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1 Introduction

The beginning of a modern theory of functional equations is connected with the work of an excellent
specialist in this field, the Hungarian mathematician J. Aczél. In his numerous papers he treats
whole classes of functional equations, gives general methods for solving them and criteria on the
existence and uniqueness of solutions. He also indicates new applications of this important topic
[1, 2, 3, 4, 5].

Definition 1.1. ([6]) A functional equation is an equality T1 = T2 between two terms T1 and T2

which contain at least one unknown function and a finite number of independent variables. This
equality is to be satisfied identically with respect to all occurring variables in a certain set (of any
sort).

The solution of a functional equation may depend on the set in which the equation is postulated.
One should also precisely state in what function class the solution is sought. The number and
behavior of solutions depend on this class. It is one of the important differences between differential
and functional equations [6, 7].

In this work, we investigate properties of solutions of a particular functional equation which we call
a Jensen type functional equation involving the so called Jensen m-convex functions. This work
follows ideas from [7] for the case of Jensen functional equation. For a convex set D ⊆ RN , a
function f : D → R is called Jensen convex if it satisfies the so called Jensen inequality,

f
(x + y

2

)
≤ f(x) + f(y)

2

for any x, y ∈ D [8, 9].

The Jensen equation is the resulting on replacing in the Jensen inequality, mentioned above, the
sign of inequality by that of equality [10, 7]

f
(x + y

2

)
=

f(x) + f(y)

2
. (1.1)

Usually, this equation is considered for functions f : D → R and D being a convex set.

Definition 1.2. ([11]) A set D ⊆ RN is denominated m-convex if for any x, y ∈ D and t ∈ [0, 1],
the point tx + m(1 − t)y also belongs to D.

Definition 1.3. ([12, 13]) Let m ∈ (0, 1], cm = 1 + 1/m and D ⊆ RN an m-convex set. A function
f : D → R which satisfies the inequality

f

(
x + y

cm

)
≤ f(x) + f(y)

cm
for all x, y ∈ D (1.2)

will be called Jensen m-convex on D.

It is worth to mention that in case m = 1, inequality (1.2) becomes the usual Jensen inequality.

In this context the definition of Jensen inequality may be formulated. The functional equation we
shall be dealing with is (resulting on replacing in (1.2) the sign of inequality by that of equality)

f

(
x + y

cm

)
=

f(x) + f(y)

cm
, (1.3)

x, y ∈ D, D ⊆ RN , m-convex and unless other thing is stated, 0 ∈ int(D) (the interior of set D).
Notice that m = 1 reduces (1.3) to the usual Jensen equation (1.1).

2



Lara et al.; JAMCS, 24(1): 1-12, 2017; Article no.JAMCS.30072

2 Main Results

Here we set a number of properties of solutions of (1.3) which will drive us to give a characterization
of such solutions. From now on, we shall assume 0 < m < 1.

We will be using the set
1

cnm
D =

{
1

cnm
x : x ∈ D

}
for D as before and for any positive integer n.

Before going any further, first, observe that the set
1

cnm
D naturally inherits the m-convexity from

D and second, by taking into account that
m

m + 1
∈ [0, 1] and the following relationships

1

cm
x =

x + 0

cm
=

m

m + 1
x + m

(
1 − m

m + 1

)
0,

1

cn+1
m

x =
1

cm

(
1

cnm
x

)

for any x ∈ D and for any n follows, by induction on n, that

1

cnm
D ⊆ D.

The following results are similar to those given in [7] for the Jensen functional equation.

Lemma 2.1. Let us assume D as before, f : D → R be a solution of equation (1.3) then, f(0) = 0
and

f

(
1

cnm
x

)
=

1

cnm
f(x) (2.1)

for any x ∈ D and for any positive integer n.

Proof. We show first f(0) = 0, in fact because of the hypothesis and since 0 ∈ D,

f(0) = f

(
0 + 0

cm

)
=

f(0) + f(0)

cm
=

2f(0)

cm
,

thus
(cm − 2)f(0) = 0 and cm > 2.

For the second part, we use the induction method on n. For n = 1, we employ the fact that f(0) = 0
and equality (2.1) is easy verified. Assume now (2.1) true for n and check it for n + 1.

f

(
1

cn+1
m

x

)
= f

(
1

cnm

(
1

cm
x

))
=

1

cnm
f

(
1

cm
x

)
=

1

cn+1
m

f(x).

Here we use the fact that
1

cm
x ∈ D and, of course, the inductive hypothesis.

