic systemsM andM ′ as the Euclidean distance between their
representations,

d2k(M,M ′) =
∑
z

ˆ (
fk(x,z)− f ′k(x,z)

)2
dx. (5)

In practice, we adjust equation (4) for symmetries. Discretizing the continuous axis as (xmin,xmin+
∆x, . . . ,xmax) results in a rank k+1 tensor of dimensions Ne × ·· ·×Ne ×Nx with Nx = (xmax − xmin)/∆x,
where xmin and xmax are the smallest and largest values for which fk(x,z) ̸= 0 for all z andM. Linearizing
element ranks yields Nk

e ×Nx matrices, allowing for visualization (figure 1) and efficient numerical
implementation via linear algebra routines. For systems with many element species, discretization can lead to
large matrices, requiring substantial amounts of memory. In such settings, memory-efficient
implementation via sparse matrix formats or on-the-fly calculation of distances and inner products (see, e.g.
[45]) of MBTR matrices might be preferable.

Periodic systems, used to model bulk crystals and surfaces, can be viewed as unit cells surrounded by
infinitely many translated images of themselves. For such systems, Na =∞ and the sum in equation (4)
diverges. We prevent this by requiring one index of i to be in the (same) primitive unit cell [48]. This
accounts for translational symmetry and prevents double-counting. Use of weighting functions wk such as
exponentially decaying weights [49] then ensures convergence of the sum. Figure 1 (right) presents the
resulting distributions of angles for face-centered cubic (FCC) NaCl as an example. Note that the k-body
terms gk do not depend on choice of unit cell geometry (lattice vectors). This ensures unique representation
of Bravais lattices where the choice of basis vectors is not unique, for example 2D hexagonal lattices where
the angle between lattice vectors can be 1

3π or 2
3π.
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Table 1. Prediction errors for small organic molecules.Machine-learning models of atomization energies E and isotropic polarizabilities α,
obtained at hybrid density functional level of theory, were trained on 5k molecules and evaluated on 2k others using different
representations. RMSE= root mean square error, MAE=mean absolute error, CM= Coulomb matrix, BoB= bag of bonds, BAML=
bonding angular machine learning, SOAP= smooth overlap of atomic positions, FCHL19= Faber–Christensen–Huang–Lilienfeld
representation, MBTR=many-body tensor representation.

E (kcalmol−1) α (Å)3

Representation Kernel MAE RMSE MAE RMSE

CM [6] Laplacian 3.47 4.76 0.13 0.17
BoB [23] Laplacian 1.78 2.86 0.09 0.12
BAML [42] Laplacian 1.15 2.54 0.07 0.12
SOAP [55] REMatch 0.92 1.61 0.05 0.07
FCHL19 [45, 47] Gaussian 0.44 — — —
MBTR Linear 0.74 1.14 0.07 0.10
MBTR Gaussian 0.60 0.97 0.04 0.06

Many applications, including dynamics simulations and structural relaxation, require forces, the negative
gradient of the energy with respect to atomic coordinates. The gradient of equation (4) is given by

∇fk(x,z) =
Na∑
i=1

(
D
(
x,gk(i)

)
∇wk(i)

+wk(i)
∂D
(
x,gk

)
∂gk

∇gk(i)

)
k∏

j=1

Czj,Zij
. (6)

The gradient∇fk(x,z) can be derived analytically if this is possible for∇wk,∇gk, and∇D. Alternatively,
automatic differentiation [50, 51] can be used, removing the need for manual derivation. Figure 1 visualizes
MBTR gradients.

3. Results

To validate MBTR, we demonstrate accurate predictions for properties of molecules and crystals. Focusing
on the representation, we employ plain kernel ridge regression (KRR) models [7] unless stated otherwise.

3.1. Changes in molecular structure
To demonstrate interpolation across changes in the chemical structure of molecules we utilize a benchmark
dataset [38] of 7211 small organic molecules composed of up to seven C, N, O, S and Cl atoms, saturated
with H. Molecules were relaxed to their ground state using the Perdew–Burke–Ernzerhof (PBE) [52]
approximation to Kohn–Sham density functional theory (DFT). Restriction to relaxed structures projects
out spatial variability and allows focusing on changes in chemical structure. Table 1 presents prediction
errors for atomization energies and isotropic polarizabilities obtained from single point calculations with the
hybrid PBE0 [53, 54] functional. For 5k training samples, prediction errors are below 1 kcalmol−1 (‘chemical
accuracy’), with the MBTR model’s mean absolute error (MAE) of 0.6 kcalmol−1 corresponding to thermal
fluctuations at room temperature. Note that MBTR achieves similar performance with a linear regression
model, allowing constant-time predictions.

