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Abstract

Several algorithms, including the Floyd-Warshall algorithm, have been developed to calculate
the shortest path between every pair of vertices in a graph (network) with cycles. This
study proposes an exact algorithm, the Cascade Rectangle (CR) algorithm, for calculating the
shortest paths between every pair of vertices in cycled graphs. The algorithm is developed
by designing and implementing certain improvements to the available exact algorithms. In
particular, the proposed algorithm has an improved computational complexity, although its
worst computational complexity is O(n3). Moreover, the CR algorithm is easier to implement,
which is an advantage for teaching and learning purposes. In addition to this, we introduce a
new concept, the transposition matrix, which has important applications in sensitivity analysis
and re-optimization of the shortest path networks. An example illustrates the CR algorithm and
the new concept of transposition matrix.
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1 Introduction

The shortest path problem is a fundamental and well-known problem in operations research. The
problem is to obtain a path between every two vertices (nodes) of a graph such that the sum
of the weights (cost, distance, time, etc.) of its connecting edges is minimized ([1], [2], [3]).
The shortest path problem has many real-world applications including in the transportation and
telecommunication networks. One common application is to find the quickest route through a road
network. In this application, vertices represent geographical locations, and edges that connect the
vertices represent possible routes between geographical locations. The weight of an edge typically
reflects traveling time or distance. Fig. 1 depicts two examples of such a road network with four
vertices (geographical locations). Here, vertex 1 is the source (the depot or the starting point), and
vertex 4 is the sink (the destination). The figure on the left has five arcs, which represent one-way
routes between the geographical locations. The figure on the right illustrates a cycled graph with
10 arcs, which in fact, are five two-way routes. Such a graph represents two-way road networks. As
you may notice, along an arc the traveling time or distance may differ depending on the direction of
the arc. According to the figure on the left, the shortest path from the source to the sink is through
vertex 3 and has a cost of 5.

Fig. 1. Two graphs with four vertices. The graph on the left, which represents a
one-way road network, has no cycles, and the graph on the right, which represents a

two-way road network has cycles

Generally, the shortest path problem is categorized into cases without cycles (the left one in Fig.
1), and cases with cycles (the right one in Fig. 1). There are algorithms for both cases where an
optimal solution is guaranteed [4]. In the cases with cycles there is not a source and a sink. Thus,
every vertex can be a source or sink.

Several algorithms exist to obtain the shortest path and the associated route between every pair
of vertices in a graph. In a graph with cycles, the first algorithms were proposed by [5] and
[6]. A “cascade” algorithm was developed by [7]. Hu has improved the usual matrix method for
obtaining all shortest paths in a graph [8]. Considering integer weights on the graph’s edges, an
efficient algorithm to obtain all pairs of the shortest paths was proposed by [9]. Aini and Salehipour
developed a new algorithm [10], which is based on some enhancements to the algorithm of [5] and
[6]. For a more detailed discussion about the shortest path problem we refer the interested reader
to [11].

Although, the shortest path problem belongs to the computational complexity class P (see [11]
for a discussion), its variants including existence of negative cycles belong to the complexity class
NP-Hard [12]. In a directed graph with cycles, an approximation algorithm for the shortest path
problem with real values for the edges’ weights was proposed by [13]. Peng et al. developed an
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algorithm by applying several improvements to the Dijkstra’s algorithm [14]. Their algorithm has a
reduced computational complexity. Several algorithms were also proposed in a study by [15]. The
literature on the variants of the problem is also very rich. For example, in [16], the authors developed
an algorithm to determine all shortest paths in Sierpiński graphs. [17] compared several integer
programming formulations for the shortest path problem, and provided a polyhedral study of the
formulations. In a note by [18] an optimality condition on Bellman-Ford-Moore classical algorithm
is discussed. Researchers also solved variants of the problem by using heuristic and meta-heuristic
algorithms [19, 20].