Remark 2.1. The condition 0 ∈ int(D) is not necessary for proving f(0) = 0. It is enough the
condition “ 0 belongs to D”.
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Proposition 2.1. Let D be as before, m ∈ (0, 1), and f : D → R solution of (1.3). Then, there
exists a unique function f1 : RN → R solution of (1.3) in RN with

f1(x) = f(x), x ∈ D.

Proof. Define the following recursive sequence of sets,

D0 = D

Dn = cnmD0, n ≥ 1 integer.

Indeed, Dn ⊆ Dn+1 for any n ≥ 0 integer. In fact, if x ∈ Dn = cnmD0 then, there is y ∈ D0 such

that x = cnmy, whence x = cn+1
m

1

cm
y ∈ cn+1

m
1

cm
D0 ⊆ cn+1

m D0 = Dn+1.

On the other hand, since 0 ∈ int(D0) by hypothesis, for any x ∈ RN ,
1

cnm
x =

(
m

m + 1

)n

x,

therefore, lim
n→+∞

1

cnm
x = 0, but then we may guarantee the existence of an integer n0 ≥ 0 such that

1

cnm
x ∈ D0 for any n ≥ n0 or better, x ∈ Dn for any n ≥ n0. Whence

∞∪
n=0

Dn = RN . (2.2)

Define now f1 : RN → R as

f1(x) = cnmf
( 1

cnm
x
)

if x ∈ Dn, n ≥ 0 integer;

before going any further, we must check this function is well defined. Actually, if x ∈ Dn then
1

cnm
x ∈ D0 and f

( 1

cnm
x
)

makes sense, and if x ∈ Dn1 ∩Dn2 with, say, n1 < n2 then, it is easy to

verify that

cn2
m f
( 1

cn2
m

x
)

= cn1
m f
( 1

cn1
m

x
)
.

In any case, f1 is well defined.

Notice that in case n = 0, and x ∈ D; f1(x) = f(x). Now we check that function f1 satisfies relation
(1.3) in RN . For that purpose take x, y ∈ RN , then there is n ≥ 0 such that x, y ∈ Dn. But,

1

cnm

(x + y

cm

)
=

1

cm

[
1

cnm
x +

1

cnm
y

]
=

m

m + 1

1

cnm
x + m

(
1 − m

m + 1

)
1

cnm
y ∈ D0,

whence
x + y

cm
∈ Dn. Hence

f1
(x + y

cm

)
= cnmf

( 1

cnm

(x + y

cm

))
= cnmf

(
1

cnm
x + 1

cnm
y

cm

)

= cnm

[
f
(

1
cnm

x
)

+ f
(

1
cnm

y
)

cm

]

=
1

cm

[
cnmf

( 1

cnm
x
)

+ cnmf
( 1

cnm
y
)]

=
f1(x) + f1(y)

cm
.
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We finish the proof by showing that there is only one function fulfilling the above properties, and
that is f1. Suppose there is another function f2 : RN → R satisfying (1.3) and for any x ∈ D0,
f2(x) = f(x), and f2(0) = 0. So if x is now in RN arbitrary, by the previous lemma with D = RN ,
f2
(

1
cnm

x
)

= 1
cnm

f2(x) for every integer n ≥ 0. Even more, there exists an integer n′ ≥ 0 such that

1

cn′
m

x ∈ D0, but then

f2(x) = cn
′

mf2
( 1

cn′
m

x
)

= cn
′

mf
( x

cn′
m

)
= f1(x).

Remark 2.2. The condition 0 ∈ int(D) cannot be weakened in the previous proposition if we keep
the procedure employed to extend the given function. A simple counterexample in R2 is the tetragon
D defined by the points

(0, 0); (0, 1); (1, 0); (1/3, 1/3).

It is straightforward to show that D is a 1/2-convex set, 0 /∈ int(D), and finally

∞∪
n=0

Dn = [0,+∞) × [0,+∞) ̸= R2.

Definition 2.1. ([7]) A function f : RN → R is called additive if it satisfies the equation

f(x + y) = f(x) + f(y), for any x, y ∈ RN .

Lemma 2.2. Let f : RN → R be a function satisfying (1.3), then f is additive.

Proof. Since f satisfies (1.3), then it also fulfills conditions in Lemma 2.1, whence for any x, y ∈ RN ,

f(x + y) = cm
1

cm
f(x + y) = cmf

(x + y

cm

)
= cm

[
f(x) + f(y)

cm

]
= f(x) + f(y)

and proof is complete.