3.2. Changes in crystal chemistry
Interpolation across changes in the chemistry of crystalline solids is demonstrated for a dataset of 11k
elpasolite structures (ABC2D6, AlNaK2F6 prototype) [56, 57] composed of 12 different elements, with
geometries and energies computed at DFT/PBE level of theory. Predicting formation energies with MBTR
yields a root-mean-squared-error (RMSE) of 8.1meV/atom and MAE of 4.7meV/atom (figure 2) for a
training set of 9k crystals.

Adding chemical elements should increase the intrinsic dimensionality of the learning problem, and thus
prediction errors. To verify this, we created a dataset of 4611 ABC2 ternary alloys containing 22
non-radioactive elements from groups 1, 2, 13–15, spanning five rows and columns of the periodic table.
Structures were taken from the Open QuantumMaterials Database (OQMD) [58, 59], with geometries and
properties also computed via DFT/PBE. As expected, energy predictions exhibit larger errors (RMSE
31meV/atom, MAE 23meV/atom) compared to an elpasolite model of same training set size (RMSE
23meV/atom, MAE 15meV/atom).

4
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Figure 2. Formation energy predictions for ABC2D6 elpasolite structures containing 12 different elements. Shown are reference
energies (DFT∆E) and predicted energies (ML∆E), as well as distribution of errors (inset) for 2272 crystals, from an MBTR ML
model trained on 9086 other ones.

Table 2. Energy and force prediction errors for changes in geometry of organic molecules. Shown are prediction errors for total energies
(kcalmol−1) and atomic forces (kcalmol−1 Å−1). MAE=mean absolute error, RMSE= root mean squared error, PaiNN=
polarizable atom interaction neural network [60], FCHL19= Faber–Christensen–Huang–Lilienfeld representation [45, 47], sGDML=
symmetric gradient domain machine learning [13], sMatérn=Matérn kernel augmented with symmetric permutations for sGDML
[61], CMmd = Coulomb matrix variant, MBTR=many-body tensor representation.

Trained only on forces, 1k references
Trained only on

energies, 10k references

PaiNN FCHL19 sGDML/CMmd sGDML/MBTR CMmd MBTR MBTR
Kernel — Gaussian sMatérn sMatérn Gaussian linear Gaussian

Energy Force Energy Force Energy Force Energy Force Energy Energy Energy
Molecule MAE MAE MAE MAE MAE MAE MAE MAE MAE MAE MAE

Benzene — — — — 0.07a 0.06a 0.07 0.15 0.03 0.03 0.03
Uracil 0.11 0.13 0.10 0.10 0.11 0.24 0.11 0.17 0.05 0.10 0.03
Naphthalene 0.12 0.08 0.12 0.15 0.12 0.11 0.11 0.09 0.12 0.10 0.07
Aspirin 0.17 0.34 0.17 0.50 0.19 0.68 0.17 0.48 0.36 0.21 0.25
Salicylic acid 0.12 0.20 0.12 0.22 0.12 0.28 0.11 0.18 0.11 0.13 0.07
Malonaldehyde 0.10 0.34 0.08 0.25 0.10 0.41 0.09 0.36 0.18 0.21 0.10
Ethanol 0.06 0.22 0.05 0.14 0.07 0.33 0.06 0.26 0.17 0.17 0.06
Toluene 0.10 0.09 0.10 0.20 0.10 0.14 0.09 0.13 0.16 0.11 0.10
a We observed higher noise in predictions of benzene, whose reported prediction errors are also inconsistent in different publications.

To make results comparable, we retrained the sGDML/CMmd model (originally reported values are 0.10 and 0.06).