In this work, we study the shortest path problem with cycles. We develop a novel exact algorithm,
the Cascade Rectangle (CR) algorithm, for the shortest path problem with cycles, which is the first
contribution of this study. The algorithm is an improvement of the Farbey et al.’s, Hu’s, Floyd-
Warshall, and Aini and Salehipour’s algorithms. The proposed CR algorithm is based on a graphical
concept, which makes its understanding and illustration easy to follow; this is an advantage, in
particular, for teaching and learning purposes. The second contribution of this study is on sensitivity
analysis of the shortest path graphs. Particularly, we introduce the transposition matrix that
analyze the impact of graphs vertices and arcs on the optimal solution, and has direct applications
in re-optimization of the shortest path graphs. An example illustrates the implementation of the
CR algorithm and the application of the transposition matrix.

The remainder of this study is organized as follows. Section 2 defines the problem, and provides
the mathematical notations and an integer programming formulation. Section 3 discusses the
developed Cascade Rectangle (CR) algorithm. This section also includes the complexity analysis
of the CR algorithm. Section 4 introduces the transposition matrix, which is a novel concept on
the sensitivity analysis of the shortest path graphs. In Section 5, we illustrate a cycled graph to
explain the operation of the CR algorithm, and the computation of the transposition matrix. The
paper ends with a few conclusions.

2 The Problem Statement

Let G = (V,E,C) be a graph, where V = {1, . . . , n}, |V | = n is a set of vertices (nodes), E = {eij :
i, j ∈ V }, |E| = m is a set of edges, and C = {cij ∈ R+ : i, j ∈ V }, |C| = m is a set of edges’
weights (for example, traveling cost, time, distance, priority, etc.). An edge eij := (i, j) connects
two vertices i and j ∈ V . Generally speaking, if for at least one pair of i and j, cij 6= 1 (which
indeed implies a weighted graph), then, G is called a network, and is denoted by N = (V,E,C).
A directed graph D = (V,A,C) is similar to G with the difference that the edges have directions,
and hence, they are called arcs, and can be denoted by the set A. In a directed graph D, eij 6= eji,
whereas in an undirected graph G, eij = eji.

A walk on D is a sequence of vertices V ′ ⊆ V and arcs A′ ⊆ A. A walk with unique vertices and
arcs is called a path. A closed walk is called a cycle.

Let D = (V,A,C) be a directed graph with a set of vertices V , a set of arcs A, and a set of arcs’
weights C = {cij ∈ R+ : i, j ∈ V }. The shortest path problem on graph (network) D is to obtain
the shortest path between every pair of vertices s, i ∈ V , where s := 1 is the source vertex, also
known as the depot or starting vertex.

The shortest path problem on D can be formulated as an integer program (IP) with decision
variables xij ∈ {0, 1}, ∀eij ∈ A. The variable takes 1 if arc eij is used to reach to vertex j, from
vertex i, and 0 otherwise. The constraints ensure the solution is indeed a path [11].
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Minimize z =
∑

eij∈A

cijxij (1)

subject to

∑
i:eij∈A

xij −
∑

j:eji∈A

xji =

{
n− 1 for i := s

−1 for i ∈ N − {s}
(2)

xij = {0, 1}, ∀eij ∈ A (3)

Equation (1) minimizes the total cost of travel. Notice that traveling time, distance, etc. may easily
be represented by the traveling cost. Constraints (2) are flow constraints and ensure there is a path
between every pair of vertices. Constraints (3) ensure decision variables are binary.

3 The Cascade Rectangle Algorithm

This section presents the major contribution of this study, which is an exact algorithm for the
cycled shortest path problem by modifications on Farbey et al.’s [7], Hu’s [8], the well-known Floyd-
Warshall’s, and Aini-Salehipour’s [10] algorithms. The major benefit of the developed algorithm
lies in its reduced computational complexity, in compared to the state-of-the-art algorithms.

3.1 Preliminaries

Assume a directed graphD = (V,A,C). Also, assume that at least one cycle exists onD. The Floyd-
Warshall algorithm ([5] and [6]) is probably the most well-known and one of the best algorithms
for obtaining the shortest path between every two vertices i, j ∈ V . The Floyd-Warshall algorithm
recursively computes two square n × n matrices DS

n×n and RS
n×n for S = 0, . . . , n. The matrix

Dn
n×n holds the shortest path weights (costs, distances, etc.), and matrix Rn

n×n holds the shortest
routes (the complete path, including start and end vertices), between every two arbitrary vertices
i and j. Notice that DS

n×n and RS
n×n are calculated n + 1 times, where each matrix has n2 − n

entities (because both matrices are square, and we do not compute the diagonal). Details of this
algorithm can be found in [5], [6], and [10].