The incoming result is similar to Theorem 13.2.1 of [7] and proof runs similar to that, so we omit
it.

Theorem 2.3. Let D ⊆ RN be an m-convex set with 0 ∈ int(D), m ∈ (0, 1) and f : D → R
solution of (1.3). Then there exists an additive function g : RN → R such that f(x) = g(x), x ∈ D.

Theorem 2.4. Let D ⊆ RN be an m-convex set with 0 ∈ int(D), m ∈ (0, 1) and f : D → R
solution of (1.3) and continuous on D. Then, the additive function g guaranteed by the previous
theorem is continuous on RN .

Proof. Let x0 be any point in RN . It is evident that g|D = f is continuous at x0 when x0 ∈ D.
Otherwise, for any x arbitrary in RN we know by equation (2.2) that there exists n0 ≥ 0 such that

1

cnm
(x− x0) ∈ D

for every n ≥ n0.

On the other hand, since f is continuous at 0 ∈ D, given ϵ > 0 there is a δ1 = δ1(ϵ) > 0 such that
z ∈ D and ∥z − 0∥ < δ1 imply that

|f(z) − f(0)| = |f(z)| < ϵ

cn0
m

.
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Set δ = δ1c
n0
m > 0. Observe that, by taking ∥x− x0∥ < δ it follows that

|g(x) − g(x0)| = |g(x− x0)| =

∣∣∣∣cn0
m f
( 1

cn0
m

(x− x0)
)∣∣∣∣ < ϵ.

So, g is also continuous in this case, and the proof is complete.

To conclude this section we cite a very well known result.

Theorem 2.5. ([7].Theorem 5.5.2., p. 139) If f : RN → R is a continuous additive function, then
there exists a c ∈ RN such that

f(x) = cx,

where cx =
∑N

i=1 cixi (c = (c1, . . . , cN ), x = (x1, . . . , xN )) denotes the scalar product.

Finally, we immediately get the following important result in connection with equation (1.3).

Theorem 2.6. Let D be as before, m ∈ (0, 1), and f : D → R a continuous solution of (1.3).
Then, the function g guaranteed by Theorem 2.3 is necessarily a linear function.

3 On Stability

In this section we pursue to apply, with some modifications or adaptations, the techniques employed
by Z. Kominek [14] in his work related to stability of the classical Jensen functional equation to the
Jensen type equation defined by formula (1.3). In particular, we recall the definition of an ϵ-additive
function. Besides that, we introduce the definition of an ϵ-m-Jensen function in the spirit of an
ϵ-Jensen function defined in [14](Inequality (2), p. 499).

We close this section and the whole article with a couple of Theorems, by following ideas from [15],
which refers to the Hyers-Ulam-Rassias stability of the functional inequality (3.11).

Definition 3.1. ([14]) We say that a function f : D ⊆ RN → R is ϵ-additive (ϵ ≥ 0 is fixed) in D
iff

|f(x + y) − f(x) − f(y)| ≤ ϵ

for all x, y ∈ D such that x + y ∈ D.

Definition 3.2. ([14]) We say that a function f : D ⊆ RN → R is ϵ-m-Jensen (ϵ ≥ 0 and m ∈ (0, 1]
fixed) in D iff ∣∣∣∣cmf

(
x + y

cm

)
− f(x) − f(y)

∣∣∣∣ ≤ ϵ

for all x, y ∈ D such that
x + y

cm
∈ D.

Clearly, the last condition is guaranteed by adding the hypothesis on D of being an m-convex set.

The next two results are going to be relevant for the demonstration of next proposition.

Lemma 3.1. If f : RN → R is an additive function and m ∈ Q ∩ (0, 1), then

f(x) = cnmf

(
x

cnm

)
(3.1)

for every x ∈ RN and for every positive integer n.

6
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Proof. Assume that m = p
q

(p, q positive integers and p < q). Then, cm = p+q
p

and taking into
account that f is additive follows that

f(x) =
1

p
pf(x) =

1

p
f(px) =

1

p
f

(
(p + q)

x

cm

)
=

1

p
(p + q)f

(
x

cm

)
= cmf

(
x

cm

)
for every x ∈ RN . Thus, formula (3.1) is true for n = 1. By induction on n the general formula is
easily proved.

Lemma 3.2. ([14]. Lemma 2, p. 501) If f : (−a, a)N → R (a > 0) is an ϵ-additive function in
(−a, a)N then there exists an additive function F : RN → R such that

|F (x) − f(x)| ≤ (5N − 1)ϵ

for any x ∈ (−a, a)N .

