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Abstract

This article presents the Richardson extrapolation techniques for solving singularly perturbed parabolic
convection-diffusion problems with discontinuous initial conditions (DIC). The scheme uses backward-Euler
for temporal derivatives on a uniform mesh and classical upwind finite difference method (FDM) for spatial
derivatives on a piecewise-uniform (Shishkin) mesh. This scheme provides almost a first-order convergence
solution in both space and time variables. The method employs an upwind finite difference operator on
a piecewise- uniform mesh to approximate the gap between the analytic function and the parabolic issue
solution. The numerical solution’s accuracy is improved by using Richardson extrapolation techniques,
which raises it from O(N−1 lnN + ∆t) to O(N−2 ln2 N + ∆t2) in the discrete maximum norm, where N
is the number of spatial mesh intervals, and ∆t is the size of the temporal step size. Parameter-uniform
error estimates, stability results, and bounds for the truncation errors are all addressed. Finally, numerical
experiments are presented to validate our theoretical results.
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1 Introduction

This article will delve into a particular type of problem called singularly perturbed parabolic convection-diffusion
problems, which exhibit interior layers caused by discontinuous initial conditions [1, 2, 3, 4]. These concerns are
pertinent across various engineering and applied mathematical domains, including convection-dominated flows in
fluid dynamics, quantum mechanics, elasticity, chemical reactor theory, gas porous electrodes theory, as well as
heat and mass transfer in chemical and nuclear engineering. Our investigation is rooted in the studies conducted
by Gracia et al. [5] and [6] in the field of numerical analysis. The paper introduces an analytical function that
aligns with discontinuous initial conditions and solves a differential equation with constant coefficients. The
interior layer function’s position evolves in the convection-diffusion problem, requiring tracking techniques like
the Shishkin mesh. An explicit discontinuous function S(x, t) captures the discontinuous initial conditions-related
singularity, and asymptotic expansions for the solution u(x, t) are constructed. Subtracting this singular function
yields y(x, t) = u(x, t)−S(x, t), the solution of singularly perturbed parabolic convection-diffusion problems. In
real applications, we Use the Richardson extrapolation technique for singularly perturbed parabolic convection-
diffusion problems with a DIC to predict the diffusion rate of the reactant’s effects on the performance of the
polymer electrolyte membrane fuel cell. In addition, an analytical approach is being investigated to study
the impact of gas channel draft angle on PEMFC performance and species distribution. In [7, 8, 9], studied
singularly perturbed reaction-diffusion problems in which discontinuities existed in either the boundary or the
initial condition. Here, we expand this approach to address a convection-diffusion problem with discontinuous
initial conditions. This introduces a time-dependent shift in the position of the internal layer arising from the
initial condition discontinuity. These types of problems arise in several branches of engineering and applied
mathematics, including convection-dominated flows in fluid dynamics, quantum mechanics, elasticity, chemical
reactor theory, gas porous electrodes theory, heat, and mass transfer in chemical and nuclear engineering, etc.[10,
11]. In [9], we introduce an alternative numerical algorithm that incorporates a coordinate transformation
designed to align the mesh with the interior layer location, allowing us to handle this more general case effectively.
The linearized Navier-Stokes equations at high Reynolds numbers, heat transport problems with large Péclet
numbers, and magneto-hydrodynamic duct problems at Hartman numbers are well-known examples of singularly
perturbed problems (SPPs) [ 10, 11, 12, 13].

Classical numerical methods, as acknowledged in [11, 12, 13, 14], prove ineffective in approximating solutions
of SPPs. Moreover, as ε approaches zero, standard finite difference or finite element schemes on uniform
meshes fall short in handling singularly perturbed differential equations (SPDE) with continuous data. As
evident from the literature cited above, most researchers aim to discover a numerical solution for singularly
perturbed parabolic convection-diffusion problems. Nevertheless, this paper presents an innovative methodology
by creating and assessing parameter-uniform numerical techniques, employing piecewise-uniform meshes tailored
for a specific category of singularly perturbed parabolic convection-diffusion problems with DIC. Consequently,
the development of parameter-uniform numerical methods aligns with a well-established principle in the exploration
of numerical solutions for SPPs.

Several researchers, such as Clavero et al. [7, 15, 16], Kopteva [8], and Shishkin [7, 17], have developed algorithms
for singularly perturbed parabolic convection-diffusion problems with uniform second-order convergence in both
variables. The problem involves initial conditions with discontinuities, resulting in interior and boundary layers.
For parabolic problems, the initial layer’s location evolves in convection-diffusion scenarios but remains fixed in
reaction-diffusion cases. The interior layer moves along a characteristic curve related to the reduced problem
in the considered model. Gracia and O’Riordan [6, 8, 9] have investigated the interior layer’s movement in
convection-diffusion SPPs, while Shishkin [18] studied parabolic SPPs with piecewise smooth initial data using
finite difference grids. Gracia and O’Riordan [9, 19, 20] established a parameter-uniform numerical method for
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problems with incompatible boundary and initial data. Recent academic interest focuses on efficient methods
for singularly perturbed parabolic convection-diffusion problems through Richardson extrapolation. Numerous
authors have utilized this technique to enhance convergence order, albeit at increased computational complexity
[13]. O’Riordan et al. [21] combined implicit Euler with the classical upwind finite difference operator on a
piecewise uniform mesh in one dimension, achieving first-order parameter-uniform convergence in both space
and time variables.

Richardson extrapolation is a well-known technique used by many authors to enhance the order of convergence
with a cost of higher computational complexity. Using an error after extrapolation decomposition, we employ
a Richardson extrapolation technique, as demonstrated by several authors [22, 23], to yield a more precise
numerical solution for the model problem with DIC. This strategy has been employed by numerous writers to
achieve higher-order convergence compared to conventional numerical methods. Natividad and Stynes [23] used
the technique for a two-point boundary value problem in one dimension. Das and Natesan [1] used this for higher-
order convergence for delay parabolic SPPs and 2D parabolic convection-diffusion problems on Shishkin mesh.
Academic publications show a technique achieving higher-order convergence compared to classical numerical
schemes for singularly perturbed convection-diffusion problems using Shishkin meshes, extensively explored by
Gracia, Clavero, as evidenced by citations like [5, 23, 13, 24, 25, 17, 18]. Mukherjee and Natesan derived the best
error estimates for the upwind technique on Shishkin-type meshes, specifically addressing singularly perturbed
parabolic problems with discontinuous convection coefficients [13]. M. Natividad and M. Stynes [23, 13] have
discussed the application of Richardson extrapolation to convection-diffusion problems using Shishkin meshes.
Shishkin et al. [24, 25] developed parameter-uniform numerical methods for singularly perturbed parabolic
problems with DIC terms, using fitted operator techniques instead of upwind FDM operators.

In this paper, we look at a group of singularly perturbed parabolic convection-diffusion problems that generate
solutions with internal layers as a result of DIC. Existing literature proposes various methods to address these
issues. To gain a comprehensive understanding of these techniques, we recommend consulting the book by
Farrell et al.’s [10, 11], farrell2000robust and Röös et al.’s work [13]. M. Pickett and G. Shishkin [17] employed
parameter-uniform finite differences to solve singularly perturbed parabolic diffusion-convection-reaction problems.
For a more in-depth exploration of numerical treatments of SPPs, reference the works cited in [12, 14], including
works by Clavero, Miller, and Shishkin [15, 26, 7], Farrell, Hegarty, Miller, O’Riordan, and Shishkin, Röös,
Stynes, and Tobiska [11, 12, 14, 27, 18].

With this motivation, the Richardson extrapolation method for improving the accuracy of numerical solutions in
one-dimensional singly perturbed parabolic convection-diffusion problems with discontinuous beginning conditions
(2.1). This method improves the order of accuracy for SPPs by focusing on fundamental upwind finite difference
techniques. We demonstrate enhanced accuracy for basic upwind finite difference schemes within the SPP class
dealing with discontinuous initial circumstances by using asymptotic expansion approaches to establish exact
restrictions for the continuous solution and its derivatives. This method effectively approximates both temporal
and spatial derivatives, boosting the implicit upwind finite difference method’s convergence from nearly first-
order to nearly second-order.

