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ABSTRACT 
 

Markov chain technique had been developed for numerical simulation of steady state heat 
conduction. However the technique could only be used to handle domain with regular boundaries. 
An hybrid of floating walk and Markov chain techniques has therefore been developed.  
The technique was used to simulate temperature distribution in rectangular and two arbitrary 
shaped domains with mixed boundary conditions. The results obtained were compared with that 
obtained using finite difference and as well as using floating walk technique. Results were 
statistically analysed using ANOVA (α =0.05) and the computer execution for all the three cases 
considered compared. 
The results from the developed hybrid technique were not significantly different from those from 
finite difference and floating walk techniques. The hybrid technique execution time was longer than 
that of finite difference technique but shorter than the floating walk technique.  
The study established the suitably of the hybrid floating walk markov chain technique for analysis of 
steady state heat conduction of arbitrary shaped domain. 
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1. INTRODUCTION 
 
Several numerical techniques to model heat 
conduction have been documented. Finite 
difference technique was used by Anjo [1] to 
simulate solidification of aluminium in green sand 
mould while Dhawan and Kumar [2] reported the 
use of finite element for heat transfer analysis. 
The study investigated the effect of different 
combinations of meshes and numerical schemes 
for modelling the cooling of an aluminium plate. 
Takemori et al. [3] carried out a numerical 
simulation of welding process in the development 
of a new compressor. The numerical results were 
supported with experimental studies. Yavuzturk 
et al. [4] modelled U Tube Ground heat 
exchanger using finite volume technique while 
Motley and Provost [5] developed a mapped 
infinite mapped element approach for a one 
dimensional transient heat conduction. Shen              
et al. [6] used a finite difference technique to 
model heat transfer during a grinding process. 
An optimization technique was developed by 
Mehta [7] to calculate for temperature in a finite 
conducting slab. The result was reported to 
compare well with finite difference solution. A 
fuzzy finite element was used to analyse steady 
state heat conduction by Majumdar [8]. The 
technique allowed more accurate estimation of 
material properties used in the analysis; however 
only 1-dimensional case was considered. 
Kovranyuk and Chebotarev [9] investigated a 
combined radiative-conductive- convective 
phenomenon. A weak solution was obtained 
which was used to carry out some numerical 
experiments. 
 

Monte Carlo technique which is a probability 
technique was first reported by Haji-Sheikh and 
Sparrow [10] for modelling heat conduction. The 
method has not received much attention due to 
its slow execution time although with capability to 
determine solution at a point much easily. Other 
probability approaches include heat conduction 
analysis by Grigorin [11] and thermal studies of a 
superconductivity current limiter by Leveque and 
Rezzong [12]. Two main versions of Monte Carlo 
technique namely fixed and floating walk have 
been developed. The fixed walk has a very slow 
execution time and could not easily handle 
irregular boundary cases. Floating walk has 
comparatively fast execution time than the fixed 
walk and could easily handle irregular boundary.  
 

A Markov chain technique was developed by 
Sadiku et al. [13], the executive time was fastly 
improved; it was however applied to simple 

steady state heat conduction cases such as a 
slab with isothermal boundaries and is thus 
restrictive in application to only surfaces with 
regular boundaries. Although Cho [14] discussed 
the application of particle transport Monte Carlo 
technique to heat conduction analysis of arbitrary 
geometries, cases considered were limitive. 
Ravichandran and Minnic [15] only treated 
boundary conditions associated with heat 
conduction at nanoscale and with little 
consideration for numerical analysis. 
 

The objective of this work is to develop a 
numerical technique which could be used to 
analyse heat conduction in a 2- dimensional 
domain at a reasonably fast pace. Thus a hybrid 
of floating walk (which has capability of handling 
irregular boundary) and Markov chain (with lower 
execution time than floating walk) techniques  is 
to be developed for analysis of steady state heat 
conduction. It is premised that the developed 
technique would be able to handle analysis of 
steady state heat conduction in any domain at a 
fast rate by utilizing both the inherent capabilities 
in the floating walk and Markov chain techniques. 
The developed technique will be used to analyse 
heat conduction in an arbitrary shaped slab and 
as well as rectangular slab with non isothermal 
boundaries. 
 

