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Abstract
This work presents numerical methods of block multi-derivative approaches for ordinary differential equations
(ODEs) of Various Orders. The derivation of the methods is achieved by applying the techniques of
interpolation and collocation to a power series polynomial, which is considered an approximate solution to
the problems. Higher derivative terms are introduced to improve the accuracy of the method, giving room to
modify the method for solving second and third-order initial value problems (IVPs) of ordinary differential
equations (ODEs). Details conformation of the block method is presented, showing that the method is zero
stable, consistent and convergent. The method is applied block-by-block to first, second and third-order
initial value problems (IVPs) of ordinary differential equations. The application of the method to a real-life
example also yields accurate results.
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1 Introduction

In many fields, like engineering and management, mathematical models are created to understand real-world
behavior, often resulting in differential equations. These equations are used to study various phenomena such as
the movement of planets, the decay of radioactive elements, and changes in species populations. These models
often involve non-linear equations that usually do not have analytical solutions, so numerical approximation
methods are necessary.

This paper considered the initial value problems (IVPs) of ordinary differential equations (ODEs) of the form

y′(x) = f(x, y(x)) y(x0) = y0

y′′(x) = f(x, y(x), y′(x)) y(x0) = y0 y′(x0) = y′0

y′′′(x) = f(x, y(x), y′(x), y′′(x)) y(x0) = y0 y′(x0) = y′0 y′′(x0) = y′′0

 (1)

The solution of (1) has been extensively discussed in the literature using different approaches. Lambert
[1], Brugnano and Trigiante [2], Fatunla [3], among others. The authors considered the reduction approach
of higher-order ODEs, where the problems are reduced to an equivalent system of first-order ODEs, after
which appropriate methods are applied. This reduction increases the problem’s dimension, leading to more
computational difficulties. Awoyemi and Idowu [4], Akinfenwa and Jator [5], Olabode and Momoh [6],[7],
Awoyemi [8], Ramos and Momoh [9] successfully applied numerical algorithms as integrators to solve higher
order-order initial value problems directly without reducing it to first order (ODEs).

Two major classes of numerical methods are usually adopted for the numerical solution of equation (1). The
classes are Runge-Kutta and Linear multistep method see Ramos and Momoh [9]. More work has been done
on applying RK methods for solving first-order ODEs, and their direct application to higher-order ODEs still
needs to be improved. Recently, authors have concentrated their effort on numerical solutions of second and
third-order ODEs using linear multistep methods. This effort has led to the introduction of a block mode for
resolving implicit linear multistep methods, which is a clear departure from the well-known predictor-corrector
approach. According to Olabode [10], the block method was introduced by Milne [11] as a starting step for
the predictor-corrector pairs has been identified to be costly since their subroutine for incorporating the stating
values leads to lengthy computational time, Jator [12], Kayode et el., [13], Olabode and Momoh [6].

The following are some of recent work on block method for directly solving initial value problems of ODEs:
Olabode and Momoh [6],[7], Adeyefa [14], Ramos and Momoh [9], Duromola et el., [15], Olabode et el., [16],
Kashkari [17], Ogunfeyitimi and Ikhile [18]. This work aims to make available a single method that can handle
the first-order initial value problems of ODEs and the direct solution of second and third-order initial value
problems of ODEs. Works in this category include Adeyefa and Olagunju [19] and Adeyefa [14]. This paper is
organized as follows: section one gives an introduction, section two discusses the derivation of the new method,
and section three analyzes the method’s basic properties. Section four considers numerical examples, while
section five discusses results. Finally, section six gives conclusions.

2 Derivation of the Method

Power series polynomial of the form

y(t) =

k∑
j=0

ajt
j (2)

is allowed to approximate y(t) in (1) to derive a numerical method for solving the equation. The coefficients a′js
are to be determined, t is continuous and differentiable within the interval of integration [a, b] and k represents
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the summation of the numbers of interpolation and collocation points. The first, second and third derivatives
of (2) give the following:

y′(t) =

3∑
j=1

jajt
j−1 (3)

y′′(t) =

3∑
j=2

j(j − 1)ajt
j−2 (4)

and

y′′′(t) =

3∑
j=3

j(j − 1)(j − 2)ajt
j−3 (5)