3.3. Changes in molecular geometry
For interpolation of changes in molecular geometry, we employ a benchmark dataset [13, 62] of ab initio
molecular dynamics trajectories of eight organic molecules. Each molecule was simulated at a temperature of
500K for between 150k and 1M time steps of 0.5 fs, with energies and forces computed at the DFT/PBE level
of theory and the Tkatchenko–Scheffler model [63] for van der Waals interactions. Table 2 presents results
for models trained and evaluated only on energies (right-hand side) and only on forces (left-hand side).

Energy-only models were trained on 10k configurations and validated on 2k other ones, employing
MBTR (parametrized for dynamics data, see supplement) and a similarly modified CM (CMmd, see
supplement). Non-linear MBTR regression performs best overall, with the linear kernel again being
competitive.

On the one hand, differentiating energy-based ML potentials can introduce errors, for example, from
small oscillations between training samples due to insufficient regularization, and from insufficient model
constraints in directions not covered by the training data [64]. On the other hand, electronic structure
calculations often provide reference forces at not additional cost. It is therefore beneficial to include these in
model training. This often reduces the required number of reference calculations by an order of magnitude
[9, 13, 61, 65].

Force-only models require an adaptation of plain KRR. To accommodate forces into training and to
demonstrate use of MBTR with other regression approaches, we employ MBTR in the framework of
symmetrized gradient-domain machine-learning (sGDML) [61]. This approach uses the Matérn kernel,
augmentation by symmetric molecular permutations, and reference forces for training, while providing
energy and force predictions.
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Figure 3. Relative improvement in predictive accuracy on dynamics data of eight different organic molecules. Shown are force and
energy prediction MAE ratios of sGDML/MBTR over sGDML/CMmd as a function of training set size. Error bars show the
standard deviation of the ratios over five runs with different random seeds.

Table 2 (left-hand side) compares performance of the original sGDML approach (based on the CMmd

representation [13, 61]) and of sGDML based on a two-body MBTR representation. Both models were
trained on 1000 configurations, leading to kernel matrices with dimensionalities between 27k and 63k. For
reference, we also present results for the Faber–Christensen–Huang–Lilienfeld (FCHL) representation
[45, 47] and the polarizable atom interaction neural network (PaiNN) [60].

sGDML/MBTR performs as good or better than sGDML/CMmd for energy and force predictions.
Compared to PaiNN, sGDML/MBTR performs better for energy predictions, but worse for forces. For a
more fine-grained comparison between the sGDML models, figure 3 presents learning curves of relative
MAE ratios of sGDML/MBTR over sGDML/CMmd, together with standard deviations over five runs starting
from different random seeds. sGDML/MBTR consistently outperforms sGDML/CMmd with error reductions
up to 50%–60%, especially when less than 100 training samples are used. For more symmetric molecules
such as benzene, malonaldehyde, and ethanol, use of MBTR is less beneficial but still an improvement.

3.4. Phase diagrams
We demonstrate applicability by identifying the convex hull of the phase diagram for Pt-group/transition
metal binary alloys, relevant for industrial applications [66]. For a given dataset of candidate structures, we
predict the energy of each structure and identify those with the lowest energy, which form the convex hull in
a phase diagram. Compositions that lie on or slightly above the convex hull correspond to stable and
meta-stable alloys, respectively.

To demonstrate this, we use a dataset [66] of 153 alloys computed at the DFT/PBE level of theory. This
dataset contains at most a few hundred structures for each alloy. Due to this small amount of data direct
application of ML models results in errors in predicted energies that are large enough to lead to wrong
convex hulls. We address this by employing a simple active learning [67] scheme.

Starting with a few randomly selected structures, we iteratively train ML models on these and predict
energies of candidate structures. In each iteration, we calculate (look up) DFT energies only for structures
predicted to be low in energy and include these in the training dataset of the next iteration. This procedure
prevents computationally expensive DFT calculations for high-energy structures that lie above the convex
hull, saving up to 48% of all DFT calculations while still identifying the correct convex hull.

Figure 4 presents results for AgPt. The active learning model selected 357 DFT calculations for training
and predicted energies of 331 (48%) other structures, with a MAE of 39meV/atom. The trade-off between
the number of saved calculations and the probability of failing to identify the correct convex hull can be
explicitly controlled by adjusting the energy threshold below which DFT calculations are requested. In this
simple demonstration, structures are given and not derived from composition by relaxation. While structural
relaxation is possible with ML, it brings its own challenges [68–76].