2. DESCRIPTION OF THE 
METHODOLOGY 

 

In this section, the floating walk and regional 
Markov Chain techniques are first discussed, 
thereafter the developed hybrid technique is 
described. 
 

2.1 Floating Walk Technique 
 

Steady state heat conduction in a slab with 
internal heat generation could be presented as: 
 

���
��� +  ���

���  + �
	 = 0                                        (1) 

 

with T representing temperature, q, the heat 
generating source and k, the thermal conductivity 
of the material. If q is zero, the exact solution at 
location (x,y) for an homogeneous 2-dimensional 
domain with radius r  as recast by Oluwajobi and 
Jeje [16] could be represented as  
 

��, �� = � ��, ������
�                               (2)  

 

where ⱷ is  angular displacement and   
 

� = �
��                                                         (3) 
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Eqn.(2) assumed a normal distribution curve. It 
suggests that the temperature at any location 
(x,y) is an average of all the temperature values 
at the periphery of the domain with radius r. Haji-
Sheikh and Sparrow [10] based on this concept 
developed a floating walk technique( a probability 
method) that was subsequently applied to 
evaluate temperature distribution in a steady 
state heat conduction in a solid domain. The 
basic concept of the floating walk is described 
below. 
 
In a given domain, a walk is commenced by a 
fictitious particle at the point where the solution is 
being sought. The distance between the particle 
and the boundary (ri) is determined. Thereafter 
the walk is commenced by selecting a random 
number, F between 0 and 1 and evaluating the 
term ⱷi using Eqn. (3).  
 
The new particle position is given as: 
 

���� = �� +  �� cos ��                                    (4) 
 
���� = �� +  ��  !"# ��                                   (5) 

 
The walk is regarded as floating as the length 
depends on the closeness of the current position 
of the particle to the boundary. The walk is 
terminated whenever an absorbing boundary is 
encountered, and the boundary value of such 
recorded. When the particle reaches an adiabatic 
boundary it is reflected back into the domain at a 
specified reflection distance. 
 
A convective boundary could be represented 
using a finite difference scheme as  
 

 ��, �� = �
��$ %&

'
 �() +  * ()

�� $ %&
'

 �∞                  (6) 

 
where: 
 

 �()  is the temperature at a location ‘dr’ 
normal to the boundary 
h is the convective heat transfer coefficient of 
the fluid in contact with the boundary 
and   �∞ is the free stream temperature of the 
fluid in contact 

 

For convective boundary, a random number is 
first selected. If the selected random number is 
less or equal to 

* ()
�� $ %&

'
 , then the boundary is 

treated as being absorbing and a value of �∞ 
scored otherwise it is reflected back to a position 
‘dr’ normal to the boundary.  
 
The average of all the scores is used to estimate 
the solution at the desired point. A modified 
representative flow chart of the procedure as 
obtained from Ogundare [17] is presented in             
Fig. 1. 
 
2.1.1 Special features in application of 

floating walk to an arbitrary shaped 
boundary 

 
When the boundary has arbitrary shape, 
determination of the minimum distance between 
the particle and the boundary requires special 
consideration. A boundary is fully described by 
set of nodes on it. When a particle commences 
walk at a solution point, its minimum distance to 
the boundary is determined by identifying the 
boundary node (i) closest to it. Other 
neighbouring boundary nodes, i+1 and i-1 are 
also identified. The possible locations of the 
particle relative to the three nodes are as shown 
in Fig. 2. Then the actual distance to the 
boundary is determined using Table 1. 
 
