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Abstract

In this paper, Cantor’s intersection theorem and Baire’s category theorem are proven by using

G-metric spaces.
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1 Introduction

The concept of G- metric spaces was introduced by Mustafa and Sims [1] in order to extend and
generalize the notion of metric space. Many authors have focused on the fixed point results in
G- metric spaces (see e.g.[2, 3, 4, 5]).Also, Dhanorkar and Salunke proved fixed point theorems
in semicompatibility with an unbounded G-metric spaces [6], and using contractive condition of
integral type [7]. In this paper, I am proving Cantor’s intersection theorem and Baire’s category
theorem by using the concept and properties of G-metric spaces.
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2 Preliminary Notes

Definition 2.1 (see[l]). Let X be a nonempty set and G : X x X x X — R" be a function satisfying
the following properties:

(i) G(z,y,2z) =0 if x = y = z (Coincidence),

(i) G(z,z,y) > 0, for all x,y € X with x # vy,

(iii) G(z,z, z) < G(x,y, 2), for all x,y,z € X with z # y,

() G(z,y,z) = G(p{z, z,y}), where p is a permutation of x,y,z (Symmetric),

(v) G(z,y,2) < G(z,a,a) + G(a,y, z) for all x,y,z,a € X (Rectangular inequality).

Then the function G is called a generalized metric, or a G-metric on X, and the pair (X, G) is called
a G-metric space.

Every G-metric on X defines a metric dg on X by

da(z,y) = G(z,y,y) + Gy, z,x) for all z, y € X.

The following are examples of G-metric spaces.

Example 2.2 (see[l]). Let (R,d) be the usual metric space. Define Gs by
Gs(,y,2) = d(z,y) + d(y, 2) + d(z, 2)
for all z,y,z € R. Then it is clear that (R,Gs) is a G-metric space.
Example 2.3 (see[l]). Let X = {a,b}. Define G on X x X x X by
G(a,a,a) = G(b,b,b) =0,
G(a,a,b) =1,G(a,b,b) = 2.
Then it is clear that (X, G) is a G-metric space.

Definition 2.4 (see[l]). Let (X,G) be a G-metric space, and let {x,} be a sequence of points of
X, a point x inX is said to be the limit of the sequence {zy}, if imy m—oo G(T, Tn,Tm) — 0, and
we say that the sequence {zn} is G-convergent to x or {zn} G-converges to x.

Thus, z, — z in a G-metric space (X, G) if for any € > 0, there exists k € N such that G(z, Zn, Tm) <
e for all m,n > k.

Proposition 2.5 (see[l]). Let (X,G) be a G-metric space. Then the following are equivalent.
(1) {zn} is G-convergent to x.

(2) G(xn,zn,z) = 0 as n — +o0.

(3) G(zn,z,2) = 0 as n — +oo.

(4) G(xn,Tm,z) = 0 as n,m — oo.

Definition 2.6 (see[l]). Let (X,G) be a G-metric space a sequence {zy} is called G-Cauchy if for
every € > 0, there is k € N such that G(zn, Tm, x1) < €, for alln,m,l > k that is, G(Xn, Tm,x1) = 0
as n,m,l — +oo.

Definition 2.7 (see[l]). A G-metric space (X,G) is called G-complete if every G-Cauchy sequence
in (X,G) is G-convergent in (X,G).

Proposition 2.8 (see[l]). Let (X,G) be a G-metric space. Then the following are equivalent.

(¢) The sequence {zn} is G — Cauchy.
(i) For every € > 0, there is k € N such that G(Zn, Tm,Tm) <€, for all n,m > k.
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3 Open Ball in G-metric Space
Now we define the notion of open ball in G-metric space as follows.

Definition 3.1. Let (X,G) be a G-metric space, xo € X, r > 0, then B(xo,7) is called G-open or
open ball centered at xo with radius r if

B(zo,r) = {z0} U {x eX: sup G(zo,z,y) < r}

yEB* (zo,7)
where B (zo,7) = {x € X : G(xo,z,2) <71}

Definition 3.2. A set U in a G-metric space is said to be open if it contains a open ball. i.e. given
any point x € U, there exists r > 0 and an open ball B(z,r) such that B(xz,r) C U.

Remark 3.3. If 0 <71 <72 then
(i) B*(x0,71) C B*(x0,72)
(ZZ) B(Io,’l‘l) - B(mo,’l‘z)

Lemma 3.4. Every G-open ball B(xo,7),xz € X,7 > 0 is an open set in X.
Proof: Consider the ball B(xo,7) in X and let x € B(xo,r) then

sup  G(zo,z,a) =711 <r and G(zo,a,a) =12 <7
a€B*(xzg,r)

Now we choose 0 < ro = max{ri,r2} <r then

sup  G(zo,a,a) <rog<T
a€B*(xzg,r)

This implies x € B(a,r0) C B(zo,r) This proves that B(zo,r) is an open set in X.