In order to obtain the shortest path and weight between every pair of vertices i, j ∈ V , the Cascade
Rectangle (CR) algorithm only calculates four n × n matrices DS and RS , where S = 0, 1 (note
that in the Floyd-Warshall algorithm S = 0, . . . , n). The stage S = 0 is the initial stage of the CR
algorithm, and the stage S = 1 is the final stage. As before, matrix D1

n×n holds the shortest weights
and matrix R1

n×n holds the shortest routes, between every two arbitrary vertices of V . Finally, the
CR algorithm derives the shortest path routes, i.e. RS

n×n, only when DS
n×n is calculated.

We picked the name “Cascade Rectangle” for the algorithm because all computations and operations
may be performed via drawing a set of rectangles. As we will see in Section 3.3, the Cascade
Rectangle algorithm is easy to implement as well as easy to be understood; this is an advantage,
both for implementation as well as for teaching and learning purposes.

3.2 The operation of the Cascade Rectangle algorithm

The Cascade Rectangle (CR) algorithm has two stages S = 0, 1. In stage S = 0, the algorithm
defines two square n× n matrices D0

n×n and R0
n×n. More precisely, the initial weights and routes

(paths) are calculated at stage S = 0, and are stored in D0
n×n and R0

n×n. The shortest weights
and routes are updated at stage S = 1 through forward and backward calculations, and are stored
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in D1
n×n and R1

n×n. This is because for an entity d1ij ∈ D1
n×n, 2(n − 2) computations must be

performed in order to update d1ij . More precisely, for every d1ij , n− 2 operations are needed (later,
we show how those n − 2 computations may visually be illustrated as a set of n − 2 rectangles).
This is an improvement to the previous algorithms (e.g. [7, 8]), where n operations are needed.

The CR algorithm is on the basis of the algorithms of [7], [8], [5], [6], and [10]. In particular, it
transforms the underlying mathematical equations (Equation (6)) into rectangles, as well as reducing
the number of calculations of the shortest weights and routes matrices. Hence, its correctness is
followed by the correctness of those algorithms. Algorithm 1 illustrates the CR algorithm.

Algorithm 1: The Cascade Rectangle (CR) algorithm to obtain shortest
paths and weights between every two arbitrary vertices of a cycled graph
D = (V,A,C).

Step 1. Assume a directed graph D(V,A,C) with a set of vertices V, |V | = n, a set of arcs
A, |A| = m, and a set of arcs’ edges C, |C| = m are given. In stage S = 0, define two n× n
matrices D0

n×n and R0
n×n.

Step 2a. Calculate matrix D0
n×n. The row i and column j of D0

n×n is denoted by d0ij and
represents the weight (distance, cost, time, etc.) in order to travel from vertex i to vertex j.
Equation (4) calculates d0ij ∈ D0

n×n.

d0ij =


cij , if vertex i is connected to vertex j;

∞, if vertex i is not connected to vertex j;

0, if i = j;

(4)

Step 2b. Calculate matrix R0
n×n. The row i and column j of R0

n×n is denoted by r0ij and
represents the route (an arc) in order to travel from vertex i to vertex j. Equation (5) for
S = 0, calculates r0ij ∈ R0

n×n.

rSij =

{
j, if dij 6= 0 or dij 6=∞;

−, otherwise;
(5)

Step 3a. In stage S = 1, pre-process matrices D1
n×n and R1

n×n. The diagonal elements of
D1

n×n and R1
n×n are from D0

n×n and R0
n×n. That is, d1ij ∈ D1

n×n = 0, and
r1ij ∈ R1

n×n = −, ∀i = j.

Step 3b. Calculate matrix D1
n×n.

Forward calculation: forward calculation starts from d112 and ends in d1n,n−1. To compute
d1ij , n− 2 rectangles are needed (see Fig. 2 for drawing a rectangle). Equation (6) shows
how the value of the rectangle in Fig. 2 may mathematically be expressed. Indeed, both the
rectangle’s value and Equation (6) calculate d1ij ∈ D1

n×n (notice that super index 0 and 1 in
Equation (6) refer to S = 0, 1).

d1ij = min(d0ij , d
0
ik + d0kj), ∀k, k 6= i, k 6= j (6)
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Backward calculation: backward calculation starts from d1n,n−1 and ends in d112. The
calculation is similar to that of the forward calculation.