2.2 Markov Chain Technique 
  
Sadiku et al. [13] discussed the application of 
Markov chain for analysis of steady state heat 
conduction. 
 
A given domain was divided into grids and 
numbered. For any point in the domain the finite 
difference representation of the steady state heat 
conduction equation with no heat source is given 
as: 
 

��,+,� + ��,+�� − 4 ��,+  + ��,�,+ + ����,+ = 0   (2) 
 

Based on  eqn.(2), nodes with known 
temperatures in the domain were first numbered 
and regarded as absorbing nodes while other 
nodes are not. 
 

Table 1. Particle distance determination guide 
 

Case Particle  location Minimum distance 
1  if both θ1 and θ2 are acute angles rmin = r sin θ1(θ1 < θ2) 

rmin = r sin θ2(θ2 < θ1) 
2 if  θ1 and θ2 are equal or are both obtuse angles rmin = r 
3 if  θ1   is acute and θ2 is obtuse  rmin = r sin θ1 
4 if  θ2   is acute and θ1 is obtuse  rmin = r sin θ2 
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Fig. 1. Flow chart for floating walk technique 
Note: b= 

* ()
�� $%& 

'
 where h is the convective heat transfer coefficient, dr, the reflection distance and k = thermal 

 

A transition probability Pij which was defined as 
the probability that a random-walking particle at 
node ‘i’ moves to node ‘j’ was obtained. The 
probability matrix P formed was recast as 
 

/ = 01   0
2  34 

 
Where R  is the probabilities of moving from non-
absorbing nodes to   absorbing nodes: 

Q- The probability of moving from non 
absorbing node to another. 
I-   is an identity matrix 
O- Is a null matrix 
 
And Qij =  

5 0.25 9: 9 9# �9�;!<=� !">>;!<;� <" ?
0 9: 9 = ? "� 9 9# >"< �9�;!<=� !">>;!<;� <" ?@ 
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Fig. 2. Possible particle positions close to the boundary 

*Note: Only cases when the two subtending angles are either acute or obtuse are shown 
 

The absorbing probability matrix B was defined 
as 
 

B = NR                                                        (3) 
 
With N =   (I – Q) 
 

and Tf   =   B Tp                                          (4) 
 
Tf   =   nodal values at non-absorbing nodes  
Tp=    nodal values at absorbing nodes  
 
The unknown variables Tf were solved using 
Eqn.(4). 
 

 
 

Fig. 3. Implementation flow chart for the 
hybrid floating walk markov chain technique 

 

2.3 Hybrid Floating Walk and Markov 
Chain (HFWMC) Techniques 

 
In this technique, internal nodes that are very 
close to the boundary are first estimated using 
the floating walk technique. They are then 
regarded as absorbing nodes when the markov 
chain technique is subsequently applied. 
Implementation flow chart for the technique is 
shown in Fig.  3. 
 

3. APPLICATION OF HFWMC 
TECHNIQUE TO SOME SELECTED 
CASES 

 
The developed hybrid floating walk markov chain 
technique was applied to some selected cases 
which are hereby discussed. 
 

3.1 Heat Conduction Analysis in a 
Rectangular Slab with Convective and 
Adiabatic Boundaries 

 

A rectangular slab with convective and adiabatic 
boundaries is shown in Fig. 4. 
 

The temperatures at nodes 1, 2, 3, 4, 5, 6, 10, 
11, 15, 16, 17, 18 and 19 were first obtained 
using a floating walk technique. There are then 
six remaining nodes whose temperatures are 
evaluated using Markov Chain technique. Nodes 
with temperatures already evaluated using the 
floating walk technique are regarded as 
absorbing nodes. The probability matrix is 
constructed as:  

 

     �� �� �A �B �C �D ��� ��� ��C ��D ��E ��F ��G �E �F �G ��� ��A ��B 

Select internal nodes that are next 

neighbor to the boundary 

Determine the solution at the selected 

nodes using floating walk 

Determine the solution at other nodes 

using Markov chain technique 
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P=  