4 G-metric Topology

In this section we discuss the topology on G-metric space X. We show that the collection g =
{B(zo,7) : z € X,r > 0} of G-open balls induces a topology on X, called G-metric topology.

Theorem 4.1. The collection B of all G-open balls forms a basis for a topology T on X.

Proof. Let T be a topology on X. To show that the collection B is a basis for T it is enough to show
that the collection B satisfies the following conditions:

(i) Obviously, X C (UgexB(z,7)) and

(31) of x € B(z1,7) N B(z2,7),r > 0 for some z1,z2 € X, then

sup G(z1,z,a) =51 <71 and sup  G(z1,z,b) =s2a <7
a€B*(xz1,r) beB*(xz2,r)

We choose 0 < s = max{s1,s2} < r then from remark 3.3 we have
B(z,s) € B(xz1,r) N B(z1,71)
The collection B is a basis for T .

Thus the G-metric space X together with a topology 7 generated by G-metric is called a G-metric
topological space and 7 is called G-metric topology on X.

A topological space X is called G-metrizable if there exists a G-metric G on X that induces a
topology on X. A G-metric space X is G-metrizable space together with the specific G-metric that
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induces the topology of X.

A set U is G-open in X in the G-metric topology 7 induced by G-metric G if and only if for each
x € U, there is a r > 0 such that B(x,r) C U. Similarly, a set V is called 7-closed if its compliment
X\ V is T-open.

Lemma 4.2. A subset U of (X,7) is G-open if and only if for any x € U there are finite real
numbers r1,r2,...,rn, > 0 such that

z € B(z,r1) N B(z,r2)N...N B(z,r,) CU
Proof. Since finite intersection of open ball is open, i.e.
B(z,r1) N B(z,r2) N...N B(z,75)
is open and hence U is G-open.

Conversely, let U be G-open and © € U. Consider a finite number of G- balls B(zi,r;) for i =
1,2,3,...,m such that

x € B(zi,r) CU

Since x € B(xi,1;) so G(z,xi,y) = i < 1i, where y € B*(x;,7;) fori = 1,2,3,...,m. Choose
t; < ©5*. Then B(xz,t;) N B(xi,t;) € B(xi,ri) holds for alli =1,2,3,...,m. So

z € B(z,t1) N B(x1,t1) N B(x,t2) N B(x2,t2) N B(x,tm) N B(Tm, tm)
m
C ﬂ B(z;,r;) C U.
i=1
This proves the lemma.
Theorem 4.3. Arbitrary union and finite intersection of open balls B(x,r), x € X are open.

Proof. Let € UB(z;,7;) € U then for some i, x € B(z;,r;) € U hence U is open.

Definition 4.4. A set U in a G-metric space X, is said to be closed if its complement X — U is
T-open.

Theorem 4.5. Finite union and arbitrary intersection of closed balls in a G-metric space are
closed.

Proof. Suppose B = Ui, B[z;,;], then it is sufficient to show that complement of B = C(B) is
open. C(B) = C(UjL, Blzi,ri]) = Ni=1C(BJz;,r:]) is open. Hence B is closed.

Now let Blz;,r;] be the collection of closed bolls and B = NBx;, rs].
Consider C(B) = C(NB[x;,r:]) = UC(NB[z;,7;]) is open. Hence B is closed.

Definition 4.6. A is called the G-closure of A if it is the intersection of all G-closed sets containing
A

B*(wo,7) = {zx € X : G(zo,z,x) < r} is the closure of B*(zo,r) and

B(zo,r) = {m €X: sup Gzo,z,y) < 7’} is the closure of B(zo,r).
yEB* (zo,r)

Remark 4.7. It is clear that B*(xo,7) C B*(xo,7) and B(zo,r) C B(zo,T).
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Lemma 4.8. If there exist a point x € B(zo, r) with G(zo,z,x) =11 < r, then B(xzo,m1) C B(zo,7).
Proof: For z € B(zo,r) with G(zo,z,z) =r1 < 7. Let

z € B(zo,m1)={2€X: sup G(zo,z,z) <ri}

zE€Bx*(z0,71)

C{zeX: sup G(mo,z,z)<r}

z€B*(xzq.7)

= B(zo, 7).

Definition 4.9. If A nonenpty subset of X, and x € (X,G) is said to be G-limit point of A, for
any G-open set U containing x, there exist

ANU - {2} = ¢.

Definition 4.10. A sequence {z,} in a G-metric space (X,G) is said to be convergent (or G-
convergent) if there exists an element x in X, for given € > 0 there exists ng € N such that
G(Tm, Tn, ) < € for all m,n > ng.

In such a case, it is said that {xn} converges to = and z is a limit point of {x»} and we write
Tn — .

Lemma 4.11. A sequence {zn} is convergent to x in (X,G) if and only if for any G-open set U
containing x there exists a positive integer m such that x,, € U for alln > m.