The rest of the article is organized as follows: Section 2 defines a continuous problem using a transformation to
fix the interior layer’s position in time, providing solution decomposition, derivatives, and discontinuous initial
conditions-defined singular function. Section 3 introduces a numerical scheme in the transformed domain based
on a classical implicit upwind scheme and establishes a parameter-uniform error bound. Section 4 discusses the
Richardson extrapolation technique and determines the error estimate for the extrapolated discrete problem.
Section 5 we present numerical examples to validate the theoretical results. The paper concludes with the
conclusions.

Notations: The domains are represented by Ω = (0, 1), d̃ = d̃(0), D = Ω × (0, T ). In this paper, C is
a constant independent of both the singular perturbation parameter ε and all discretization parameters. The
jump of a function φ at a discontinuity point d̃ is defined as:

[φ](d̃) = φ(d̃+)− φ(d̃−).
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We denote the maximum norm over any region ||.||D̄, which is defined by ||u||D̄ = maxx∈D̄ |u(x, t)|, (x, t) ∈ D
for any function u.

The space C0+γ(D) where D ⊂ R2, denotes an open set and is defined by

Cn+γ(D) =

{
z :

∂i+mz

∂xi∂ym
∈ C0+γ(D), ∀i,m ∈ N ∪ {0} and 0 ≤ i+ 2m ≤ n

}
, n ≥ 0,

where C0+γ(D) represents the set of all functions that are Hölder continuous of degree 0 < γ < 1.

Note that we frequently use the aforementioned notations and definitions, replacing D with D− ∪D+, D̄, ∂D,
∂DN,M ,D̄N,∆t, and ∂DN,∆t.

2 Statement of Continuous Problem

In this paper, we consider the following singularly perturbed parabolic convection-diffusion problems with the
DIC defined on domain D:

Lεu = ut − εuxx + a(x, t)ux + b(x, t)u = f (x, t) , (x, t) ∈ D,

u(x, 0) = φ(x), 0 ≤ x ≤ 1; [φ](d̃) 6= 0, 0 < d̃ < 1;

u(0, t) = u(1, t) = 0, 0 < t ≤ T ;

(2.1)

where D = Ω× (0, T ],Ω = (0, 1), t ∈ (0, T ], T > 0, and 0 < ε� 1 is a singular perturbation parameter and the
coefficients a(x, t), b(x, t) are smooth and satisfy a(x, t) > α > 0, b(x, t) ≥ β ≥ 0 on Ω̄. We assume that the
functions a, f, φ satisfy the below conditions:

a, f ∈ C4+γ(D) for some γ > 0, and φ(i)(0) = 0 = φ(i)(1) = 0, 0 ≤ i ≤ 4.

Moreover, [φ] denotes the jump in the function φ across the point of discontinuity x = d̃, that is, [φ](d̃) =
φ(d̃+)− φ(d̃−). In general, due to the presence of a discontinuity in the convection coefficient a(x), the solution
u(x, t) of the problem (2.1) possesses an interior layer in the neighborhood of the point x = d̃. We observe that
the initial function φ(x) is discontinuous at x = d̃ and the location of this point does not depend on the singular
perturbation parameter ε. The initial condition φ is smooth, but it contains the interior layer in the vicinity of
the layer x = d̃.

We assume that the initial data φ and f are sufficiently smooth functions on the domain D̄ [28, 29] and that
satisfy sufficient compatibility conditions at the corner points (0, 0) and (1, 0).

Assuming sufficient smoothness and compatibility conditions on φ and f , the parabolic problem (2.1) typically
has a unique solution u(x, t). This solution displays a regular boundary layer of width O(ε) at x = 1.
Additionally, in the range a(t) > α > 0, 0 ≤ t ≤ T, a, f ∈ C4+γ(D̄), we presume that b and f constitute
suitably regular layer components. Moreover, we assume adequate compatibility at the points (0, 0) and (1, 0)
to ensure u ∈ C4+γ(D̄).

Let there be a point d̃ ∈ (0, 1) such that φ is not continuous at x = d̃, but φ ∈ C4(Ω̄ \
{
d̃
}

).

Given a > 0, the function d̃(t) exhibits monotonically increasing behavior. We assume that the convection term
a(x, t) is dependent on both the time and space and so the location of the interior layer does not remain at
the same position throughout the process. Thus, we need to track the movement of the layer. The path of the
characteristic curve Γ∗ is defined by the following:

Γ∗ =
{(
d̃(t), t

)
: d̃
′
(t) = a(d̃(t), t), d̃(0) = d̃, 0 < d̃(0) = d̃ < 1

}
(2.2)

We note that the characteristic curve Γ∗ is generally not a straight line. Since a(x, t) > 0, the curve Γ is strictly
increasing. Therefore, we have to restrict the final time T in order to avoid the overlap (to extend over or past
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around and cover) between the interior layer and the boundary layer regions. We also restrict the size of the
final time T so that the interior layer does not interact with the boundary layer. We note that Gracia and E.
O’Riordan [8, 6] proved that the following relation can define the restriction: there exists some δ > 0 such that

0 <
1− d̃(T )

1− d̃
= δ < 1, where d̃ (T) ≤ 1− δ. (2.3)

Next, we decompose the solution u of problem (2.1) into the following way:

u(x, t) =
[φ](d̃)

2
S(x− d, t) + y(x, t),where, [φ](d̃) = φ(d̃+)− φ(d̃−) (2.4)

The discontinuity in the initial condition generates an interior layer emanating from the point (d̃, 0). By

identifying the leading term
1

2
[φ](d̃)ψ̂0 in an asymptotic expansion of the solution, we can define the following

continuous function
y(x, t) = u(x, t)− S(x, t) (2.5)

where S(x, t) =
1

2
[φ](d̃)ψ̂0(x, t), ψ̂0(x, t) = erfc

(
d̃(t)− x

2
√
εt

)
, erfc(z) =

2√
π

∫ ∞
r=z

e−r
2

dr with

Lεy = f +
1

2
[φ](d̃)

(
a(d̃(t)− t)− a(x, t)

) ∂

∂s
ψ̂0(x, t). (2.6)

The function y satisfies the following problem:

Lεy = 0, (x, t) ∈ D,

y(0, t) = −1

2
[φ](d̃)ψ̂0(0, t), (0, T ],

y(1, t) = −1

2
[φ](d̃)ψ̂0(1, t) (0, T ], y(x, 0) =


φ(x), x < d̃,

φ(d̃−), x = d̃,

φ(x)− [φ](d̃), x > d̃.

(2.7)

2.1 Application of transformation to fix the location of interior layer

One possible choice for the transformation X : (x, t)→ (v, t) is the piecewise linear map given by

v(x, t) =


d̃

d̃(t)
x, x ≤ d̃(t),

1− 1− d̃
1− d̃(t)

(1− x), x ≥ d̃(t),

(2.8)

which means that a(d̃(t), t) = a(d̃, t). No transformation is needed if a(x, t) is time-dependent only. We denote
a(v, t) = a(x, t) and f(v, t) = f(x, t) as the transformed coefficient and source function in the v variable.
We also define two subdomains of D on either side of (left and right subdomains) Γ∗ to be

D− → Ω− × (0, T ] = (0, d̃)× (0, T ] and D+ → Ω+ × (0, T ] = (d̃, 1)× (0, T ].

Applying this mapping for numerical solutions transforms (2.1) into the problem of finding y. Consequently, the
transformed equation takes the form:

Lεy = g

f +
1

2
[φ](d̃)

(
a(d̃, t)− a(k, t)

)
√
επt

e−
g(k, t)(k − d̃)2

4εt

 , x 6= d̃

[y] (d̃, t) = 0,

[
1
√
g
yx

]
(d̃, t) = 0,

(2.9)
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with the following transformed initial conditions,

y(p, t) = −1

2
[φ](d̃)ψ̂0(p, t), p ∈ {0, 1} , 0 ≤ t ≤ T, (2.10)

y(x, 0) =


φ(x), x < d̃,

φ(d̃−), x = d̃,

φ(x)− [φ](d̃), x > d̃.

(2.11)

Here, Lεy = −εyxx + κ(x, t)yx + g(x, t)yt, and the functions g, κ are defined by,

κ(x, t) =
√
g
(
a(x, t) + a(d̃, t)(ψ̂(x)− 1)

)
,

g(x, t) =


(
d̃(t)

d̃

)2

, x < d̃,(
1− d̃(t)

1− d̃

)2

, x > d̃

, and ψ̂(x) =


d̃−x
d̃
, x < d̃,

x−d̃
1−d̃ , x > d̃.