Proposition 3.1. If g : (−a, a)N → R is an ϵ-m-Jensen function (m ∈ Q∩ (0, 1)) then, there exist
a positive constant K and a function G : RN → R satisfying the equality (1.3) such that

|G(x) − g(x)| ≤ Kϵ

for every x ∈ (−a, a)N .

Proof. First of all, define the function f1 : (−a, a)N → R by f1(x) = g(x) − g(0). Observe that∣∣∣∣cmf1

(
x + y

cm

)
− f1(x) − f1(y)

∣∣∣∣ =

∣∣∣∣[cmg

(
x + y

cm

)
− g(x) − g(y)

]
− [cm − 2]g(0)

∣∣∣∣
≤
∣∣∣∣cmg

(
x + y

cm

)
− g(x) − g(y)

∣∣∣∣+ [cm − 2]|g(0)|

≤ 2ϵ

for every x, y ∈ (−a, a)N . Thus, f1 is a 2ϵ-m-Jensen function. Moreover, f1 also satisfies∣∣∣∣ckmf1

(
y

ckm

)
− f1(y)

∣∣∣∣ =

∣∣∣∣∣ckmf1

(
y

ckm

)
−

k−1∑
j=1

cjmf1

(
y

cjm

)
+

k−1∑
j=1

cjmf1

(
y

cjm

)
− f1(y)

∣∣∣∣∣
=

∣∣∣∣∣
k∑

j=1

cj−1
m

[
cmf1

(
0 + y

c
j−1
m

cm

)
− f1(0) − f1

(
y

cj−1
m

)]∣∣∣∣∣
≤

k∑
j=1

cj−1
m

∣∣∣∣∣cmf1

(
0 + y

c
j−1
m

cm

)
− f1(0) − f1

(
y

cj−1
m

)∣∣∣∣∣
≤

k∑
j=1

cj−1
m 2ϵ

≤ (ckm − 1)2ϵ (3.2)

for every positive integer k and for every y ∈ (−a, a)N .

Now define the set An for any positive integer n as follows

An :=

(
− a

cn−1
m

,
a

cn−1
m

)N \(
− a

cnm
,
a

cnm

)N

.

7
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Two easy-to-show properties of the collection {An}∞n=1 are: An ∩Am = ∅ iff n ̸= m and
∪∞

n=1 An ∪
{0} = (−a, a)N . In other words, the collection {An}∞n=1 ∪ {0} is a partition of (−a, a)N . Based on
this condition, and since f1(0) = 0, the function f : (−a, a)N → R given by the formula

f(x) =
1

cn−1
m

f1(cn−1
m x), x ∈ An ∪ {0}, n an interger

is well-defined.

Now, given any x ∈ (−a, a)N , say, x ∈ An, set y = cn−1
m x. By inequality (3.2) for k = n− 1.

|f1(x) − f(x)| =

∣∣∣∣f1(x) − 1

cn−1
m

f1(cn−1
m x)

∣∣∣∣
=

1

cn−1
m

∣∣∣∣cn−1
m f1

(
y

cn−1
m

)
− f1(y)

∣∣∣∣
≤ 1

cn−1
m

(cn−1
m − 1)2ϵ

= (1 − c1−n
m )2ϵ

≤ 2ϵ. (3.3)

If x = 0, it is trivial since f(0) = f1(0) = 0.

Additionally, given x ∈ (−a, a)N , say, x ∈ An, the point x/cm ∈ An+1. Thus, we have

cmf

(
x

cm

)
= cm

1

cnm
f1

(
cnm

x

cm

)
=

1

cn−1
m

f1(cn−1
m x) = f(x). (3.4)

Given x, y ∈ (−a, a)N such that x+y ∈ (−a, a)N . It follows, from f1 a 2ϵ-m-Jensen function, (3.3),
and (3.4) that

|f(x + y) − f(x) − f(y)| =

∣∣∣∣cmf

(
x + y

cm

)
− f(x) − f(y)

∣∣∣∣
≤ cm

∣∣∣∣f (x + y

cm

)
− f1

(
x + y

cm

)∣∣∣∣+ |f1(x) − f(x)|

+ |f1(y) − f(y)| +

∣∣∣∣cmf1

(
x + y

cm

)
− f1(x) − f1(y)