Interpolating (2) at tn and collocating (3)-(5) at t = tn+1 where tn+i = tn + ih and setting tn = 0 , yields
1 0 0 0
0 1 2h 3h2

0 0 2 6h
0 0 0 6




a0
a1
a2
a3

 =


yn
fn+1

gn+1

qn+1

 (6)

The determinant of the matrix is 12 12 hence, matrix X is non-singular. The parameters aj′s are obtained by
using Crammer’s Rule as follows;

a0 = yn (7)

a1 =
1

2

(
2fn+1 − 2hgn+1 + h2qn+1

)
(8)

a2 =
1

2
(gn+1 − hqn+1) (9)

a3 =
1

6
qn+1 (10)

Substituting (7)− (10) into (2) with t = tn+t gives a continuous formula of the form

y(t) = α0(t)yn + h(β1(t)fn+1) + h2(γ1(t)gn+1) + h3(µ1(t)qn+1) (11)

with the following coefficients,

α0(t) = 1, (12)

β1(t) = (t), (13)

γ1(t) =

(
t2

2
− t
)
, (14)

µ1(t) =

(
t

2
− t2

2
+
t3

6

)
. (15)

Evaluating (11) at t = 1, gives the discrete scheme

yn+1 = yn + hfn+1 −
1

2
h2gn+1 +

1

6
h3qn+1 (16)

Equation (16) are the formulas that constitute the proposed method for solving first order ODEs. One of the
novelty of this work is the adoption of the derived method for directly solving second and third-order ODEs. To
adopt Equation (16) for the solution of second and third-order ODEs, two additional formulas are obtained by
evaluating the first and second derivative of Equation (11) at tn, which gives

fn = fn+1 − hgn+1 +
1

2
h2qn+1 (17)

gn = gn+1 − hqn+1 (18)

Equation (16) and (17) are combined for solving second order ODEs which equation (16), (17) and (18) are
combined for direct solution of third-order ODEs
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3 Basic Properties of the Method

This section shall the analysis of the basic properties of the method which include order, zero stability, consistency,
convergency and region of absolute stability.

3.1 Order and error constant

Equation (16) - (18) are discrete schemes belonging to the class of LMM of the form

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j + h2
k∑
j=0

γjgn+j (19)

According to Fatunla [3] and Lambert [1], local truncation error associated with equation (16) - (18) is define
by the operator

L[y(t);h] =

k∑
j=0

αjy(tn + jh)− h2βjy
′′(tn + j)− h3γjy

′′′(tn + j) (20)

where y(t) is an arbitrary function, continuously differentiable on [a,b]. Expanding (20) in Taylor series about
the point t, and collecting the like terms in h yields

L[y(t);h] = c0y(t) + c1hy
1(t) + c2h

2y2(t) + c3h
3y3(t) + · · ·+ cph

pyp(t) (21)

where the c0, c1, c2, ..........., cp+1 are obtain as

c0 =

k∑
j=0

αj , c1 =

k∑
j=1

jαj , c2 =
1

2!

k∑
j=1

j2αj , cq =
1

q!

[
k∑
j=1

j2αj − q(q − 1)

k∑
j=1

βjj
q−2

]
(22)

according to Lambert [1], equation (16) -(18) is of order p if c0 = c1 = c2 = k, cp = 0 and cp+r 6= 0 for r = 1
for the case of first-order ODEs and r = 2, 3 for second and third-order respectively. The cp+r 6= 0 is called
the error constant and cp+rh

p+ryp+r(tn) is the principal local truncation error at the point tn. Thus, the block
(16)-(18) is of order p = 3 and error constants cp+r = [− 1

24
, 1
6
, 1
2
]T

3.2 Zero-stability of the method

The general form of block method is given as

A0Ym = ArYm−1 + hρ[BiFm +B0Fm−1] (23)

A method is said to be zero stable, if the roots

det[λA0 −Ar] = 0 (24)

of the first characteristic polynomial satisfied |λ| ≤ 1 and the roots with |λ| = 1 , the multiplicity must not
exceed the order of the differential equation Fatunla [3]. This kind of stability concerned the behaviour of the
numerical method as h→ 0, the derived method given the system of equations that can be written as;

A0Ym = ArYm−1 (25)

Case 1: For first order ODEs

where A0 is identity matrix. Consider (16) and setting h = 0, we have[
1
] [

yn+1

]
−
[

1
] [

yn
]

=
[

0
]

ρ (λ) = λ
[

1
]
−
[

1
]

λ− 1 = 0
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Since λ1 = 1 , the block methods are zero stable.

