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Abstract 
 
In this work, we describe a Bayesian procedure for detection of change-point when we have an 
unknown change point in regression model. Bayesian approach with posterior inference for change 
points was provided to know the particular change point that is optimal while Gibbs sampler was 
used to estimate the parameters of the change point model. The simulation experiments show that 
all the posterior means are quite close to their true parameter values. The performance of this 
method is recommended for multiple change points. 
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1 Introduction 
 
Detection of change points has recently gained popularity in literature due to its applications in areas of 
climatology, econometrics, bioinformatics, and network traffic analysis among others (see Aminikhanghahi and 
Cook [1], Gold et al. [2]. Notable work on change point analysis began with the work of Page [3]. Page 
developed a test for a change in parameter which occurs at an unknown point. This test deals with the 
identification of subsamples and detection of the changes in the parameter value. Subsequently, development of 
different detection of changes has emerged for various phenomena. 
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Change point is referred as location or time point where the observation follows different distributions before 
and after that point. For a given sample size of n independent observations {��, ��, … , ��}, a change point can 

occurs if and only if there exists a � [1, � − 1], such that the distributions of {��, ��, … , ��} and {��, ��, … , ��} 

are different with respect to some criteria [4]. Some of the most commonly used criteria are: change in mean, 
change in regression coefficients, and change in variance. However, change in regression coefficients criterion 
will be used in this study. 
 
Bayesian approach can provide adequate uncertainty information about location of change point. Literature on 
Bayesian regression with change point can be seen in the works of Raftery and Ackman [5], Baryy and Hartigan 
[6], Stephens [7], Gossl and Kuchenhoff [8], Moreno, et al. [9], Giron et al [10], Pandya et al [11], Datta et al. 
[12] among others. 
 
Bayesian estimation of logistic regression model with unknown threshold limiting value was considered by 
Gossl and Kuchenhoff [8]. It was assumed that there is no effect of covariate on the response variable under 
certain unknown threshold limiting value while measurement error in the covariate was also was also accounted 
in the model. Bayesian method outperformed the likelihood solution with the use of data set. 
 
Pandya et al. [11] studied a two-phase linear regression with one change point. Bayesian estimators were 
derived for symmetric loss function and most especially for asymmetric loss functions namely Linex and 
general entrophy loss functions while effects of correct and wrong prior information on these Bayes estimators 
were studied. It was observed that the Bayes estimators are robust with correct choice of prior specifications. 
 
Bayesian of high dimensional shrinkage priors in a change point setting to understand segment-specific 
relationship between the dependent and regressors was examined by Datta et al [12]. Results obtained from both 
the simulation and real life data reveals that the Bayesian approach can deliver accurate variable selection while 
inference on the location of change points substantially outperforms the classical LASSO based approach. 
 
This work demonstrates how one can exploit a Bayesian inference on regression model with an unknown 
change point setup to determine the location of the change point and also identify the true sparse support for 
each of the linear models. 
 
This paper is organized as follows. In section 2, we introduce a typical regression model with an unknown 
change. Bayesian procedure for estimation of regression model with unknown change point is presented in 
section 3. Section 4 gives the numerical study on the model while section 5 presents the results of analyses of 
data generated from the models using the Bayesian approach. Section 6 concludes this paper. 
 

2 Regression Model with Unknown change Point 
 
Consider a density time series variable, ,ty , 1,...,t T  conditioned on its lags, the covariates and model 

parameters, the density of such series can be simply be expressed as: 
 

�� |��, ��, ��, ��, ��, ��, �, �� ~ �
�(�� + ����, ��),      ��   � ≤ � 

�(�� + ����, ��),     ��  � > �
�             (1) 

 

In model (1),  is called a change point, it means that for periods until  , one regression will assumed to 

generate variable and following  , another regression will also assumed to generate y .  

 

3 Materials and Methods 
 
3.1 Bayesian inference 
 
The likelihood function of the model in (1) is given as: 
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2 2
1 2 1 2( , , , , , , )L        = 

2 2
1 2 1 2( ; , ) ( ; , )t t t t

t t

y x y x
 

       
 

    `            (2) 

 
We utilized priors of the form given as: 
 
For parameter , 

 

 = 
'

1 2( , ) ~ ( , )N Q       `  `               (3) 

 

For parameter  , 

 
'

1 2( , ) ~ ( , )N Q                         (4) 

 
while  
 

2
1 2~ ( , )IG p p                         (5) 

 

2 1 2~ ( , )IG q q                        (6) 

 
And 
 

~ (1, 2,..., 1)Unif T                       (7) 

 

It is observed  is known to be parameter of the model, and placing a uniform prior over all the elements, that 

is, 1, 2,..., 1T  , it means a change point is assumed to occur Koop et al [13]. 