2.2 Decomposition of the solution

To develop sharp bounds in the error analysis, we decompose the solution y(x, t) of (2.9) into the sum of smooth
layer component p(x, t), singular layer component q(x, t) and the interior layer component z(x, t) as follows:

y(x, t) = p(x, t) + q(x, t) +
1

2

4∑
i=2

[φ(i)](d̃)
(−1)i

i!
ψ̂i + z(x, t), p, q ∈ C4+γ(D).

The smooth component p(x, t) is represented using an asymptotic expansion:

p(x, t) =

3∑
i=0

εipi(x, t), (x, t) ∈ D̄.

where the functions p(x, t) satisfy the following equations

∂
∂p0

∂t
+ a

∂p0

∂x
+ bp0 = f, in D− ∪D+

p0(0, t) = u(0, t), t ∈ (0, T ], p0(x, 0) = u(x, 0), x ∈ Ω̄,

∂
∂p1

∂t
+ a

∂p1

∂x
+ bp1 = −∂

2p0

∂x2
,

p1(0, t) = 0, p1(1, t) = 0, t ∈ (0, T ], p1(x, 0) = 0, x ∈ Ω̄

∂
∂p2

∂t
+ a

∂p2

∂x
+ bp2 = −∂

2p1

∂x2
,

p2(0, t) = 0, t ∈ (0, T ], p2(x, 0) = 0, x ∈ Ω̄,

(2.12)

and lastly, the functions p3 satisfies Lεp3 = −∂
2p3

∂x2
, in D

p3(0, t) = p3(1, t) = 0, t ∈ (0, T ], p3(x, 0) = 0, x ∈ Ω̄.

(2.13)

Hence, the smooth component of the solution satisfies the discontinuous function p(x, t) by{
Lεp = f, (x, t) ∈ D− ∪D+,

p(x, 0) = y(x, 0), x ∈ Ω̄, p(0, t) = y(0, t), p(1, t) = y(1, t), t ∈ (0, T ].
(2.14)
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where p(d̃±, t) = limx→d̃±0 p(x, t).

We define the discontinuous function q(x, t), which represents the singular component of the decomposition, as
follows: 

Lεq = 0, (x, t) ∈ D− ∪D+,

q(x, 0) = 0, x ∈ Ω̄

q(0, t) = y(1, t)− p(0, t), t ∈ (0, T ]c q(1, t) = y(1, t)− p+(1, t), t ∈ (0, T ],

[q](d̃, t) = −[p](d̃, t),

[
∂q

∂x

]
(d̃, t) = −

[
∂p

∂x

]
(d̃, t), t ∈ (0, T ]

(2.15)

Hence q(d̃−, t) = u(d̃−, t)− p(d̃−, t) and q(d̃+, t) = u(d̃+, t)− p(d̃+, t), t ∈ (0, T ].
The interior layer component z(x, t) of the solution satisfies the discontinuous function by{

Lεz = f, (x, t) ∈ D− ∪D+,

z(x, 0) = 0, x ∈ Ω̄, z(0, t) = 0, z(1, t) = 0, t ∈ (0, T ].
(2.16)

Note that, given the uniqueness of the solution to the problem (2.1), the decomposition p+ q+ z remains valid.

Theorem 2.1. The smooth component p defined in (2.14) belong to C4+γ(D̄±) and the singular layer component
q described in (2.15) belong to C4+γ(D̄±) satisfy the following bounds for all non-negative integers i and m:∥∥∥∥ ∂i+mp∂xi∂tm

∥∥∥∥
D̄

≤ C, 0 ≤ i+m ≤ 2, || ∂
3p

∂x3
||D̄ ≤ Cε

−1, x 6= d̃,

and ∥∥∥∥ ∂i+mq∂xi∂tm

∥∥∥∥ ≤ Cε−i(1 + ε2−j)e−α(1−x)/ε, (x, t) ∈ D, 0 ≤ i+ 2m ≤ 4.

Then, when we combine these bounds with the bounds on the singular functions z, we get

y = p+ q − 1

2
[φ
′
](d̃)zi(x, t), p = p+ +

1

2

4∑
i=1

[φi](d̃)
(−1)i

i!
zi(x, t), zi ∈ Ci−1+γ(D̄).

The interior layer function zi is also bounded because p and q for i = 1, 2, 3, 4 are all constrained. Proof. The
detailed proof is given in [10].

Theorem 2.2. For any non-negative integers i,m, where m ∈ N ∪ {0} satisfies 0 ≤ i ≤ 3 and 0 ≤ i+ 2m ≤ 4
in such a way that the smooth component p defined in (2.14) satisfy the following bounds:∥∥∥∥ ∂i+mp∂xi∂tm

(x, t)

∥∥∥∥
D−∪D+

≤ C, 0 ≤ i+ 2m ≤ 4∥∥∥∥ ∂4p

∂x4
(x, t)

∥∥∥∥ ≤ Cε−1, (x, t) ∈ D− ∪D+,

and the boundary layer component q given in (2.15) satisfies the bounds∣∣∣∣ ∂i+mq∂xi∂tm
(x, t)

∣∣∣∣ ≤
C

(
ε−i exp(−(d̃−x)α1/ε)

)
, (x, t) ∈ D−,

C
(
ε−i exp(−(x−d̃)α2/ε)

)
, (x, t) ∈ D+,

and ∣∣∣∣ ∂4q

∂x4
(x, t)

∣∣∣∣ ≤
C

(
ε−4 exp(−(d̃−x)α1/ε)

)
, (x, t) ∈ D−,

C
(
ε−4 exp(−(x−d̃)α2/ε)

)
, (x, t) ∈ D+.

where C is a constant independent of ε.

Proof. The detailed proof can be obtained by following the steps in Theorem 3.3 of [3].
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3 Numerical Approximation

This section uses backward-Euler and central differences on a piecewise-uniform Shishkin mesh to approximate
(2.7). We then discretize the singularly perturbed parabolic convection-diffusion problems with DIC (2.1) using
backward-Euler for time and upwind finite differences for space, achieving ε-uniform convergence. The interior
layer does not interact with the boundary layer at x = 1.

3.1 Construction of piecewise-uniform Shishkin mesh

Assuming that N and M = O(N) are both positive integers, we consider the domain D̄ = Ω̄ × [0, T ] =
[0, 1] × [0, T ]. We construct a piecewise uniform Shishkin mesh to handle the boundary layer at x = 1 in the
singularly perturbed parabolic convection-diffusion problems with DIC (2.1). Given that the model problem
displays boundary layers of width O(

√
ε) and an interior layer starting at x = d̃, we define our rectangular mesh

accordingly. We discretize the time derivative using the implicit Euler scheme on the mesh Ω̂Mt . We establish
the uniform temporal mesh as follows:

Ω̂Mt = {tk : tk = k∆t, k = 0, . . . ,M, t0 = 0, tM = T, ∆t = T/M} ,

where M is the number of mesh elements in the time direction, and step sizes k.
Let’s denote the spatial mesh widths as hi = xi − xi−1 and ĥ = hi + hi+1 for i = 1, . . . , N − 1.
We divide the transformed spatial domain Ω = [0, 1] into the following four sub-intervals as follows

Ω̄ = [0, d̃− τ1] ∪ [d̃− τ1, d̃] ∪ [d̃+ τ2, 1− τ̂x] ∪ [1− τ̂x, 1].

For the spatial mesh with N grids, the transition points τ1, τ2 and τ̂x are defined by

τ̂x = min

{
1

4
, 2
√
ε/α lnN

}
,

τ1 = min

{
d̃− τ̂x

4
, 2
√
Tε lnN

}
,

τ2 = min

{
1− d̃(T ),

d̃− τ̂x
4

, 2
√
Tε/δ lnN

}
.

(3.1)

The mesh interval point N of spatial grids are distributed into four intervals in the ratio
3N

8
:
N

4
:
N

4
:
N

8
and

each of them is spaced uniformly.
The spatial and temporal domains are denoted by Ω̂Nx and Ω̂Mt respectively. Thus, the discretized computational
domain D̄N,M is defined as

D̄N,M = Ω̂Nx × Ω̂Mt , ∂DN,M = D̄N,M \DN,M .

where Ω̂Nx = {xi : xi−1 + hi, x0 = 0, xN = 1, 1 ≤ i ≤ N}.
Then, obviously, xN/2 = d̃ and Ω̄N = {xi}Ni=0. Further, let h1 = 2(1− τ)/N and h2 = 2τ/N be the mesh lengths
in [0, 1− τ ] and [1− τ, 1], respectively.