Case 2: For second order ODEs
where A0 is identity matrix. Consider (17) and setting h = 0, we have[

1 0
0 1

] [
yn+1

y′n+1

]
−
[

0 1
0 1

] [
yn
y′n

]
=

[
0
0

]

ρ (λ) = λ

[
1 0
0 1

]
−
[

0 1
0 1

]
λ(λ− 1) = 0

Since λ1 = 1 , the block methods are zero stable.

Case 3: For third order ODEs
where A0 is identity matrix. Consider (18) and setting h = 0, we have 1 0 0

0 1 0
0 0 1

 yn+1

y′n+1

y′′n+1

−
 0 0 1

0 0 1
0 0 1

 yn
y′n
y′′n

 =

 0
0
0



ρ (λ) = λ

 1 0 0
0 1 0
0 0 1

−
 0 0 1

0 0 1
0 0 1


λ2(λ− 1) = 0
Since λ1 = 1 , the block methods are zero stable.

3.3 Consistency

A method is considered consistent if it has an order greater than one Henrici [20]. From the above analysis, it
shows that the derived method is consistent. Since the order p = 3 > 1.

3.4 Convergency

The necessary and sufficient condition for an LMM to be convergent is that it must be consistent and zero
stable Henrici [20]; hence, the methods are convergent since the derived method has order p = 3, zero-stable
and consistent.

3.5 Region of absolute stability

The area in the complex z-plane in which the numerical method exhibits the behaviours of the real solution is
known as the region of absolute stability (see Ramos and Momoh [9]). The method’s behaviour is studied here
by considering its application to test equations.

y′ = −λy (26)

This yields
BYn = GYn−1 (27)

where Yn = (yn+1)T , Yn−1 = (yn)T and z = hλ

B =

(
1

6
(z + 3)z2 + z + 1)

)
(28)
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G =
(

0 −1
)

(29)

The amplification matrix
M(h) = B−1G (30)

M(h) =
(

1
6
(z + 3)z2 + z + 1

)−1 (
0 −1

)
(31)

where the dominant eigenvalue

(
1
6
(z + 3)z2 + z + 1)

)
is a function of z

-5 -4 -3 -2 -1 0 1

-4

-2

0

2

4

Re(z)

Im
(z
)

Fig. 1. Region of absolute stability of the Method

From the Fig. 1 above, it is observed that the method exhibit a Runge-Kutta like region of absolute stability

4 Numerical Examples

The performance of the methods is tested on four numerical examples

Problem 1:

Consider an Artificial Intelligent (AI) system integration into a hardware setup, like a server or a robotic
unit, where maintaining an optimal temperature is crucial for performance and longevity. The system has a
cooling mechanism (like fans or liquid cooling), and the effectiveness of this cooling changes as the system’s
temperature approaches the operating temperature. Let T (t) denotes the temperature of the AI system at time
t. The difference between the current temperature and the desired optimal temperature could influence the
temperature change rate. A simple first-order differential equation could be:

dT

dt
= −k.(T (t)− Topt)
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where:

.
dT

dt
is the rate of change of the system’s temperature over time.

. k is a positive constant representing the cooling system’s efficiency.

. T (t) is the present temperature at time t.

. Topt is the optimal operating temperature for the AI system.

Interpretation

. when the system’s temperature T (t) is much higher than Topt, the cooling system works effectively, leading to

a faster decrease in temperature
( dT
dt

)
.

