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ABSTRACT 
 
This work aims to evaluate the thermophysical characteristics of local ornamental stones in order to 
facilitate their choice as efficient flooring materials. 
Methodology: Three varieties of the most known and requested ornamental stones on the market 
which include granite, marble and basalt extracted from the Beninese ground and subjected to 
asymmetric hot plane method to determine their thermal effusivity, thermal conductivity, thermal 
diffusivity and volumetric heat capacity. The parallelepiped-shaped samples of 10 cm × 10 cm × 3 
cm were performed for measurements.  
The followings are the results of the different rocks studied: granite (3.22 ± 0.01 W.m⎻1

.K⎻1
, 

2470.51±0.006 J.m⎻1.K⎻1.s⎻1/2, 1.70±0.01μm².s⎻1, 1892.88±6.86 KJ.K⎻1.m⎻3); marble (4.94±0.02 
W.m⎻1.K⎻1, 3416.34±0.009 J.m⎻1.K⎻1.s⎻1/2, 2.09±0.01 μm².s⎻1,  2362.73±7.90 KJ.K⎻1.m⎻3) and basalt 
(3.85 ± 0.008 W.m⎻1

.K⎻1
, 2744.22 ± 0.004 J.m⎻1

.K⎻1
.s⎻1/2

, 1.967 ± 0.008 μm².s⎻1
, 1956.49 ± 4.07 

KJ.K⎻1
.m⎻3

). 
Therefore granite is more insulating and marble has better ability to store heat. 
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BOM 
 
�  : Thermal conductivity (W.m⎻1.K⎻1) 

��  : Value of the thermal conductivity 
derived from the literature(W.m⎻1.K⎻1). 

a   : Thermal diffusivity (μm².s⎻1) 

��  : Value of the thermal diffusivity derived 
from the literature (μm².s⎻1). 

E : Thermal effusivity (J.m⎻1.K⎻1.s⎻
1/2

) 
�C : Volumetric heat capacity (KJ.K⎻1

.m⎻3) 
���� : Temperature given by the model 
���� : Temperature given by experience 

ux : Standard uncertainty of x  
��(y) : Composite standard uncertainty of y 
OBRGM : Office search Benin geological and 

mining. 
 

1. INTRODUCTION 
 
Benin has huge deposits of ornamental stones 
with a wide variety of products. These stones, 
after having been worked, ensure the aesthetic 
finishing to be used for tiling floors and walls. The 
low level of exploitation is indicative of many 
problems. The followings were identified as some 
of the challenges: 
 
 The Thermophysical performance of these 

ornamental stones are not known to 
encourage investors.   

 The relationship between the aesthetic 
aspect of these stones and their potential 
for use as materials for insulation in the 
modern architecture. 

  Artisanal mining methods do not have 
much care for these stones to preserve 
their coatings hence it limits their fields of 
application (Fig. 1).  

 

Not many studies are on the characterization of 
ornamental stones.  Moroccan building stones 
were subjected to petrographic and 
characterization studies [1,2]. The influence of 
the petro-structural feature on the mechanical 
properties of the quartzites of atacora in Benin 
revealed that the Micro-Deval coefficients in the 
sites of Berecingou are 6.4% and 8.3% 
respectively [3]. Furthermore, the 
characterization of bilayer mineral showed that 
20% of coarse sand, is resistant to bending three 
points at 9.875MPa, compression at  22.083MPa 
with a normal water absorption rate [4]. [5-8] 
focused their work on the rocks properties while 

[9,10] preferred to stress on the effective 
pressure law for permeability and 
parameterization of micro-hardness distribution 
in granite.   
 
No thermophysical characterization of local 
ornamental stones of granite, marble, and basalt 
was undertaken. This study carefully addressed 
these stones with regards to their energy 
efficiency, coating materials, for durability, 
aesthetic appearance and finishing for building. 
 

 
 

Fig. 1. Photograph of a building of a 
prestigious School of the trades of the future 
 
2. MATERIALS AND METHODS  
 

Rock samples were extracted from Benin in West 
Africa. Granite and basaltic rocks were from the 
Marian Grotto of Dassa-Zoumé and of the basin 
volcano sedimentary rocks of Idaho-mahou in 
Savalou, respectively. Marble were taken from a 
pileat Bagbononhoue in Abomey (Fig. 2). 
 

2.1 Determination of Thermophysical 
Properties 

 

The following methods were used for 
thermophysical characterization of the materials 
[11-19]. The asymmetric hot plane device [11] 
was used for the sample characterization. In the 
process, a section probe (10 cm × 10 cm) is 
placed below the sample (Fig. 3). The device has 
a type K thermocouple consisting of wires of 
5.10�� mm in diameter, placed below the probe. 
The set is placed between two blocks of 
polystyrene foam of 5 cm and two aluminum 
blocks of thickness 4 cm to generate temperature 
at the contact. A flow step is sent into the heating 
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element and the temperature is recorded at the 
center. The system is modeled with a 

unidirectional heat transfer hypothesis (1D) at the 
center of the sample during measurement. 