3.2 Numerical scheme in the transformed domain

3.2.1 The classical implicit upwind finite difference scheme

Before describing the computational scheme, for any discrete function vni ≈ v(xi, tn), we define the first-order
forward D+

x , backward D−x , central D0
x difference operators, the backward finite difference operator D−t in time

by 
D+
x Y (xi, tj) =

Y (xi+1, tj)− Y (xi, tj)

hi+1
, D−x Y (xi, tj) =

Y (xi, tj)− Y (xi−1, tj)

hi
,

D0
xY (xi, tj) =

Y (xi+1, tj)− Y (xi−1, tj)

hi + hi+1
, and D−t Y (xi, tj) =

Y (xi, tj)− Y (xi, tj−1)

∆t
,
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respectively, and define the second-order central finite difference operators δ2
x in space by

δ2
xY (xi, tj) =

2

hi + hi+1

(
D+
x Y (xi, tj)−D−x Y (xi, tj)

)
.

We discretize the transformed problem (2.9) and use the backward-Euler method for the time derivative and
upwind finite difference scheme to approximate spatial derivatives. The discrete problem can be defined by the
following: Find Y such that

LN,Mε Y N,∆t(xi, tj) = f(xi, tj), (xi, ti) ∈ DN,M = D̄N,M ∩D,

LN,Mε Y N,∆t(xi, tj) =
(
D−t − εδ2

x + aD−x + bI
)
Y N,∆t(xi, tj), xi 6= d̃, tj > 0,[

1
√
g
Dc
xY

]
(d̃, tj) = 0, xi = d̃, tj > 0,

Yij = y(xi, tj), (xi, tj) ∈ ∂D̄N,M ,

Y (0, t) = Y (1, t) = 0, tj ≥ 0,

(3.2)

where [
1
√
g
Dc
xY

]
(d̃, tj) =

1− d̃
(1− d̃(tj))

D+
x Y (d̃, tj)−

d̃

d̃(tj)
D−x Y (d̃, tj).

The upwind finite difference operator corresponds to this discrete problem: Define for any mesh function U :

(
D−t − εδ2

x + aD−x + bI
)
UN,∆t(xi, tj) = f(xi, tj), xi 6= d̃, tj > 0,

−ε
[

1
√
g
Dc
xU

]
(d̃, tj) = 0, xi = d̃, tj > 0,

U(xi, tj) = u(xi, tj), (xi, tj) ∈ ∂DN,∆t,

(3.3)

where [
1
√
g
Dc
xU

]
(d̃, tj) =

1− d̃
(1− d̃(tj))

D+
x U(d̃, tj)−

d̃

d̃(tj)
D−x U(d̃, tj),

At the (xi, tj) node of the mesh, the numerical approximation of the PDE is written as

−εδ2
xYij + ajD

−
x Yij + bjUij +D−t Yij = fij .

Upon substituting the definition of the finite difference scheme and rearranging the term one may obtain

−AiYi+1,j +BijYij − CijYi−1,j −DYi,j−1 = fij

where the coefficients in the upwind finite difference scheme are given by

Ai =

(
−2ε

hi+1(hi + hi+1)

)
,

Bij =

(
2ε

hi+1(hi)
+
aj
hi

+ bj +
1

∆t

)
,

Cij =

(
2ε

hi+1(hi + hi+1)
+
aj
hi

)
,

D =
1

∆t
.

(3.4)

Here, ∆t = tj − tj−1, aj = a(tj), bj = b(tj) and

Yi0 = Y (xi, t0) = y(0, tj), Y0j = Y (x0, tj) = y(0, tj), YNj = Y (xN , tj) = y(1, tj).
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The above numerical equation is converted into a matrix equation of the form Λ
−→
Y =

−→
C , where Λ is the coefficient

of the matrix and
−→
C is the constant vector.

The global approximation Ȳ is done using simple bilinear interpolation:

Ȳ (x, t) =

N,M∑
i=0,j=1

Yijϕi(x)ηj(t)

where µi(x) is the standard hat function centered at x = xi and is defined by

ϕi(x) =


x− xi−1

hi
, if xi−1 ≤ x ≤ xi,

xi+1 − x
hi+1

, if xi ≤ x ≤ xi+1

0, otherwise.

(3.5)

and

ηj(t) =


t− tj−1

∆t
, if tj−1 ≤ t ≤ tj ,

0, otherwise.
(3.6)

Once Ȳ is found, Ū can easily be computed as Ū = Ȳ + S.

One can demonstrate that the finite difference operator LN,Mε obeys the well-known discrete minimum principle,
resulting in ε-uniform stability of the difference operator LN,Mε .

Lemma 3.1. (Discrete Minimum Principle)
Suppose Θ be any mesh function defined on D̄N,M . If Θ(xi, tn) ≤ 0 on ΓN,M = D̄N,M ∩Γ and LN,Mε Θ(xi, tn) ≤ 0
in DN,M , then Θ(xi, tn) ≥ 0 in D̄N,M .

Proof. The detailed proof is given in [13].
The following theorem affirms that the error estimate for the numerical scheme given in equations (3.2) demonstrates
ε-uniform convergence when applied on the generated piecewise-uniform (Shishkin) mesh with almost first-order
accuracy.

Theorem 3.2. For large enough N and M = O(N). If Y is the solution of the discrete problem (3.2) and y
is the solution of (2.9), then the global approximation of Ȳ on D̄N,M and bilinear interpolation and the error
associated with the discrete solution Y N,∆t at time level tn is given by satisfies:∣∣∣y(xi, tn)− Ȳ N,∆t(xi, tn)

∣∣∣ ≤ C (N−1 lnN + ∆t
)
, (xi, tn) ∈ DN,M , 1 ≤ i ≤ N − 1. (3.7)

Proof The detailed proof is given in [30, 24].

Theorem 3.3. Suppose u is the collection of the problem (2.1) in the transformed domain and UN,M be the
solution of the discrete problem (3.3) on the Shishkin mesh D̄N,M . If Û is the solution obtained from U using
the Richardson extrapolation technique, then the global error satisfies the following estimates

||Û(xi, tn)− u(xi, tn)|| ≤ C
(
N−2 ln2 N +M−2) , (xi, tn) ∈ DN,M , 1 ≤ i ≤ N − 1. (3.8)

Proof The detailed proof can be found in n [30, 24].

This article aims to enhance the discrete solution Y N,∆t of the problem (2.1) through post-processing. Our
objective is to achieve a uniform order of accuracy greater than one in both spatial and temporal variables
for the singularly perturbed parabolic convection-diffusion problems(2.1) using the Richardson extrapolation
technique.

141



Sheiso; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 132-155, 2024; Article no.AJPAM.1463

4 Richardson Extrapolation of Y N,∆t in the Transformed Domain

This paper aims to enhance the accuracy of the upwind scheme (3.2) in the transformed domain using Richardson
extrapolation. The numerical solution is denoted as Y N,M on the mesh DN,M . To increase convergence, we use
technique (3.2) on a finer mesh D̄2N,2M = Ω̄2N

x × Ω̄2M
x with 2N mesh intervals in the spatial directions and 2M

in the t-direction intervals, with a piecewise-uniform Shishkin mesh Ω̄2N
x having the same transition point 1− τ

shared with Ω̄Nx . This mesh is created by bisecting intervals of Ω̄Nx

Clearly, D̄N,M
x = {(xi, tn)} ⊂ D̄2N,2M

x =
{

(x̂i, t̂n)
}

. Thus, on D̄2N,2M , one has x̂i− x̂i−1 = h/2 for x̂i ∈ [0, 1− τ ]
and x̂i − x̂i−1 = H/2 for x̂i ∈ [1− τ, 1].

Let Ŷ 2N,∆t/2 represent the solution of the discrete problem (3.2) on the mesh Ω̄2N,2M . Therefore, it follows
from the Theorem 3.2, we can express the error as follows:

Y N,∆t(xi, tn − y(xi, tn) = C
(
N−1 lnN + ∆t

)
+RN,∆t(xi, tn), (4.1)

= C
(
N−1

(
2
√
Tε lnN

)
+ ∆t

)
+RN,∆t(xi, tn), (xi, tn) ∈ D̄N,M , (4.2)

where C is a fixed constant and the remainder term RN,∆t is o(N−1 lnN + ∆t).