. As T (t) approaches Topt, the cooling system’s effectiveness reduces (as less cooling is needed), leading to a
slower rate of temperature change.
.The model captures the balancing act of the cooling system: it actively cools the system when the temperature
is far from optimal and reduces its cooling effect as the temperature nears the desired level, preventing over
cooling.
The model

dT

dt
= −k(T − Topt)

has exact solution

T (t) = Toe
−k(t) − (e−kt − 1)Topt

where

To = T (to)

Given that
Topt = 24oc; To = T (0) = 18oc and k = 0.8 (i.e 80% cooling efficiency)

dT

dt
= −0.8(T (t)24)

where

To = T (0) = 18

has exact solution

T (t) = 18e−0.8(t) − (e−0.8t − 1)24

Table 1. Solution of Problem 1 for k=1, p=3 and h=0.01

x-value y - exact y-computed Error

0.1 18.461301921680 18.461301912288 9.392415734055 E-09
0.2 18.887137266203 18.887137248862 1.734058940883 E-08
0.3 19.280232833601 19.280232809590 2.401106513616 E-08
0.4 19.643105777558 19.643105748004 2.955334821309 E-08
0.5 19.978079723786 19.978079689685 3.410147542127 E-08
0.6 20.287299649163 20.287299611388 3.777554624662 E-08
0.7 20.572745616907 20.572745576224 4.068309777949 E-08
0.8 20.836245455742 20.836245412821 4.292027000474 E-08
0.9 21.079486464240 21.079486419667 4.457294977556 E-08
1.0 21.304026215297 21.304026169579 4.571779754770 E-08
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Fig. 2. Graphical Solution of Problem 1 for k= 1, p= 3 and h= 0.01

Problem 2

Consider the linear initial value problem of ODEs
y′′ = y′

y(x) = 1− ex, y(0) = 0, y′(0) = −1, h = 0.01

Table 2. Comparison of Error for Problem 2(k = 1, p = 3 and h = 0.01)

x-value y - exact y=computed Error Ogunware & Ezekiel [21]
k = 1, p = 8, h = 0.01

0.1 -0.010050167084 -0.010050167083 9.478690351 E-13 5.831942458 E-12
0.2 -0.020201340027 -0.020201340023 3.785581178 E-12 1.087659387 E-11
0.3 -0.030454533954 -0.030454533945 8.551027165 E-12 1.511754063 E-11
0.4 -0.040810774192 -0.040810774184 1.528266847 E-11 1.853811766 E-11
0.5 -0.051271096376 -0.051271096352 2.401954492 E-11 2.112140771 E-11
0.6 -0.061836546545 -0.061836546511 3.480128250 E-11 2.285023525 E-11
0.7 -0.072508181254 -0.072508181207 4.766810111 E-11 2.370716438 E-11
0.8 -0.083287067675 -0.083287067612 6.266082257 E-11 2.367449502 E-11
0.9 -0.094174283705 -0.094174283625 7.982087859 E-11 2.273425941 E-11
1.0 -0.105170918076 -0.105170917976 9.919031899 E-11 2.086821844 E-11

8



Olabode et al.; Asian Res. J. Math., vol. 20, no. 6, pp. 1-14, 2024; Article no.ARJOM.117344

0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.0

YExact Ycomputed

Fig. 3. Graphical Solution of Problem 2 for k=1, p=3 and h=0.01

Problem 3:

The third test problem is the second order IVPs of ODEs
y′′ − x(y′)2 = 0, y(0) = 1, y′(0) = 0.5, h = 0.01,
whose analytical solution is given as

y(x) = 1 +
1

2
In(

2 + x

2− x )

Table 3. Comparison of Error for Problem 3 (k=1, p=3 and h=0.01)

x-value y - exact y - computed Error Kayode & Success
[22], k = 2, p = 6, h = 0.01

0.1 1.005000041667 1.005000041660 6.876 E-12 5.201 E-07
0.2 1.010000333353 1.010000333321 3.251 E-11 1.044 E-06
0.3 1.015001125152 1.015001125065 8.943 E-11 1.707 E-06
0.4 1.020002667307 1.020002667117 1.902 E-10 2.517 E-06
0.5 1.025005210287 1.025005209940 3.474 E-10 3.476 E-06
0.6 1.030009004863 1.030009004289 5.738 E-10 4.591 E-06
0.7 1.035014302180 1.035014301298 8.820 E-10 5.866 E-06
0.8 1.040021353837 1.040021352552 1.285 E-09 7.307 E-06
0.9 1.045030411959 1.045030410164 1.795 E-09 8.920 E-06
1.0 1.050041729278 1.050041726852 2.427 E-09 1.070 E-05
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Fig. 4. Graphical Solution of Problem 3 for k=1, p=3 and h=0.01