Step 3c. Calculate matrix R1
n×n:

Unlike the algorithms of [8], [7], [5], and [6], there is no calculations in order to derive matrix
R1

n×n. Note that, the calculation of entities of R1
n×n is followed by matrix D1

n×n. Thus, if
d1ij ∈ D1

n×n does not change, then r1ij ∈ R1
n×n will not change as well. Otherwise, r1ij will

change, and the change depends on the zeros of the diagonal (of the associated rectangle).
If the associated rectangles lead to the same value for Equation (6), then r1ij ∈ R1

n×n will be
derived from row i and columns associated with the diagonal of those “equal” rectangles.

3.3 Generating rectangles

At stage S = 1 of the CR algorithm (Step 3b in Algorithm 1), for every d1ij ∈ D1
n×n, n−2 rectangles

are drawn. This is because in order to compute d1ij we cannot use the zeros of row i and column j.
The rectangles are drawn in a way that d1kk = 0 of the diagonal is on one corner and d1ij is on the
opposite corner (these two are always opposite to each other). The other two corners are d1ik and
d1kj . This is illustrated in Fig. 2. In the figure, dij refers to the entity associated with row i and
column j of matrix D1

n×n, i.e. d1ij . Each rectangle is identified by its top left (row i and column j)
and bottom right (row k and column k) corners: M(i,j),(k,k).

Fig. 2. Constructing a rectangle in the Cascade Rectangle algorithm, where ‘0’ refers
to dkk (on the diagonal at stage S = 1). Note that how four entities dij , dik, dkj, and

dkk = 0 of D1
n×n form a rectangle

Based on the concept of rectangles, the value of d1ij , i 6= j in the matrix D1
n×n is calculated by

Equation (6). Notice that if d1ij changes, the new value is computed through Equation (6), and
D0

n×n and D1
n×n are updated accordingly. If d1ij ≤ d0ik or d1ij ≤ d0kj , then d1ij ≤ d0ik + d0kj ; this may

easily be performed in the CR algorithm.

3.4 Correctness proof of the Cascade Rectangle algorithm

In this section, we provide the correctness proof of the Cascade Rectangle (CR) algorithm. Recall
that the major advancements in the CR algorithms are 1) utilizing rectangles to replace Equation (6),
and that includes n−2 operations for stages S = 1, against n operations of the Farbey et al.’s, Hu’s,
and Floyd-Warshal’s algorithms, and 2) advancement in deriving matrices R0

n×n and R1
n×n. For this

reason, the correctness of the CR algorithm is followed by first proving that the rectangles indeed
illustrate Equation (6), and then proving the correctness of new calculation of matrix RS

n×n, S = 0, 1.

Theorem 1. The matrix D1
n×n may be derived by drawing a set of (n2 − n)× (n− 2) rectangles.
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Proof. Let us calculate d1ij , i 6= j. For this reason, the CR algorithm draws a rectangle with the zeros
on the diagonal of matrix D0

n×n (remember that the diagonal only includes zeros). An example
of one such rectangle is illustrated in Fig. 2. Here, the value of the rectangle may be derived
by its corners: d1ij = min(d0ij + 0, d0ik + d0kj) = min(d0ij , d

0
ik + d0kj), and this equals Equation (6).

Equation (6) is the one used in [7] and [8] to derive matrix DS
n×n. �

Indeed, Theorem 1 proves that Equation (6) may be represented as rectangles and vice versa. Now,
in Theorem 2 we prove an alternative way to derive matrix RS

n×n, S = 0, 1.

Theorem 2. The entities of RS
n×n, S = 0, 1 depend on DS

n×n, S = 0, 1, and hence, can be calculated
by Equation (5).

Proof. The proof includes two parts. The first part includes stage S = 0, and the second part
includes stages S = 1, . . . , n. Let us start by the stage S = 0. The Floyd-Warshall algorithm
calculates rij by Equation (7):

rij =


−, if i = j

j, if there is an arc from i to j

−, if there is not an arc from i to j

(7)

Notice that we do not directly calculate r0ij , instead, in the CR algorithm we calculate r0ij , and
obtain the values by analyzing d0ij . According to Equation (4), if d0ij has a value, then, we already
know that there is an arc connecting vertex i to vertex j, thus, r0ij = j. Similarly, if d0ij =∞, then,
we know that there is no arc connecting vertex i to vertex j; hence, r0ij = −.