����
�A
�B�C
�D���
���
��C

  ��D   
��E��F
��G
�E
�F�G
�����A
��B H

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 ¼ 0 0 0 ¼ 0 0 0 0 0 0 0 0 ¼ 0 ¼ 0 0
0 0 ¼ 0 0 0 0 0 0 0 0 0 0 ¼ 0 ¼ 0 ¼ 0
0 0 0 ¼ 0 0 ¼ 0 0 0 0 0 0 0 ¼ 0 0 0 ¼
0 0 0 0 0 0 0 ¼ 0 0 ¼ 0 0 ¼ 0 0 0 ¼ 0
0 0 0 0 0 0 0 0 0 0 0 ¼ 0 0 ¼ 0 ¼ 0 ¼
0 0 0 0 0 0 0 0 ¼ 0 0 0 ¼ 0 0 ¼ 0 ¼ 0L

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
N

 

             
                                              

                R- matrix width              Q-matrix width 
 
Then  the matrices Q and R are extracted thus: 
 

Q= 

H
II
II
J0 ¼ 0 0 0 ¼ 0 0 0 0 0 0 0

0 0 ¼ 0 0 0 0 0 0 0 0 0 0
0 0 0 ¼ 0 0 ¼ 0 0 0 0 0 0
0 0 0 0 0 0 ¼ 0 0 ¼ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ¼ 0
0 0 0 0 0 0 0 0 ¼ 0 0 0 ¼L

MM
MM
N
   and  R= 

H
II
II
J 0 ¼ 0 ¼ 0 0
¼ 0 ¼ 0 ¼ 0
0 ¼ 0 0 0 ¼
¼ 0 0 0 ¼ 0
0 ¼ 0 ¼ 0 ¼
0 0 ¼ 0 ¼ 0 L

MM
MM
N
 

 
Matrices N and B are constructed using the relations discussed in Section 2.2. The nodal values  
�E, �F, �G, ���, ��A  O>� ��B    are solved  using Eqn. (4) with  
 

      Tp =

H
I
I
I
I
I
I
I
I
I
I
I
I
J ����

�A�B�C
�D
������
��C��D
��E
��F
��GL

M
M
M
M
M
M
M
M
M
M
M
M
N

 

          
The temperature estimates using finite difference 
technique as well as HFWMC (numbered from 
left to right and top to bottom, 5 x 6 matrix) are 
presented in Tables 2 and 3 respectively.                    
Both the finite difference and hybrid HFWMC 
solutions were subjected to statistical analysis 
using ANOVA (α=0.05). ANOVA yielded a 

probability value of 0.673 implying that the 
results from the two techniques are not 
significantly different. Computer execution time 
with Pentium CPU B 850, processing speed of 
2.1 GHz and 4 GB RAM  using finite difference  
was  3.74 seconds while that of the HFWMC was 
30.2 seconds. The computer execution time 
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using only floating walk technique was 99.2 
seconds. 
 

 
 

Fig. 4. Rectangular slab with mixed 
boundaries 

 

3.2 Heat Conduction Analysis in an 
Arbitrary Shaped Slab with Isothermal 
Boundaries 

 
Fig. 5 is an arbitrary slab with isothermal 
boundary conditions. As in the previous case,       
the temperature at neighbouring nodes                        
were first obtained using floating walk              

technique before the  Markov chain technique 
was applied.  
 
A plot of obtained temperature values using only 
floating walk technique and HFWMC technique 
for all solution points is shown in Fig. 6. As could 
be observed, values from the two techniques 
were very close. Statistical analysis using 
ANOVA(α =0.05) yielded  a probability value of 
0.978 further confirming that the two techniques 
yielded almost the same results. 
 