  

 
 

Fig. 2. Geographical map of Benin showing rock sampling sites 
 

 
 

Fig. 3. Experimental mechanism of thermical characterization of experience test 
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To begin the measurement, there are two 
parameters: 
 
 The data acquisition time 
 The intensity of the heating current. 

 
At a given time and intensity sensitivity for ρc, 
there is a rise in temperature of about 10°C for a 
model of one-way transfer (1 D) with the 
assumption that the difference between the 
temperatures Tmod model and the one given by 
the Texp experience.  Fig.  4 shows 
temperatures of the front and back curves and of 
residues obtained for granite.  
 
Where there is a rise in temperature of the front, 
10°C 180 nearby for an intensity of 0.625A. 
 
2.2 Assessment of Uncertainties 
 
The asymmetric hot plan method to determine 
experimentally λ thermal conductivity and the 
thermal effusivity E with their respective 
uncertainties. Has the thermal diffusivity and 
volumetric heat capacity ρC were determined 
from the following formulae: 
 

a = 
�

��
 = 

��

��                                                 (1) 

�� = 
��

�
                                                      (2) 

 
The uncertainty in the calculation of ‘’a’’and ‘’ρC’’ 
are evaluated by the propagation method of 
uncertainties. 
 

[��(a)]�=�
��

��
�

�

(��)� + �
��

��
�

�

(��)�            (3) 

 

��(a) = ��
��

��
�

�

(��)� + �
��

��
�

�

(��)�            (4) 

By integrating the partial derivatives: 
 

��(a)= ��
��

���
�

(��)� + �−
���

�� �
�

(��)�        (5) 

 
In addition: 
 

[��(��)]�= �
�(��)

��
�

�

(��)� + �
�(��)

��
�

�

(��)� (6) 

 

��(��) = ��
�(��)

��
�

�
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�(��)

��
�
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By integrating the partial derivatives: 
 

��(��)= ��−
��

���
�

(��)� + �
��

�
�

�

(��)�      (8) 

 

 
 

Fig. 4. Model curves for experimental and test on the granite waste 
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Table 1. Results of the thermophycial measures 
 

Average values 
Parameters Marble Basalt    Granite  
E(J.m⎻1.K⎻1.s⎻1/2) 3416.34±0.009 2744.22±0.004  2470.51±0.006  
�(W.m⎻1

.K⎻1
) 4.94±0.02 3.85±0.008  3.22±0.01  

λ�(W.m⎻1
.K⎻1

) 2.3-3.2[19] 1.2-2.3[19] and 1.7-2.5 [20] 2.6-3.1[19];2-4 [20] and 2.8 [21]. 
a (μm².s⎻1) 2.09±0.01 1.967±0.008  1.70±0.01  
a�(μm².s⎻1

)    1.07 [21].  
�C (KJ.K⎻1

.m⎻3
) 2362.73±7.90 1956.49±4.07  1892.88±6.86  

 

3. RESULTS AND DISCUSSION 
 
Table 1 shows the results of the thermal 
characteristics of the three samples. It can be 
seen that the values of volumetric heat capacity 
and thermal conductivity of three granite samples 
are in agreement with those reported [19,20]. On 
the other hand, values of the thermal conductivity 
of the marble and basalt appear to contradict 
values of workers [19]. There are two possible 
hypotheses: the first is that the tests were not 
carried out at the same temperature and the 
second is that the current samples and those 
used by previous workers have the same 
chemical and physical properties as well as 
mineralogical composition. The second seems 
more likely. 
 
Moreover, the thermal diffusivity and conductivity 
obtained with granite seem to contradict other 
values [21]. This observation seems to confirm 
the second hypothesis. 
 

4. CONCLUSION 
 
The thermophysical properties of granite, marble 
and basalt were determined by asymmetric hot 
plane method. 
 
The results obtained showed that granite has the 
lowest value of thermal conductivity, effusivity 
and diffusivity respectively equal to 3.22 
W.m⎻1.K⎻1; 2470.51J.m⎻1.K⎻1.s⎻1/2 and 1.70. 
μm².s⎻1 while the highest value of the thermal 
capacity is marble 2362.73KJ.K⎻1

.m⎻3
. Therefore, 

granite is a more insulating while marble has a 
strong capacity to store heat than the other two 
materials. 
 
Also, from a practical point of view, the results 
presented in this study show that the choice of 
granite would have a significant impact on 
energy consumption as the other two study 
materials. So, it should be used as inner coating 
of the housing material. 
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