For stages S = 1, . . . , n, the Floyd-Warshall algorithm calculates rij by Equation (8):

rij =


j, if i = k or i = j or i = k

j, if i 6= k 6= j and dij ≤ dik + dkj

k, if i 6= k 6= j and dij > dik + dkj

(8)

By looking into Equation (8), one may recognize that the calculation is very similar to that of
Equation (6). Indeed, if Equation (6) leads to dij , then, we do not need to verify this when
calculating r1ij (this is, however, verified in Equation (8)). Thus, r1ij = j. Similarly, if either
Equation (4) or Equation (6) leads to dik + dkj , we may safely have r1ij = k. �

3.5 Time complexity of the Cascade Rectangle algorithm

Theorem 3. The worst time complexity of the Cascade Rectangle (CR) algorithm is O(n3), where
n is the number of vertices.

Proof. Given the graph D = (V,A,C), where |V | = n, there are n2 − n operations in order to
calculate matrix D0

n×n. In addition to this, the number of computations for matrix D1
n×n is

bounded by 2(n2 − n), as the number of forward and backward computations are equal ([7, 8]).
Thus, there are 2(n2 − n) + (n2 − n) computations for matrices D0

n×n and D1
n×n.

Moreover, in order to compute every element of D1
n×n, n− 2 operations are needed (in the form of

generating rectangles, see Fig. 2, and also, Equation (6) for equivalent calculations). This implies
that the total number of operations to derive matrices D0

n×n and D1
n×n is 2(n2−n)(n−2)+(n2−n).

Similarly, it is not difficult to show that the route matrices of R0
n×n and R1

n×n require 2(n2 − n)
calculations. Thus, the total number of calculations of the CR algorithm is 2(n2−n)(n−2)+3(n2−
n). Putting all those together result in a worst time complexity of O(n3) for the CR algorithm.
�
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Notice that although the worst time complexity of the CR algorithm remains O(n3), it has indeed a
better performance than the Floyd-Warshall’s, Farbey et al.’s, and Hu’s algorithms. This is mainly
because the CR algorithm calculates RS

n×n, S = 0, 1 based on DS
n×n, S = 0, 1. This has been

illustrated in Fig. 3. In this figure, we analyzed four different sized graphs including 20, 50, 70,
and 100 vertices (illustrated by the horizontal axis), and calculated the total number of operations
of each algorithm (illustrated by the vertical axis). As the figure shows, the worst performance,
among three, belongs to the Hu’s and Farbey et al.’s algorithms. Also, while the performance of the
CR and the Floyd-Warshall algorithms are very close, the former has a slightly better performance
as measured in terms of less number of computational operations.
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Fig. 3. Comparing the worst performance of the Floyd-Warshall, Hu, Farbey, and
Cascade Rectangle (CR) algorithms on instances with sizes from 20 to 100 vertices.
Notice that the worst performance of all three algorithms is O(n3), where n is the

number of vertices. However, the average performance of the CR algorithm is better
than the Floyd-Warshall, and Hu’s and Farbey’s algorithms, as evidenced by this

figure

4 The Transposition Matrix

As discussed earlier, the Cascade Rectangle (CR) algorithm obtains an optimal solution, i.e. the
shortest weights and the associated routes for the shortest path problem with cycles. The optimal
solution is in the form of matrix D1

n×n, the optimal weights, and matrix R1
n×n, the optimal routes.

Given the route matrix of R1
n×n, we can derive a new concept, the transposition matrix. The

elements of this matrix show the number of traversals of arcs in an optimal solution. Having the
transposition matrix, we can define the value of an arc in the graph. Following this, the transposition
matrix has a variety of applications in the sensitivity analysis and re-optimization of the shortest
path graphs.