3.3 Heat Conduction Analysis in an 

Arbitrary Shaped Slab with Mixed 
Boundaries 

 
Both floating walk and hybrid floating walk 
markov chain techniques were used to study the 
heat conduction in an arbitrary shaped slab with 
mixed boundaries (see Fig. 7). Fig. 7 is a 
representative of  a cut-away section of a turbine 
blade with internal holes  for cooling. The results 
at all solution points are presented in Tables 4 
and 5. Comparison of the values on cell to cell 
basis showed that they are mostly the same. 
Statistical analysis using ANOVA(α =0.05) 
yielded probability value of 0.884 implying that 
the results from the two techniques are not 
significantly different. 

 

 
 

Fig. 5. Arbitrary shaped slab with selected next neighbour nodes 

400 K 

350K 
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Fig. 6. Plot of temperature for various solution points using floating walk and HFWMC 
techniques for arbitrary slab with isothermal boundaries 

 
Table 2. Temperature distribution in the rectangular slab using finite difference technique 
 

363.8 377.6(16) 393.6(17) 405.6(18) 412.6(19) 414.9 
350.0 376.5(11) 395.5(12) 408.1(13) 415.0(14) 417.2(15) 
350.0 382.9(6) 404.0(7) 416.2(8) 422.2(9) 423.8(10) 
350.0 401.1(1) 421.4(2) 430.4(3) 434.0(4) 433.4(5) 
400.0 450.0 450.0 450.0 450.0 441.7 

*  the corresponding nodes  in Fig. 4 are in brackets 
 

Table 3. Temperature distribution in the rectangular slab using hybrid floating walk markov 
chain technique 

 

372.5 395.0(16) 409.0(17) 415.0(18) 412.0(19) 415.5 
350.0 380.0(11) 402.6(12) 413.5(13) 417.6(14) 419.0 
350.0 386.0(6) 407.8(7) 418.8(8) 425.8(9) 429.0 
350.0 403.0(1) 424.0(2) 428.0(3) 438.0(4) 434.0 
400.0 450.0 450.0 450.0 450.0 442.0 

* the corresponding nodes in Fig. 4 are in brackets 
 
Table 4. Temperature values at grid points using floating walk technique for arbitrary slab with 

mixed boundaries 
 

435.6 436.2 441.6 442.8 442.2       
434.4 434.4 436.2 445.2 447.6       
432.6 433.8 435.6 439.8 444.6       
  425.4 426.6 429.6 437.4 445.8     
    424.2 424.8 431.4 436.2 441 438.6 
      424.2 429.6 431.4 435.6 431.4 
      421.8 427.8 431.4 433.8 433.2 
      423 428.4 433.2 434.4 433.8 
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Table 5. Temperature values at grid points using HFWMC technique for arbitrary slab with 
mixed boundaries 

 
436.2 437.7 440.1 444.6 445.2       
432.0 434.8 437.4 440.8 444.3       
434.7 432.1 433.9 436.9 439.8       
  425.1 429.1 433.0 437.4 443.4     
    424.5 428.6 433.4 437.7 440.1 441.6 
      423.6 429.8 433.8 435.9 436.2 
      424.5 428.2 432.0 433.4 432.9 
      425.1 426.6 432.6 432.9 432.9 

 

 
 

Fig. 7. Grid section of  a arbitrary slab with 
mixed boundaries arbitrary slab with mixed 

boundaries 
 

4. CONCLUSION 
 
An hybrid technique for numerical simulation of 
heat conduction has been developed. The 
developed technique has  only been able to 
handle steady state 2-dimensional heat 
conduction problems. A faster execution time 
using the developed technique for heat 
conduction analysis has been established as 
compared with the floating walk technique. The 
technique gave good results when compared 
with finite difference solution and suitably 
handled irregular shaped body. The 
computational time is however longer as 
compared with the finite difference technique. 
However in view of the general difficulty in 
applying finite difference technique for analysis of 
irregular boundary, the developed technique may 
be well suited to handle such instances.  
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