∣∣∣∣
≤ 2cmϵ + 6ϵ

= (2cm + 6)ϵ, (3.5)

which means that f is (2cm + 6)ϵ-additive in (−a, a)N and by Lemma 3.2 there exists an additive
function G : RN → R such that |G(x) − f(x)| ≤ (5N − 1)(2cm + 6)ϵ for every x ∈ (−a, a)N . Then,
by Lemma 3.1 G satisfies equation (1.3) and

|G(x) − g(x)| = |G(x) − g(x) + g(0) − g(0) + f(x) − f(x)|
≤ |G(x) − f(x)| + |f(x) − f1(x)| + |g(0)|

≤ (5N − 1)(2cm + 6)ϵ + 2ϵ +
ϵ

cm − 2

= [(5N − 1)(8 + 2/m) + (m− 2)/(m− 1)]ϵ

= Kϵ

for every x ∈ (−a, a)N where K = (5N − 1)(8 + 2/m) + (m− 2)/(m− 1) > 0.

8
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Theorem 3.3. Let D ⊆ RN be a bounded m-convex set with 0 ∈ int(D), m ∈ Q ∩ (0, 1), a > 0, p
a positive integer for which

i) (−a, a)N ⊆ D ii)
1

cpm
D ⊆ (−a, a)N , (3.6)

and g : D → R an ϵ-m-Jensen function. Then, there exist a positive constant K and a function
G : RN → R satisfying equality (1.3) such that

|G(x) − g(x)| ≤ Kϵ

for every x ∈ D.

Proof. Define the function f1 : D → R by f1(x) := g(x) − g(0) for every x ∈ D. Then, f1 is a
2ϵ-m-Jensen function in D and satisfies the following inequality∣∣∣∣cpmf1

(
y

cpm

)
− f1(y)

∣∣∣∣ ≤ (cpm − 1)2ϵ (3.7)

for every y ∈ D (See Proposition 3.1 for details).

Now, define f : (−a, a)N → R as in Proposition 3.1. Then, f satisfies the inequality

|f1(x) − f(x)| ≤ 2ϵ (3.8)

for every x ∈ (−a, a)N .

Let G : RN → R be an additive function such that

|G(x) − f(x)| ≤ (5N − 1)(2cm + 6)ϵ (3.9)

for every x ∈ (−a, a)N .

Taking any x ∈ D, by (3.1), part ii) of (3.6), (3.7), (3.8), and (3.9), we get

|G(x) − f1(x)| =

∣∣∣∣cpmG

(
x

cpm

)
− f1(x)

∣∣∣∣
≤
∣∣∣∣cpmG

(
x

cpm

)
− cpmf1

(
x

cpm

)∣∣∣∣+

∣∣∣∣cpmf1

(
x

cpm

)
− f1(x)

∣∣∣∣
≤ cpm

[∣∣∣∣G( x

cpm

)
− f

(
x

cpm

)∣∣∣∣+

∣∣∣∣f ( x

cpm

)
− f1

(
x

cpm

)∣∣∣∣]+ (cpm − 1)2ϵ

≤ cpm[(5N − 1)(2cm + 6) + 2]ϵ + 2(cpm − 1)ϵ

= K1ϵ, (3.10)

for K1 = cpm[(5N − 1)(2cm + 6) + 4], G satisfies (1.3) by Lemma 3.1, and finally

|G(x) − g(x)| ≤ |G(x) − f1(x)| + |g(0)| ≤ K1ϵ +
1

cm − 2
ϵ = Kϵ

for every x ∈ D where K = K1 + 1/(cm − 2) > 0.

The next result follows ideas from [15] and refers to the Hyers-Ulam-Rassias stability of the
functional inequality ∣∣∣∣cmf

(
x + y

cm

)
− f(x) − f(y)

∣∣∣∣ ≤ δ + θ(∥x∥p + ∥y∥p) (3.11)

for p > 0 (p ̸= 1) and fixed δ, θ ≥ 0.

9
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Theorem 3.4. Let p > 0 be given with p ̸= 1. Suppose f : RN → R satisfies (3.11) for all x, y ∈ RN .
Then for all x ∈ RN there exists a unique function F : RN → R that satisfies (1.3) such that

1. if p < 1,

|f(x) − F (x)| ≤ m(δ + |f(0)|) +
θ

c1−p
m − 1

∥x∥p; (3.12)

2. if p > 1 and f(0) = δ = 0,

|f(x) − F (x)| ≤ cp−1
m θ

cp−1
m − 1

∥x∥p. (3.13)

Proof. (1) If p < 1, we will show, by induction on n, the inequality

|c−n
m f(cnmx) − f(x)| ≤ (δ + |f(0)|)

n∑
k=1

c−k
m + θ∥x∥p

n∑
k=1

c(p−1)k
m . (3.14)

In fact, by choosing y = 0 and taking cmx instead of x in (3.11), we obtain

|cmf(x) − f(cmx)| ≤ δ + |f(0)| + θ∥x∥pcpm.