Similar to matrices DS
n×n and RS

n×n, the transposition matrix T is a square n × n matrix. The
number of traversals of an arc eij ∈ A may be denoted by tij ∈ Tn×n and we call it arc transposition
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number. In other words, tij shows the number of traversals between vertices i and j in the optimal
solution; if we remove arc eij , then tij traversals will be impacted. Thus, the greater the value of
tij , the more crucial role the arc eij plays in the optimal solution. Equation (9) shows how elements
of the transposition matrix is computed.

tij =


−, if i = j∑j=n

j=1,i 6=j,r1ij=i
r1ij +

∑i=n
i=1,i 6=j,r1ij=j r

1
ij , if r1ij = j

0, Otherwise

(9)

Similarly, value of an arc is called arc transposition value, and is denoted by vij . This value is
presented as percentage, and is the ratio of tij to the total number of traversals in the graph.
Assume the summation over all elements of matrix Tn×n is τ , i.e.

∑
tij∈Tn×n

tij = τ . Then, the

transposition value of an arc, i.e. vij , ∀eij ∈ A can be derived by Equation (10).

vij =
tij
τ
× 100 (10)

Given tij and vij , we may conceptualize the importance of every arc in the graph. As a result, we
may find the redundant arcs and remove them.

We may define similar concepts to that of the arc transposition number (tij), and the arc transposition
value (vij) for every vertex i ∈ V . In fact, every vertex i has connections to at most n− 1 vertices,
and those n− 1 vertices may be connected to vertex i as well. Thus, the total number of traversals
of vertex i to all other vertices is at most 2(n− 1). If we add the number of times that a vertex i is
intermediate, then we may have the total number of traversals of vertex i. This is, though, on one
condition, and that is, we should not have an r1ij =∞; otherwise, we subtract the number of times
an ∞ appears from 2(n − 1). Let ti and vi denote the transposition number and value of vertex
i ∈ V . Equation (11) derives ti and Equation (13) derives vi.

ti = 2(n− 1) + ηi, r
1
ik 6=∞ (11)

where ηi = is the number of intermediate vertices to vertex i. Equation (12) calculates ηi.

ηi =

n∑
k=1,k 6=i

n∑
i=1,i 6=k

r1ik (12)

Notice that the intermediate vertices to vertex i, i.e. ηi, can be extracted from R1
n×n by counting

all r1ij , i 6= j.

vi =
ti

(2n(n− 1) +
∑n

i=1 ηi)
× 100, r1ik 6=∞ (13)

In fact, vi represents the value of vertex i over all optimal traversals in the graph. Thus, if we
remove vertex i, vi% of the graph, in the optimal solution, will be impacted. Similar to vij , the
greater the value of vi, the more important the role of vertex i is in the optimal traversals. Notice
that these concepts have important applications in the sensitivity analysis and re-optimization of
the shortest path graphs because they represent impact of every vertex and arc on the optimal
solution.

Now we proceed to Section 5 with one illustrative example to explain the operation of the CR
algorithm, and to establish the concept of the transposition matrix.
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5 An Illustrative Example

In this section, we give an example to clarify the Cascade Rectangle (CR) algorithm and the concept
of the transposition matrix. The purpose of the example is to discuss, in more details, the operation
of the algorithm and explain the important role of the transposition matrix. So its purpose is not
to analyze and verify the computational complexity or the performance of the Cascade Rectangle
(CR) algorithm. A detailed discussion on this has been brought in Section 3.4.

Consider the directed graph D in Fig. 4 with four vertices and 10 arcs, where V = {1, 2, 3, 4}, and
A = {e12, e21, e13, e31, e23, e32, e24, e42, e34, e43}. We aim to compute the shortest path and weight
between every pair of vertices of D.

Fig. 4. The graph of the example that includes four vertices and 10 arcs

According to Step 1 of Algorithm 1, we defined D0
4×4 and R0

4×4.

In Step 2, elements of D0
4×4 (Step 2a), i.e. d0ij , and R0

4×4 (Step 2b), i.e. r0ij , are calculated by
Equation (4) and Equation (5):

d0ij =


cij , if vertex i is connected to vertex j

∞, if vertex i is not connected to vertex j

0, if i = j

and,

r0ij =

{
j, if d0ij 6= 0 or d0ij 6=∞
−, otherwise

This results in D0
4×4 =


0 7 1 ∞
3 0 5 3
4 7 0 3
∞ 2 4 0

 and, R0
4×4 =


− 2 3 −
1 − 3 4
1 2 − 4
− 2 3 −

.