Given that Ŷ 2N,∆t/2 is derived using the same transition point 1− τ , we have

Ŷ 2N,∆t/2(xi, tn)− y(xi, tn) = C
(

(2N)−1
(

2
√
Tε lnN

)
+ (∆t/2)

)
+R2N,∆t/2(x̂i, t̂n), (x̂i, t̂n) ∈ D̄2N,2M , (4.3)

where the remainder term R2N,∆t/2 is o(N−1 lnN + ∆t).

Multiplying equation (4.3) by 2 and subtracting it from equation (4.2), we eliminate first order term O(N−1)
and O(∆t), resulting in the following approximation, from which we can derive:

y(xi, tn)−
(

2Ŷ 2N,∆t/2(xi, tn)− Y N,∆t(xi, tn)
)

= R2N,∆t/2(x̂i, t̂n)−RN,∆t(xi, tn), (xi, tn) ∈ D̄N,M ,

= o
(
N−1 lnN + ∆t

)
, (xi, tn) ∈ D̄N,M .

Therefore, we shall use the following extrapolation formula

Y N,∆textp (xi, tn) = 2Ŷ 2N,∆t/2(xi, tn)− Y N,∆t(xi, tn), (xi, tn) ∈ D̄N,M . (4.4)

the numerical solution becomes more accurate than both Ŷ 2N,∆t/2(xi, tn) and Y N,∆t(xi, tn) to approximate the
exact solution of the given model problem (2.1).

The truncation error of the spatial discretization in the approximation of (4.4) becomes∣∣∣y(xi, tn)− Ŷ N,∆textp (xi, tn)
∣∣∣ ≤ C(N−2 + ∆t2). (4.5)

4.1 Decomposition of discrete solutions in the transformed domain

Similar to the continuous solution, we decompose the discrete solution Y N,M (xi, tj) into the regular P (xi, tj),
singular Q(xi, tj) and Z(xi, ti) is the interior layer. We will estimate the nodal error

∣∣Y N,M (xi, tj)− y(xi, tj)
∣∣

by decomposing the solution Y N,M (xi, tj) on the mesh DN,M in the following manner:

Y︸︷︷︸
Numerical solution

= P︸︷︷︸
Smooth solution

+ Q︸︷︷︸
Boundary component

+ Z︸︷︷︸
Interior component

Here, P , Q, and Z represent the discrete counterparts of the continuous components p, q, and z, respectively.
Define PL and PR as the solutions to the respective discrete problems, approximating p to the left and right of
the discontinuity at x = d̃:
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
LN,Mε PL = f (xi, tj) , (xi, tj) ∈ DN ∩ D̄−,

PL(0, tj) = y(0, tj), PL(d̃, tj) = p(d̃−, tj), tj > 0,

PL(xi, 0) = p(xi, 0), xi ≤ d̃,

(4.6)

and 
LN,Mε PR = f (xi, tj) , (xi, tj) ∈ DN ∩ D̄−,

PR(1, tj) = y(1, tj), PR(d̃, tj) = p(d̃+, tj), tj > 0,

PR(xi, 0) = p(xi, 0), xi ≥ d̃, .

(4.7)

Similarly, for the solutions of the following discrete problems, we define the mesh functions QL : D̄N ∩ [0, d̃]→ R
and QR : D̄N ∩ [d̃, 1]→ R (which are approximate q to the left and right of the discontinuity x = d̃).

LN,Mε QL = 0, (xi, tj) ∈ DN ∩ D̄−,

LN,Mε QR = 0, (xi, tj) ∈ D̄N ∩ D̄+,

QL(0, tj) = 0, QL(xi, 0) = 0, xi ≤ 0,

QR(xi, 0) = 0, xi ≥ d̃, QR(1, tj) = 0,

QR(d̃, tj) + PR(d̃, tj) = QL(d̃, tj) + PL(d̃, tj),

D+
xQR(d̃, tj) +D+

x PR(d̃, tj) = D−x QL(d̃, tj) +D−x PL(d̃, tj).

(4.8)

Finally, we can define the discrete solution U as

U(xi, tj) =


PL(xi, tj) +QL(xi, tj), (xi, tj) ∈ DN ∩ D̄−,

PL(d̃, tj) +QL(d̃, tj) = PR(d̃, tj) +QL(d̃, tj), xi = d̃,

QR(xi, tj) + PR(xi, tj), (xi, tj) ∈ D̄N ∩ D̄+.

(4.9)

4.2 Error Analysis

In this section, we establish error bounds for the extrapolated discrete solution from (3.2) corresponding to
the problem (2.1). Instead of directly assessing the nodal error of (UN,Mextp ), we will individually analyze the

nodal errors of its smooth component (PN,Mextp ) and its singular component (QN,Mextp ). These outcomes will be
amalgamated to formulate a uniform error estimate concerning ε-uniformity for the extrapolated solution in
(4.4).

4.2.1 Error estimate for the smooth component P

Lemma 4.1. Given ε ≤ N−1, the local truncation error for the smooth component is bounded by:

LN,Mε (P − p)(xi, tn+1) = h1ξ1(xi, tn+1) + ∆tξ2(xi, tn+1) +O(H2), for 1 ≤ i ≤ N − 1,

where

ξ1(x, t) =
1

2
a(x, t)

∂2p

∂x2
(x, t), and ξ2(x, t) =

1

2

∂2p

∂x2
(x, t), (x, t) ∈ D.

Proof. It is easy to obtain the local truncation error associated with the smooth component P±:

LN,Mε (P − p)(xi.tn+1) = − ε

3ĥi

[
h2
i+1

∂3p

∂x3
(χ1, tn+1)− h2

i
∂3p

∂x3
(χ2, tn+1)

]
− hi+1

2
a(xi)

∂2p

∂x2
(xi, tn+1)−
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h2
i+1

3!
a(xi)

∂3p

∂t3
(χ3, tn+1)− ∆t

2

∂3p

∂x3
(xi, tn+1) +

∆t2

3!

∂3p

∂t3
(xi, σ),

for some χ1, χ3 ∈ (xi, xi+1), χ2 ∈ (xi−1, xi) and σ ∈ (tn, tn+1).
Following Keller’s approach [31], we define the functions Ẽk, k = 1, 2, which satisfies the following problems:{

LεẼk = φk, in D,

Ẽk(x, 0) = x ∈ Ω̄, Ẽk(0, t) = Ẽk(1, t) = 0, t ∈ (0, T ].
(4.10)

Hence, Ẽk decomposes as Ẽk = ψk + µk, k = 1, 2,, where the smooth component ψk and the boundary
component µk satisfy the following IBVPs

Lεψk = Φk, Lµk = 0, inD,

ψk(x, 0) = µk(x, 0) = 0, x ∈ Ω̄,

ψk(0, t) = µk(0, t) = 0,

ψk(1, t) = −µk(1, t), t ∈ (0, T ], k = 1, 2.

(4.11)

Theorem 4.2. The smooth components ψk, k = 1, 2 defined in (4.11) satisfy the following bounds∥∥∥∥∂i+mψk∂xi∂tm

∥∥∥∥
D

≤ C,
∥∥∥∥∂3v

∂x3
(x, t)

∥∥∥∥ ≤ Cε−1,

where for all non-negative integers i,m, 0 ≤ i+m ≤ 2.
Proof. The detailed proof is given in [13, 32].

Lemma 4.3. Assume that ε ≤ N−1. Then, we have{
|(PL − p)(xi, tn)| ≤ C

(
N−2 + ∆t2

)
, for 1 ≤ i ≤ N/2− 1,

|(PR − p)(xi, tn)| ≤ C
(
N−2 + ∆t2

)
, for N/2 + 1 ≤ i ≤ N − 1.

(4.12)

Proof: The poof of detail is given by y [13, 28, 32].

Lemma 4.4. Assume that ε ≤ N−1. Then, we have

(P − p) (xi, tn+1) = hiψ1(xi, tn+1) + ∆tψ2(xi, tn+1) +O
(
N−2 + ∆t2

)
, 1 ≤ i ≤ N − 1.