Problem 4:

Fourth test problem is a third order IVPs of ODEs.
y′′′ − y′′ + y′ − y = 0, y(0) = 1, y′(0) = 0, y′′(0) = −1, h = 0.01
with the exact solution
y(x) = cosx

Table 4. Comparison of Error for Problem 4 (k=1, p=3 and h=0.01)

x-value y -exact y - computed Error Adeyefa [14] k = 1, p = 7, h = 0.01

0.1 0.999950000417 0.999950000445 2.831901E-11 1.746452E-07
0.2 0.999800006667 0.999800006892 2.252265E-10 4.159672E-07
0.3 0.999550033749 0.999550034509 7.598979E-10 1.402140E-06
0.4 0.999200106661 0.999200108464 1.803134E-09 3.291541E-06
0.5 0.998750260395 0.998750263922 3.527363E-09 6.348473E-06
0.6 0.998200539935 0.998200546042 6.106603E-09 1.082232E-05
0.7 0.997551000253 0.997551009970 9.716457E-09 1.694540E-05
0.8 0.996801706303 0.996801720837 1.453409E-08 2.493442E-05
0.9 0.995952733012 0.995952753750 2.073822E-08 3.498913E-05
1.0 0.995004165278 0.995004193787 2.850908E-08 1.052497E-04
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Fig. 5. Graphical Solution of Problem 4 for k=1, p=3 and h=0.01

Problem 5:

The fifth test problem considered is
y′′′ = −y′, y(0) = 0, y′(0) = 1, y′′(0) = 2, h = 0.01
with the exact solution y(x) = 2(1− cosx) + sinx

Table 5. Comparison of Error for Problem 5 (k=1, p=3 and h=0.01)

x-value y - exact y - computed y - Error Adeyefa [14] k = 1, p = 7, h = 0.01

0.1 0.010099832501 0.010099832416 8.530437E-11 2.33043E-10
0.2 0.020398653360 0.020398652687 6.732482E-10 1.467323E-09
0.3 0.030895432704 0.030895430445 2.259912E-09 4.764563E-09
0.4 0.041589120865 0.041589115526 5.338674E-09 1.123256E-08
0.5 0.052478648481 0.052478638081 1.040011E-08 2.176741E-08
0.6 0.063562926609 0.063562908677 1.793191E-08 3.767493E-08
0.7 0.074840846831 0.074840818412 2.841875 E-08 6.373265E-08
0.8 0.086311281364 0.086311239022 4.234222E-08 9.276724E-08
0.9 0.097973083174 0.097973022993 6.018072 E-08 1.290752E-07
1.0 0.109825086091 0.109825003681 8.240939 E-08 1.757332E-07

11



Olabode et al.; Asian Res. J. Math., vol. 20, no. 6, pp. 1-14, 2024; Article no.ARJOM.117344

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

Grid values

S
o
lu
ti
o
n
va
lu
es

Ycomputed YExact

Fig. 6. Graphical Solution of Problem 5 for k=1, p=3 and h=0.01

5 Discussion

Five numerical examples were considered in this paper. Problem 1 is a real-life problem of Artificial Intelligent
(AI). The results are presented in Table 1. The method is promising since the computed results agreed with the
exact solution up to at least (8) eight decimal places. Problem (2-5) was solved by Ogunware & Ezekiel [18],
Kayode & Success [22] and Adeyefa [14] with h = 0.01. It was observed that the method performed better than
Order Eight of Ogunware & Ezekiel [18], Order Six of Kayode & Success [22], and Order Seven of Adeyefa [14],
shown in Tables 2-5. To further analyze the results of the test problems 1-5, the results in Table 1-5 are plotted
in Figs. 2-6. It is apparent from the figures that the exact and computed solutions overlap due to the closeness
of the solution.

6 Conclusion

This work has provided a suitable and reliable numerical method for solving first, second and third-order
initial value problems of ordinary differential equations. A numerical experiment was performed using five test
problems. The experiment results indicated that the proposed method is suitable for solving problems described
in equation (1). The analysis of the basic properties of the method reveals that the method is convergent of
order three, zero-stable and consistent. The derived method is a good choice for handling non-linear problems
from the study of real-life situations.
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