3.5. Other uses
MBTR has been used to study structure and properties of molecules, clusters, crystals and other atomistic
systems. Studies related to properties include predictions of

• gas-particle partition coefficients, such as saturation vapor pressure and equilibrium partitioning coeffi-
cients, of atmospheric molecules via KRR [27]

6



Mach. Learn.: Sci. Technol. 3 (2022) 045017 H Huo and M Rupp

Figure 4. Phase diagrams of Pt-group/transition metal binary alloys. Shown are AgxPt1−x structures (points) and their convex hull
(dashed line) as given by DFT and identified by ML. All structures are shown at their DFT energy. Symbols indicate whether a
structure was selected for training (blue circles) or predicted as high-energy (orange triangles). See main text for details.

• Heisenberg exchange spin coupling constants for dicopper complexes via Gaussian process regression [28]
• total and orbital energies of diverse larger organic molecules from the OE62 dataset [77] via a graph neural
network [78]

• extrapolation of size-extensive properties [79] at the example of atomization energies of organic molecules
in the QM9 [8] and OE62 [77] datasets

• formation energies of Al–Ni and Cd–Te binary compounds via support vector regression [34]
• band gaps and formation energies of perovskite-like materials [35]
• energetics of compositionally disordered compounds via KRR [80].

Studies related to structure include

• visualization of the conformational space of tannic acid molecules via principal component analysis [29]
• global optimization of atomic clusters, including electronic spinmultiplicities, via active learning and Gaus-
sian process regression [30, 31]

• derivative-free structural relaxation of water and small unbranched alkanes via KRR and simulated
annealing [32]

• identification of low-energy point defects in solids via evolutionary algorithms, clustering, and Gaussian
process regression [36]

• Monte Carlo simulations of the thermodynamics of thiolate-protected gold nanoclusters via minimal learn-
ing machine regression [37]

• developing data-efficient ML potentials at the example of Cs+ in water via active learning and Gaussian
process regression [33].

4. Discussion and outlook

MBTR is a general representation (numerical description, feature set) of atomistic systems for fast accurate
interpolation between quantum-mechanical calculations via ML. It is based on distributions of k-atom terms
stratified by chemical elements. Despite, or because of, this simple principle, it is connected to many other
representations, including CM [6], BoB [23], histograms of distances, angles and dihedral angles [26],
atom-centered symmetry functions [25], partial radial distribution functions [81], FCHL representation
[45, 47], as well as cluster expansion [82]. See [16] for further details on these and other relationships.

MBTR represents whole molecules and crystals. With increasing number of atoms, and thus degrees of
freedom, this approach is likely to degrade, and exploitation of locality via prediction of additive atomic
energy contributions becomes appealing [9, 83]. This requires representing local chemical
environments [20], for which MBTR can be modified [34, 84, 85].

We note in passing that problems in the training of ML models, such as outliers, can often be traced back
to problems in the underlying reference calculations, such as unconverged fast Fourier transform grids or
inconsistent settings (violating the assumption that a single function is being fitted), a phenomenon also
observed by others [86]. This suggests that automated identification of errors in big datasets of electronic
structure calculations via parametrization of ML models might be a general approach for validation of such
datasets. We rationalize this hypothesis by ML models identifying regularity (correlations) in data, and faulty
calculations deviating in some way from correct ones.

7
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Continuing advances in electronic structure codes and increasing availability of large-scale computing
resources have led to large collections of ab initio calculations, such as Materials Project [87],
AFLOWlib [88], OQMD [59], and Novel Materials Discovery Laboratory [89]. Representations such as
MBTR are key to combine quantum mechanics with machine learning (QM/ML) for fast, accurate and
precise interpolation in these settings.

Data availability statement

All datasets used in this study are publicly available. Implementations of MBTR are available as part of the
DScribe [85] and qmmlpack [90] libraries. Code to reproduce results of reported experiments is available at:
https://github.com/hhaoyan/mbtr.

The data that support the findings of this study are openly available at the following URL/DOI:
https://doi.org/10.6084/m9.figshare.19567324.v1.
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