Proof. The detailed proof is given in in [13, 32].

Lemma 4.5. Assume that ε ≤ N−1, the extrapolation error for the smooth component P is bounded by:∣∣∣p(xi, tn+1)− PN,∆textp (xi, tn+1)
∣∣∣ (xi, tn+1) = O

(
N−2 + ∆t2

)
, for 1 ≤ i ≤ N − 1.

Proof. Given that the mesh widths of D̄2N,2M are half that of D̄N,M , applying Lemma 4.4 on the finest mesh
¯D2N,2m, we obtain:(
P̃ 2N,∆t − p

)
(xi, tn+1) =

{
(H/2)ψ1(xi, tn+1) + (∆t/2)ψ2(xi, tn+1) +O

(
N−2 + ∆t2

)
, 1 ≤ i ≤ N/2,

(h/2)ψ1(xi, tn+1) + (∆t/2)ψ2(xi, tn+1) +O
(
N−2 + ∆t2

)
, N/2 + 1 ≤ i ≤ N − 1.

(4.13)
Therefore, according to the extrapolation formula (4.4), Lemma 2.1, and (4.13) it immediately follows that

p(xi, tn+1)− PN,∆textp (xi, tn+1) = p(xi, tn+1)−
(
P̃ 2N,∆t(xi, tn+1)− PN,∆t(xi, tn+1)

)
= 2

(
P̃N,∆t − p(xi, tn+1)

)
+
(
PN,∆t − p

)
(xi, tn+1)

= O
(
N−2 + ∆t2

)
, for 1 ≤ i ≤ N − 1.
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4.2.2 Error estimate for the singular layer component Q

Prior to the extrapolation analysis, we introduce a crucial lemma for the subsequent section. We define the
piecewise (0, 1)-Padé approximation of exp

(−αxi
ε

)
on the mesh ΩN1 , where i = 0, 1, . . . , N , as the following mesh

functions:

Si =

i∏
k=1

(
1 +

αhk
ε

)
, S

′
i =

i∏
k=1

(
1 +

αhk
2ε

)
then Si ≥ exp(

−αxi
ε

) ,where by convection S0 = S
′
0 = 1.

Lemma 4.6. On the domain Ω̄N = Ω̄N,εx , define the following two mesh functions

Si =

i∏
k=1

(
1 +

γhj
ε

)
, for 1 ≤ i ≤ N/2, (4.14)

Mi =

i∏
k=1

(
1 +

γh̄j
ε

)
, for N/2 ≤ i ≤ N − 1, (4.15)

(Using the usual convention that if i = 0, then S0 = 1 and if i = N , then MN = 1), where γ is a positive
constant.

Lemma 4.7. The following inequalities hold true:

exp
(
−γ(d̃− xi)/ε

)
≤
j=i+1∏
N/2

(
1 +

γhj
ε

)−1

, for 1 ≤ i ≤ N/2− 1, (4.16)

and

exp
(
−γ(xi − d̃)/ε

)
≤

N/2∏
j=N−i+1

(
1 +

γh̄j
ε

)−1

, for N/2 ≤ i ≤ N − 1. (4.17)

Proof. For each j, we have

exp(−γhj/ε) = (exp(γhj/ε))
−1 ≤ (1 +

γhj
ε

)−1; (4.18)

and similarly,

exp(−γh̄j/ε) ≤ (1 +
γh̄j
ε

)−1. (4.19)

Hereby, we deduce the result (4.16) by multiplying the inequalities obtained from (4.18), for j = i + 1, . . . N/2
and the result (4.17) follows from multiplication of (4.19), for j = N − i+ 1, . . . , N/2.

Lemma 4.8. The error associated with the singular component of the boundary layer satisfies Q

|q(xi, tn+1)−Qextp(xi, tn+1)| ≤ CN−2, for 1 ≤ i ≤ N/2.

Proof. The detailed proof is given in [13, 22].

Lemma 4.9. For N/2 + 1 ≤ i ≤ N − 1, the local truncation associated with the boundary layer component
satisfies

Lε (Q− q) (xi, tn+1) ≤

{ (
N−1 lnN

)
ζ1(xi, tn+1) + ∆tζ2O

(
ε−1
)

exp−α(1−xi+1)/εN−2 ln2 N + exp(−α(1−xi)/ε),(
N−1 lnN

)
ζ1(xi, tn+1) + ∆tζ2O

(
ε−1
)

exp−α(1−xi+1)/εN−2 ln2 N + exp(−α(1−xi)/ε).

Proof. One can refer to the detailed proof given in [33].
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Lemma 4.10. The error after extrapolation associated to the layer component QN,∆t satisfies

|q(xi, tn+1)−Qextp(xi, tn+1)| ≤ C
(
N−2 ln2 N + ∆t2

)
, for N/2 + 1 ≤ i ≤ N − 1.

Proof.The poof of detail is given by en by [13].
The following theorem presents the key result of this section, summarizing the error estimates after extrapolation.

Theorem 4.11. (Overall error after extrapolation) The solution y of (2.1) and its discrete counterpart Y for
(3.2) meet the following error estimate:

|y(xi, tn)− Y N,Mextp (xi, tn)| ≤ C
(
N−2 ln2 N + ∆t2

)
, 1 ≤ i ≤ N − 1. (4.20)

Proof. Hence, equation (4.20) directly follows from the combination of Lemma 4.5 applied to the smooth
component, and Lemma 4.10 for the layer component.

5 Numerical Examples, Results and Discussion

In this section, we validate theoretical results by applying the Richardson extrapolation method alongside a
classical upwind scheme to a test problem. We conduct numerical tests to affirm theoretical findings, employing
model problems from equations (2.1) and utilizing the numerical scheme outlined in equations (3.2). This section
showcases three examples. Given that exact solutions are unknown, we evaluate the maximum point-wise error
utilizing the double mesh principle ciple [9,6].
Let Ȳ N,M denote the bilinear interpolation of the discrete solution Y N,M on the piecewise-uniform Shishkin
mesh D̄N,M . Then, the maximum point-wise of the double mesh principle of global difference is given by

EN,Mε = ||Ȳ N,M (xi, tn)− Ȳ 2N,2M (xi, tn)||.

For each ε the corresponding order of convergence PN,M is computed as

PN,M = log2

(
EN,Mε

E2N,2M
ε

)
.

Also, the ε-uniform maximum point-wise error EN,M and the corresponding ε-uniform order of convergence
PN,M is given by

EN,M = max
ε
EN,Mε , PN,M = log2

(
EN,Mε

E2N,2M
ε

)
and PN,Mextp = log 2

(
EN,Mε,extp

E2N,2M
ε,extp

)
.

For each value of N satisfying N, 2N ∈ RN = [32, 64, 128, 256, 512, 1024, 2048], we calculate the ε-uniform
maximum pointwise double-mesh differences EN,M .

In our experiments, we examine the parameter set ε =
{

20, . . . , 2−18
}

. We calculate solutions Y N,M and

Y 2N,2M using (3.2) on piecewise-uniform Shishkin meshes ĒN,M and Ē2N,2M with N = M = 64. For all three
test examples, we provide plots of Ȳ N,M and ŪN,M = Ȳ N,M + S̄ for ε = 2−12 and N = M = 64.

The interior layers do not interact with the boundary layer in the first two examples and in the third example,
the interior layer does interact with the boundary layers.

5.1 Classical upwind finite difference scheme

Example 5.1. Consider the following singularly perturbed parabolic problem:{
−εuxx + x(1 + t2)ux + ut = 4x (1− x) t+ t2, (x, t) ∈ (0, 1)× (0, 1/2],

u(0, t) = −2, u(1, t) = 1, 0 < t ≤ 0.5.
(5.1)
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The discontinuous initial condition is given by

u(x, 0) = φ(x) =

{
−2; 0 ≤ x < d̃,

1; d̃ ≤ x ≤ 1.
(5.2)

where d̃ = 0.3, T = 0.5 and α = 1.
The corresponding continuous function is given by

y(x, t) = u(x, t)− S(x, t), S =
1

2
[φ
′
](d̃)eB(t)ψ0(x, t)

with [φ](d̃) = limx→d̃+ φ(x)− limx→d̃− φ(x) = φ(d̃+)− φ(d̃−) = 1− (−2) = 3,

B(t) =
∫ t

0
b(t
′
)dt
′

= 0 and ψ0(x, t) = erf(z). z =
d̃(t)− x

2
√
εt

, erfc(z) =
2

π

∫ ∞
z

e−s
2

ds.