If we divide by cm, it follows that (3.14) is true for n = 1. Now, assume that (3.14) holds for n (the
inductive hypothesis). It is clear that∣∣∣c−(n+1)

m f(cn+1
m x) − f(x)

∣∣∣ ≤ c−n
m

∣∣c−1
m f(cn+1

m x) − f(cnmx)
∣∣+ |c−n

m f(cnmx) − f(x)|, (3.15)

and since (3.14) is valid for n = 1 and for all x ∈ RN (in particular for cnmx instead of x),

c−n
m

∣∣c−1
m f(cn+1

m x) − f(cnmx)
∣∣ ≤ (δ + |f(0)| + θcp(n+1)

m ∥x∥p
)
c−(n+1)
m . (3.16)

By considering (3.16) and the inductive hypothesis, we get from (3.15)∣∣∣c−(n+1)
m f(cn+1

m x) − f(x)
∣∣∣ ≤ (δ+|f(0)|+θcp(n+1)

m ∥x∥p
)
c−(n+1)
m + (δ+|f(0)|)

n∑
k=1

c−k
m

+ θ∥x∥p
n∑

k=1

c(p−1)k
m

= (δ + |f(0)|)
n+1∑
k=1

c−k
m + θ∥x∥p

n+1∑
k=1

c(p−1)k
m .

This proves the validity of (3.14). Now, let x ∈ RN be given and consider the real sequence
{c−n

m f(cnmx)}. This is a Cauchy’s sequence since for n > r and by (3.14) (with n − r and crmx
instead of n and x, respectively), we have∣∣c−n

m f(cnmx) − c−r
m f(crmx)

∣∣ = c−r
m

∣∣∣c−(n−r)
m f(cn−r

m crmx) − f(crmx)
∣∣∣

≤ c−r
m

[
(δ + |f(0)|)

n−r∑
k=1

c−k
m + θcrpm ∥x∥p

n−r∑
k=1

c(p−1)k
m

]

≤ c−r
m

[
m(δ + |f(0)|) +

crpm

c1−p
m − 1

θ∥x∥p
]

→ 0 as r → +∞.

Therefore, this sequence converges. Let us see that the function defined by

F (x) = lim
n→+∞

c−n
m f(cnmx)

10
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for every x ∈ RN satisfies the required conclusion.

If x, y ∈ RN , then by (3.11)∣∣∣∣cmF

(
x + y

cm

)
−F (x)−F (y)

∣∣∣∣ = lim
n→+∞

c−n
m

∣∣∣∣cmf

(
cnmx + cnmy

cm

)
−f(cnmx)−f(cnmy)

∣∣∣∣
≤ lim

n→+∞
c−n
m [δ + θcnp

m (∥x∥p + ∥y∥p)]

= 0.

Thus, F satisfies (1.3), and (3.12) follows by finding the limit in (3.14). Moreover, if G : RN → R
is another function that satisfies (1.3) and (3.12), then by Lemma 2.1,

|F (x) −G(x)| =

∣∣∣∣ 1

cnm
F (cnmx) − 1

cnm
G(cnmx)

∣∣∣∣
≤ c−n

m |F (cnmx) − f(cnmx)| + |f(cnmx) −G(cnmx)|

≤ c−n
m

[
2m(δ + |f(0)|) +

2cnp
m

c1−p
m − 1

θ∥x∥p
]

→ 0 as n → +∞.

Hence, F (x) = G(x) for all x ∈ RN . So, F is unique.

(2) If p > 1 and f(0) = δ = 0, then the proof to obtain (3.13) comes out of a similar manner, it
means, by showing the inequality

|cnmf(c−n
m x) − f(x)| ≤ θ∥x∥p

n−1∑
k=0

c(1−p)k
m

instead of (3.14) and the equality F (x) = lim
n→+∞

cnmf(c−n
m x) for all x ∈ RN .

4 Conclusion

We have presented analysis of stability of the so called m-Jensen functional equation as a generalization
of the known Jensen equation which is set for mid-convex functions. At the same time these results
open the door of future research in areas like strongly m-Jensen convexity.
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