Step 3 of Algorithm 1 calculates D1
4×4 and R1

4×4 matrices. More precisely, Step 3a illustrates that
the elements on the diagonal of D1

4×4 and R1
4×4 are taken from their counterparts in matrices D0

4×4

and R0
4×4. Step 3b explains the forward calculations, which starts from d112 and ends in d143. Here,

in order to calculate every d1ij ∈ D1
4×4, ∀i, j ∈ V, i 6= j, n− 2 = 2 rectangles are needed. Note that

removing those d1ij , i = j, we will be left with 12 elements. Thus, the total number of operations
are 24 (or 12× 2).

In order to draw rectangles for d1ij , the 0 of the diagonal is on one corner and d1ij is on the opposite
corner (see Section 3.3 and Fig. 2). Recall that we specify a rectangle M(i,j),(k,k) with its start
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corner on row i and column j and its end corner on row k and column k. For example, if 0 is on
row 3 and column 3 and d112 is on row 1 and column 2, then, the rectangle is denoted by M(1,2),(3,3).

In order to calculate d112, two rectangles M(1,2),(3,3) and M(1,2),(4,4) are formed: M(1,2),(3,3) =7 1
0 5
7 0

 and M(1,2),(4,4) =


7 1 ∞
0 5 3
7 0 3
2 4 0

.

Following Equation (6), d112 is calculated over two diagonals of each rectangle. Hence, d112 =
min(d012 = 7, d031+d013 = 7+1, d042+d014 = 2+∞) = 7. Continuing this, d113 = min(1, 7+5, 4+∞) = 1,
and d114 = min(∞, 7 + 3, 1 + 3) = 4.

Following Step 3c of Algorithm 1, as d112 = d012 and d113 = d013, thus r112 = r012 = 2 and r113 = r013 = 3.
On the other hand, d114 = min(∞, 7+3, 1+3) = 4, and d114 6= d014, which implies r114 6= r014. Remember

that the change in r1ij depends on the zeros of the diagonal. Moreover, M(1,4),(2,2) =

[
7 1 ∞
0 5 3

]
and M(1,4),(3,3) =

1 ∞
5 3
0 3

. Following these two rectangles, the new value of d114 is because of

the rectangle M(1,4),(3,3); more precisely, because of the entity d133, thus, r114 = 3. Finally, at

the end of Step 3b or the forward calculation, we have matrices D1
4×4 =


0 7 1 4
3 0 4 3
4 5 0 3
5 2 4 0

 and

R1
4×4 =


− 2 3 3
1 − 1 4
1 4 − 4
2 2 3 −

.

Now we must proceed to Step 3b, the backward calculation, which starts from d143 and ends is

d112. For instance, to calculate d143, the two rectangles are M(2,2),(4,3) =

0 4
5 0
2 4

 and M(1,1),(4,3) =
0 7 1
3 0 4
4 5 0
5 2 4

. Thus, d143 = min(4, 2 + 4, 5 + 1) = 4. Let us calculate d112. Two rectangles are

M(1,2),(3,3) =

7 1
0 4
5 0

 and M(1,2),(4,4) =


7 1 4
0 4 3
5 0 3
2 4 0

; thus, d112 = min(7, 5 + 1, 2 + 4) = 6. Notice

that d112 has changed and the change is because of the rectangle M(1,2),(3,3), which is associated
with d133 = 0. Interestingly, in the other rectangle, i.e. M(1,2),(4,4), we also have a value of 6,
which is associated with d144 = 0. Because r113 = r014 = 3, hence, r112 = 3. Finally, D1

4×4 and

R1
4×4 matrices, after both forward and backward calculations, are D1

4×4 =


0 6 1 4
3 0 4 3
4 5 0 3
5 2 4 0

 and
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R1
4×4 =


− 3 3 3
1 − 1 4
1 4 − 4
2 2 3 −

. Having those two matrices in hand, the shortest weights and routes

between every two vertices i and j of graph D is then available.