The characteristics curve Γ∗ : d̃(t) = d̃+
∫ t

0
a(t
′
)dt
′

= 0.3 + t+ t3/3.

Example 5.2. Consider the following singularly perturbed parabolic problem:{
ut − εuxx + x(1 + t)ux = 4x (1− x) t+ t2, (x, t) ∈ (0, 1)× (0, 1/2],

u(0, t) = u(1, t) = 0, 0 < t ≤ 0.5.
(5.3)

The discontinuous initial condition is given by

u(x, 0) = φ(x) =

{
−x3; 0 ≤ x < d̃,

(1− x)3; d̃ ≤ x ≤ 1,
(5.4)

where d̃ = 0.3, T = 0.5, α = 1.

Example 5.3. Consider the following singularly perturbed parabolic problem:{
ut − εuxx + x(1 + t)ux = 4x (1− x) t+ t2, (x, t) ∈ (0, 1)× (0, 1/2],

u(0, t) = −2, u(1, t) = 1, 0 < t ≤ 0.5,
(5.5)

where d̃ = 0.3, T = 2, α = 1 and [φ
′
](0.3) = 0 and the characteristics curve Γ∗ : d̃(t) = t+ t2/2 + 0.3.

The discontinuous initial condition is given by

u(x, 0) = φ(x) =

{
−2; 0 ≤ x < d̃,

1; d̃ ≤ x ≤ 1.
(5.6)

In this example, the final time has been selected to be sufficiently large, so that the interior layer interacts with
the boundary layer.

In the first and second examples, the interior layer does not interact with the boundary layer. But, in the third
example, the interior layer interacts with the boundary layer.

Fig. 1, 2, and 3 shows computed approximations for Y and the numerical solution U with the scheme (3.2) and
presents a surface plot of the numerical solution with N = M = 64 and ε = 2−12. Unlike Example 1, where
[φ
′
](0.3) 6= 0, here the influence of the initial condition on the convergence order is apparent. The order is reduced

to 0.5, aligning with the error bound from Theorem 3.2. Tables display uniform double mesh global differences,
demonstrating almost first-order convergence when approximating component d̃. The results presented in the
tables provide support for the theoretical error estimates outlined in Theorem 3.2.
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Fig. 1. Surface plot of numerical approximation to y and u with ε = 2−12 and N = M = 64 for
Example 5.1.

Fig. 2. Surface plot of numerical approximation to y and u with ε = 2−12 and N = M = 64 for
Example 5.2.
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Fig. 3. Surface plot of numerical approximation to y and u with ε = 2−12 and N = M = 64 for
Example 5.3.

Table 1. Maximum point-wise errors and the corresponding order of convergence for the
function y in Example 5.1, computed using the upwind scheme

ε ↓ Number of Mesh Intervals (N = M)
32 64 128 256 512 1024

2−2 1.230e-02 5.783e-03 2.798e-03 1.376e-03 6.821e-04 3.396e-04
1.088 1.048 1.024 1.012 1.006

2−3 1.673e-02 1.079e-02 5.191e-03 2.547e-03 1.262e-03 6.280e-04
0.633 1.055 1.027 1.013 1.007

2−4 2.008e-02 7.991e-03 4.652e-03 2.642e-03 1.484e-03 8.235e-04
0.776 0.781 0.816 0.832 0.850

2−6 4.800e-03 2.698e-03 1.557e-03 8.862e-04 4.976e-04 2.763e-04
0.831 0.792 0.813 0.833 0.848

2−8 2.468e-03 1.323e-03 7.255e-04 3.993e-04 2.204e-04 1.221e-04
0.900 0.866 0.862 0.857 0.851

2−10 2.875e-03 1.679e-03 9.370e-04 5.184e-04 2.860e-04 1.572e-04
0.776 0.841 0.854 0.858 0.864

2−12 2.968e-03 1.707e-03 9.543e-04 5.288e-04 2.927e-04 1.612e-04
0.798 0.839 0.852 0.853 0.861

2−14 2.992e-03 1.714e-03 9.586e-04 5.313e-04 2.943e-04 1.623e-04
0.804 0.839 0.851 0.852 0.859

...
...

...
...

...
...

...

2−18 1.368e-03 4.806e-03 2.838e-04 1.632e-04 9.278e-04 5.255e-04
0.736 0.760 0.798 0.815 0.820

EN,M 2.008e-02 1.079e-02 5.191e-03 2.642e-03 1.484e-03 8.235e-04
PN,M 0.896 1.055 0.974 0.832 0.849
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Table 2. Maximum point-wise errors and the corresponding order of convergence for the
function y in Example 5.2, computed using the upwind scheme

ε ↓ Number of Mesh Intervals (N = M)
32 64 128 256 512 1024

2−2 3.590e-03 4.569e-03 3.007e-03 2.481e-03 1.694e-03 1.314e-03
-0.348 0.603 0.278 0.550 0.367

2−4 7.415e-03 3.990e-03 2.255e-03 1.247e-03 7.917e-04 6.614e-04
0.894 0.823 0.854 0.656 0.259

2−6 1.125e-02 7.051e-03 4.061e-03 2.202e-03 1.154e-03 5.894e-04
0.674 0.796 0.883 0.933 0.969

2−8 1.425e-02 9.726e-03 6.373e-03 3.921e-03 2.277e-03 1.248e-03
0.551 0.610 0.701 0.784 0.8671

2−10 1.519e-02 1.088e-02 7.564e-03 5.138e-03 3.344e-03 2.063e-03
0.482 0.524 0.558 0.620 0.697

2−12 1.543e-02 1.121e-02 7.945e-03 5.636e-03 3.911e-03 2.651e-03
0.461 0.497 0.495 0.527 0.561

2−14 1.550e-02 1.130e-02 8.048e-03 5.777e-03 4.102e-03 2.893e-03
0.456 0.490 0.478 0.494 0.504

...
...

...
...

...
...

...

2−18 1.421e-02 4.806e-02 2.838e-03 1.632e-03 9.278e-03 5.255e-03
0.736 0.760 0.798 0.815 0.820

EN,M 1.550e-02 1.130e-02 8.048e-03 5.777e-03 4.102e-03 2.893e-03
PN,M 0.455 0.489 0.478 0.494 0.503

Table 3. Maximum point-wise errors and the corresponding order of convergence for the
function y in Example 5.3, computed using the upwind scheme

ε ↓ Number of Mesh Intervals (N = M)
32 64 128 256 512 1024

2−2 4.847e-02 2.486e-02 1.259e-02 6.342e-03 3.182e-03 1.594e-03
0.963 0.981 0.990 0.995 0.997

2−3 7.498e-02 5.263e-02 2.677e-02 1.350e-02 6.782e-03 3.399e-03
0.511 0.975 0.988 0.993 0.996

2−4 7.313e-02 4.724e-02 2.811e-02 1.670e-02 9.579e-03 5.411e-03
0.630 0.749 0.751 0.802 0.824

2−6 6.547e-02 3.302e-02 2.205e-02 1.392e-02 1.154e-03 3.363e-03
0.987 0.582 0.663 0.708 0.782

2−8 7.872e-02 4.619e-02 2.731e-02 1.621e-02 9.305e-03 5.274e-03
0.769 0.758 0.753 0.801 0.819

2−10 6.44e-02 3.230e-03 2.141e-04 1.35e-04 3.540e-04 1.572e-04
0.786 0.790 0.793 0.797 0.799

2−12 7.996e-02 4.778e-02 2.797e-02 1.616e-02 9.278e-03 5.256e-03
0.743 0.772 0.791 0.801 0.820

2−14 8.020e-02 4.796e-02 2.821e-02 1.619e-02 9.278e-03 5.256e-03
0.742 0.765 0.801 0.804 0.820

...
...

...
...

...
...

...