 
Customarily, the posterior distribution is proportional to both the likelihood times prior and can be written as: 
 

2 2| , , , , ~ ( , )y N D d D                           (8) 

 
Where 
 

'

1

2

1

( )

D
x x

Q


 







 

 
and  
 

2

'x y
d

Q

  
 




   

 
Also, 
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The conditional posterior for   can also be obtained as: 

 
2 2| , , , , ~ ( , )y N D d D                         (9) 

 
where, 
 

'
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1

1
D

x x
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And 
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Also, 
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while the conditional posteriors for variance parameters are: 
 

2 2
1
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2 1 2

1

1
| , , , , ~ ,

2

1

1
( )
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t t

t

y IG p
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

            (10) 

 
and  
 

2 2
1

2
1 2

12

1
| , , , , ~ ,

2 1 1
( )
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t t
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y x
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    
   


           (11) 

 

Hence, the posterior for the change point,   can be given as: 
 

2 2 2 2
1 2 1 2( | , , , , ) ( ; , ) ( ; , ), 1,..., 1

T T

t t t t
t t

P y y x y x T
 

             
 

                (12) 

 
In general, there is no way to simplify the expression in (12), because it does not take the form of any well-

known density. Since  is known to be discrete valued, we can obtain the un-normalized density ordinates 

when 1,..., 1T   and also make the distribution proper by simply dividing each of the ordinate by sum of 

the ordinate values. 
 

4 Numerical Study 
 
The lack of analytical results relating to the posterior obtained in section (3.1) suggests a posterior simulator. 
This posterior simulator will helps to obtain draws from the discrete distribution. In this section, we employ a 
Gibbs sampler to estimate the parameters of the change point model given in section (3) from the full 
conditionals posterior distribution. 
 
We describe a simulation study for assessing the performance of the presented method. Thus we have: 

�� |��, ��, ��, ��, ��, ��, �, �� ~ �
�(3 + 5.5��, 1),      ��   � ≤ � 

�(5 + 2��, 1.5),     ��  � > �
�             (13) 

 

(i) The values of  are: 30, 50, and 80 while the sample size are 300 and 500 

(ii) The regressor is generated as: ~ (0,1)tx N  

(iii) The prior hyper-parameters were set as: 
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The Gibbs sampler is run 2000 times while 200 will be used as burn-in period 
 

5 Results and Discussion 
 
In Tables 1 and 2, the posterior means and standard error for were given for regression parameters, variance 

parameters, and change point parameter ( 1 , 2 , 1  and 2 ), (
2  and 

2 ), and   respectively. The true 

values of the parameter were given in the parentheses. 
 
For parameter beta, when the sample sizes are 300 and 500, the optimal change point is 30 having the smallest 
standard error while the posterior means are closest to the true parameters. For parameter tau, the optimal 
change point is 80 having the smallest standard error while the posterior means are closest to the true 

parameters. It is apparent that the optimal change points for variance parameters 
2  and 

2  are 80 and 30, 
respectively having least standard error for sample sizes of 300 and 500.  
 

It is important to note that for all models, standard error of change point tends when  = 80 for sample size of 

300 is the smallest while standard error of change point when  = 80 for sample size of 500 is tends to be the 

smallest. This behaviour is expected as for   =80, both the sample sizes (300 and 500) for estimating beta and 
tau are effectively 80.0011 and 80, respectively. 
 

Table 1. Results from simulation when the sample size, n=300 for change points at 30, 50, and 80 
 

 Mean Standard error 
 Change point =  Change point=   

Parameters 30 50 80 30 50 80 

1  =(5) 4.9780 5.0609 5.0549 0.0402 0.0454 0.0425 

2 =(2) 2.0354 1.9321 1.9675 0.0398 0.0469 0.0457 

1 = (3) 2.9740 2.9461 3.0414 0.1058 0.0685 0.0522 

2 = (5.5) 5.4605 5.5967 5.4687 0.0976 0.0780 0.0508 

2 = (0.2) 0.3236 0.2228 0.2126 0.0812 0.0466 0.0335 

2 = (0.5) 0.4489 0.5319 0.4050 0.0378 0.0477 0.0391 

  29.2850 49.9472 80.0011 0.4515 0.2237 0.0577 

 
Table 2. Results from simulation when the sample size, n=500 for change points at 30, 50, and 80 

 
 Mean Standard error 
      Change point=            Change point=   

Parameters 30 50 80 30 50 80 

1  =(5) 4.9628 4.9730 5.0385 0.0311 0.0339 0.0330 

2 =(2) 1.9811 1.9984 1.9597 0.0323 0.0372 0.0353 

1 = (3) 3.0362 2.9793 2.8103 0.1086 0.0746 0.0546 
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 Mean Standard error 
      Change point=            Change point=   

Parameters 30 50 80 30 50 80 

2 = (5.5) 5.4797 5.5278 5.5339 0.1047 0.0776 0.0598 

2 = (0.2) 0.3432 0.2740 0.2175 0.0849 0.0549 0.0335 

2 = (0.5) 0.4634 0.5445 0.4507 0.0305 0.0352 0.0310 

  30.0478 49.8539 80 0.2134 0.3806 0 

 

6 Conclusion 
 
In Bayesian modelling framework, computationally efficient technique for applying Bayesian in the analysis of 
regression model with unknown change point has been applied. The applied Bayesian technique was used to 
know the particular change point that is optimal. It was observed that all the posterior means are quite close to 
their true parameter values. The optimal value of the change point is 80 in the estimation of regression model 
while � and � have the same support. It is recommended that the performance of this method can also be used 
for multiple change points. 
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