In order to derive the transposition matrix, we utilize matrix R1
n×n. Also, recall that the diagonal

of matrix Tn×n follows the diagonal of R1
n×n. Thus, the elements on the diagonal are “−”. In

order to derive the remaining elements, we follow Equation (9). For example, to calculate t12, we
look at row 1 in matrix R1

4×4 and count the number of elements that equals 2 plus the number of
elements in column 2 that equals 1. For t13, we count the number of elements that equals 3 in row
1 plus the number of elements in column 3 that equals 1. If an element r1ij 6= j, then tij = 0. More

precisely, T4×4 =


− 0 3 + 1 0

2 + 1 − 0 1 + 0
1 + 0 0 − 2 + 1

0 2 + 1 1 + 0 −

 =


− 0 4 0
3 − 0 1
1 0 − 3
0 3 1 −

.

From our previous discussion in Section 4, the elements of matrix Tn×n represent arc transposition
numbers. For example, t21 = 3 implies that arc e21 has been used 3 times in the optimal solution,
i.e. in three shortest paths. In other words, if we remove this arc, three shortest paths are impacted.
This implies we may need to perform a re-optimization. The remaining arc transposition numbers
along with their transposition values are as the followings.

t12 = 0, t13 = 4, t14 = 0,
t21 = 3, t23 = 0, t24 = 1,
t31 = 1, t32 = 0, t34 = 3,
t41 = 0, t42 = 3, t43 = 1.
Also, t =

∑
tij∈T = 16; hence,

v12 = 0/16 = 0%, v13 = 4/16 = 25%, v14 = 0/16 = 0%,
v21 = 3/16 = 18.75%, v23 = 0/16 = 0%, v24 = 1/16 = 6.25%,
v31 = 1/16 = 6.25%, v32 = 0/16 = 0%, v34 = 3/16 = 18.75%,
v41 = 0/16 = 0%, v42 = 3/16 = 18.75%, v14 = 1/16 = 6.25%.

For example, if arc e13 is removed, then 25% of the graph is affected. However, if arc e23 is removed,
then, the graph is not affected. Thus, this arc is redundant, or in fact, it does not exist in the shortest
paths (an optimal solution).

In order to derive the transposition number and value of every vertex, we need to count the
intermediate vertices. For this reason, we may count the number i associated with vertex i in
all columns of R1

4×4 but the column i. For example, in order to see how many intermediate vertices
are to vertex 1, we do not consider column 1, and count entities that equal 1 in the remaining
columns of R1

4×4. We can see that the number of intermediate vertices to vertex 1 is 1, to vertex
2 is 1, to vertex 3 is 2, and to vertex 4 is 0. Hence, the total number of intermediate vertices is 4.
Moreover, as we do not have an∞ in R1

4×4, then every vertex has a total of 2(4−1) = 6 traversals.
The transposition number and value of each vertex are then:

t1 = 1 + 6 = 7, t2 = 1 + 6 = 7, t3 = 2 + 6 = 8, t4 = 1 + 6 = 7, and
v1 = 1+6

5+2×4×3
= 7/29 = 24.14%,

v2 = 1+6
5+2×4×3

= 7/29 = 24.14%,

v3 = 2+6
5+2×4×3

= 8/29 = 27.58%,

v4 = 1+6
5+2×4×3

= 7/29 = 24.14%.
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For example, if we remove vertices 1, 2, or 4, 24.14% of the optimal graph traversals will be impacted;
for the case of vertex 3, the amount is 27.58%.

6 Conclusion

In this study, we introduced an enhanced algorithm for calculating the shortest path in graphs
with cycles. The developed algorithm, the Cascade Rectangle (CR) algorithm, improves on the
Floyd-Warshall’s, Farbey et al.’s, Hu’s and Aini-Salehipour’s algorithms, four of the best available
algorithms for tackling this problem. The Floyd-Warshall algorithm and the CR algorithm have
exactly the same performance in deriving D0

n×n and R0
n×n matrices. For the stages S ≥ 1, however,

the CR algorithm derives the matrices more quickly due to the reduced number of operations. In the
second part of the study, we introduced a novel concept of transposition matrix that has applications
in the shortest path re-optimization and sensitivity analysis. In particular, we introduced the arc
transposition number and value, which quantify the importance of each arc on the optimal solution,
and the vertex transposition number and value, which quantify the importance of each vertex on
the optimal solution. As a future research, we are working on expanding the transposition matrix,
and its added value in quantifying the role of arcs and vertices in an optimal solution.
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