2−18 8.008e-02 4.806e-02 2.838e-02 1.632e-02 9.278e-03 5.255e-03
0.736 0.760 0.798 0.815 0.820

EN,M 8.020e-02 5.263e-02 2.838e-02 1.670e-02 9.579e-03 5.411e-03
PN,M 0.607 0.891 0.765 0.801 0.824
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Table 4. Maximum point-wise errors and order of convergence for Example 5.1 after
extrapolation

ε ↓ Number of Mesh Intervals (N = M)
32 64 128 256 512 1024

22 1.611e-03 4.072e-04 1.023e-04 2.560e-05 6.401e-06 1.600e-06
1.984 1.992 1.998 1.999 1.999

2−3 3.020e-03 7.848e-04 1.982e-04 4.966e-05 1.243e-05 3.108e-06
1.944 1.985 1.996 1.998 1.999

2−4 5.205e-03 1.495e-03 3.880e-04 9.793e-05 2.454e-05 6.139e-06
1.800 1.945 1.986 1.996 1.999

2−6 3.374e-03 1.902e-03 7.464e-4 1.936e-04 4.886e-05 1.224e-05
1.499 1.468 1.464 1.496 1.498

2−8 1.691e-03 1.008e-03 5.089e-04 2.064e-04 7.276e-05 2.583e-05
1.560 1.564 1.579 1.5941 1.610

2−10 8.466e-4 5.111e-04 2.568e-04 1.039e-04 3.660e-05 1.301e-05
1.429 1.454 1.505 1.523 1.612

2−12 4.236e-04 2.574e-04 1.290e-04 5.215e-05 1.836e-05 6.529e-06
1.449 1.554 1.520 1.562 1.591

2−14 2.119e-04 1.292e-04 6.466e-05 2.612e-05 9.193e-06 3.271e-06
1.481 1.477 1.566 1.5910 1.619

...
...

...
...

...
...

...

2−18 2.650e-05 1.631e-5 9.064e-06 4.682e-6 2.294e-6 1.050e-06
1.470 1.530 1.594 1.670 1.645

EN,Mextp 3.462e-03 3.546e-03 1.531e-04 4.269e-04 2.067e-05 1.676e-05

PN,Mextp 1.696 1.655 1.675 1.5644 1.6884

Table 5. Maximum point-wise errors and order of convergence for Example 5.2 after
extrapolation

ε ↓ Number of Mesh Intervals (N = M)
32 64 128 256 512 1024

2−2 5.205e-03 1.495e-03 3.880e-04 9.793e-05 2.454e-05 6.139e-06
1.944 1.985 1.996 1.998 1.999

2−3 3.020e-03 7.848e-04 1.982e-04 4.966e-05 1.243e-05 3.108e-06
1.469 1.515 1.546 1.573 1.589

2−4 5.205e-03 1.495e-03 3.88e-04 9.796e-05 2.454e-05 6.139e-06
1.80 1.94 1.98 1.99 1.99

2−6 1.0447e-02 3.7506e-02 1.0048e-02 4.5245e-03 1.0753e-03 1.224e-05
1.477 1.573 1.590 1.630 1.621

2−8 1.0958e-02 3.5297e-02 1.1075e-02 3.5655e-03 1.0740e-03 2.583e-05
1.6344 1.6722 1.6352 1.7310 1.781

2−10 1.0450e-02 3.7503e-02 1.2169e-02 4.0518e-03 1.3059e-03 1.301e-05
1.4784 1.538 1.586 1.633 1.674

2−12 1.0450e-02 3.7502e-02 1.3203e-02 3.5649e-03 1.3059e-03 6.529e-06
1.4784 1.5061 1.5890 1.588 1.599

2−14 1.0450e-02 3.9415e-02 1.0040e-02 4.5270e-03 1.3059e-03 3.271e-06
1.4067 1.573 1.591 1.595 1.598

...
...

...
...

...
...

...

2−18 1.0450e-02 3.7502e-02 1.1075e-02 4.0518e-03 1.9342e-03 3.271e-06
1.4784 1.567 1.576 1.568 1.598

EN,Mextp 3.462e-02 3.546e-02 1.531e-03 4.269e-04 1.676e-05 2.067e-05

PN,Mextp 1.425 1.587 1.594 1.681 1.694
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Table 6. Maximum point-wise errors and order of convergence for Example 5.3 after
extrapolation

ε ↓ Number of Mesh Intervals (N = M)
32 64 128 256 512 1024

2−2 1.039e-02 3.482e-02 1.077e-02 4.176e-03 1.358e-03 1.527e-04
1.577 1.692 1.367 1.620 1.651

2−3 1.0411e-02 3.760e-02 1.315e-02 4.503e-03 1.108e-03 1.334e-04
1.4691 1.5152 1.5466 1.567 1.631

2−4 1.043e-02 3.752e-02 1.318e-02 4.518e-03 1.308e-03 1.33e-04
1.476 1.508 1.545 1.631 1.683

2−6 1.044e-02 3.750e-2 1.004e-2 4.5245e-3 1.075e-3 1.637e-04
1.477 1.503 1.510 1.630 1.652

2−8 1.095e-02 3.529e-02 1.107e-02 3.565e-03 1.074e-03 1.64e-04
1.634 1.672 1.635 1.731 1.781

2−10 1.045e-02 3.750e-02 1.216e-02 4.051e-03 1.305e-03 1.450e-04
1.478 1.523 1.586 1.633 1.671

2−12 1.045e-02 3.750e-2 1.320e-02 3.564e-03 1.305e-03 1.613e-04
1.4784 1.5061 1.589 1.648 1.687

2−14 1.045e-02 3.941e-2 1.004e-2 4.527e-3 1.305e-3 1.35e-04
1.406 1.473 1.494 1.495 1.498

...
...

...
...

...
...

...

2−18 1.045e-02 3.750e-02 1.107e-02 4.051e-03 1.934e-03 1.343e-04
1.478 1.451 1.456 1.466 1.489

EN,Mextp 1.0958e-02 3.9415e-02 1.3203e-02 4.5270e-03 1.9342e-03 1.931e-04

PN,Mextp 1.425 1.587 1.594 1.681 1.698

5.2 Improvement of the solution using Richardson extrapolation technique

In our MATLAB computations, we implemented the Richardson extrapolation scheme to achieve higher-order
convergence in the numerical method.

To solve the SPPCDP in Examples 5.1, 5.2, and 5.3, we employ the upwind finite difference method for spatial
derivatives and the implicit-Euler strategy for temporal derivatives on two meshes (EN,M and E2N,2M ). Here,
the data provided that by using upwind finite difference scheme table 1, 2, and 3 presents the maximum error
and order of convergence, then we obtain almost first-order convergence rate.

The numerical solution for the model problem (2.1) is then computed on two interconnected meshes, yielding a
second-order convergent solution per (4.4).

In addition, tables 4, 5, and 6 clearly show the effectiveness of Richardson extrapolation in increasing the order of
convergence of the upwind method. Similarly, tables 4, 5, and 6 show that extrapolation improves the numerical
solution of the convergence rate from O(N−1 lnN) to O(N−2 ln2 N) for ∆t = 1/N . This result is compatible
with the theoretical constraints stated in Theorem 3.3. These tables indicate our ability to precisely identify
maximum pointwise errors and convergence rates for Examples 5.1, 5.2, and 5.3, indicating almost second-order
convergence.

6 Conclusions

This article examines the use of Richardson extrapolation to solve singularly perturbed parabolic convection-
diffusion problems with DIC (2.1). First, we use the piecewise-uniform Shishkin mesh to discretize the domain,
and then we use implicit Euler for time discretization on a uniform mesh and an upwind finite difference
method for spatial discretization. The obtained results demonstrate an approximate first-order convergence rate
for the upwind method. By applying Richardson extrapolation, we achieve enhanced accuracy, leading to an
approximate second-order convergence rate. The convergence rate increases as ε increases fromO

(
N−1 lnN + ∆t

)
to O

(
N−2 ln2 N + ∆t2

)
, resulting in more reliable and precise solutions with lower node errors. The technique
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achieves ε-uniform convergence with second-order accuracy with a modest logarithmic computational component.
Tables 1, 2, and 3 offer precise estimates of maximum pointwise errors and convergence rates for Examples 5.1,
5.2, and 5.3, indicating almost first-order convergence. In addition, tables 4, 5, and 6 clearly show the effectiveness
of Richardson extrapolation in increasing the order of convergence of the upwind method.

The numerical experiments conducted on three test problems substantiate the theoretical findings. Finally, we
implement the Richardson extrapolation technique by combining solutions obtained on N and 2N mesh intervals.
This amalgamation yields Richardson extrapolations that provide almost second-order uniform convergence
approximations
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