Proof. Suppose x € X and € > 0, since z € B(z,€) is G-open there exist m € N such that
ZTn € B(z,¢), for all n > m gives G(%n, xn,x) < € for n > m ie. G(Tn,Zn,x) = 0 as n — co. Thus
{zn} converges to z in (X, G).

Conversely, suppose {z,} converges to z in (X,G). Let U be a G- open set with z € U. From
Lemma 4.2, we have

x € B(z,r1) N B(z1,71) N B(z,m1) N B(z1,71) N--- N B(z,rg) N B(xk, %) C U.

For some x1,22, - ,xx € X and r1,72,--- ,7% > 0. Since G(zn, Tk, x) — 0 as n — oo, there exists
mi € N such that G(zn,z, k) < 71 for all n > my ie. x, € B(z, 1) for all n > my and this is
true for each ¢ = 1,2, -- k. Taking m = max{ri,r2--- , 7%} we obtain

Zn €B(x,71) N B(z1,71) N B(z,71) N B(z1,71) N - -+
N B(z,rx) N B(zk, %) CU, Vn >m.

Thus the lemma is proved.
Definition 4.12. A C X is said to be dense in X if A = X.

Definition 4.13. A C X is said to be no-where dense if int(A) = ¢ where interior of a set B is
defined to be the union of all G-open sets contained in B.

5 Cantor’s and Baire’s Theorem in G-metric Spaces
We define for A C X, and

0a(A) = sup{G(x,y,a) : z,y € A}

aceX

The term d,(A) need not be considered as the diameter of A.
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Lemma 5.1. For any AC X and a € X, then §.(A) = da(A)

Proof: Since A C A it follows that §(A) < §o(A). Now let z,y € A. If both x,y € A, then clearly
G(z,y,a) < 0q(A). If suppose first that one of them, say, © ¢ A but y € A. Let 0 < e1 < € and
since © € A there exists z such that 2 € AN B(z,e1) and this also implies z € AN B(x,¢) as
z € AN B(z,e1) C AN B(x,¢). Therefore

G(z,y,a) < G(z,2,2) + G(z,y,a)
<Gy, 2,a) +¢
Since this is true for every € > 0, we conclude that
G(z,y,a) < 6a(A) for y€ A and z € A.

Finally, if x,y € A — A then repeating the same argument we can show that in this case also
G(x,y,a) < da(A). Hence

5a(A) = Sup{G(z, ,a) : 2,y € A} < 8a(A)
50 04 (A) = d4(A).

Theorem 5.2. Cantor’s Intersection Throrem Suppose that (X,G) is a complete G-metric
space. If {F,} is any decreasing sequence of G-closed sets with §,(F,) — 0 asn — 0o, Va € X then
N,, Fr is non-empty and contains at most one point.

Proof: Let x, be a point of F,, for each positive integer n. First we show {z,} is Cauchy in X.
Since {F,} is decreasing, &, € F,, for all m > n. Now for any arbitrary a € X, m > n

G(Tm,Zn,a) < 0a(Fn) =0

as n — oo. This shows that {z,} is a Cauchy sequence in X. Since X is complete, there is x € X such
that z, — . Now our aim to show that z € NFn. If xx # = from some k onward, otherwise there
is nothing to prove. Let n € N be fixed. Let U be any G-open set containing x. By Lemma 4.11,
there is n1 € N such that zx € U, for all k > nq1. Then zy € [U — {x}|N F,, for all k > max{n,ni}.
This shows that x € F,, = n, since F, is G-closed. As this is true for alln € N, z € (| Fi,.

Now we have to show [ F,, contains exactly one point. suppose that it contains two distinct points
x and y. Choose z € X,z #x # y.

G(UC»?L Z) < éz(Fn), Vn € N.

Since 6. (F,) — 0 as n — oo gives G(z,y,z) = 0 i.e. £ = y = z which is a contradiction. Hence
This proves NF), contains exactly one point.

Theorem 5.3. If in a G-metric space (X,G), for any decreasing sequence of G- closed sets {F,}
with da(Fn) — 0 asn — oo for alla € X, (N, Fn consists of a single point, then (X, G) is complete.

Proof: Let {zn} be a Cauchy sequence in X. Let F, = {zn,Tpn41,--+} for any n € N. Then
F,, D Fy11 gives F, D Fyqq, for all n € N. So {F,} is a decreasing sequence of G-closed sets. For
a € X and € > 0 be a arbitrary, there is n1 € N such that

G(Tm,Tn,a) <€ Ym,n>ni.

This gives dq(Fpn,) < € and so by Lemma 5.1 we can write 64(Fn,) < e. Since {F,} is decreasing,
for n > n, 6G(Fn) < Ja(F,zl) < e. Therefore Ja(ﬁn) — 0 as n — oo. Hence by the given condition,
N E. = {x0}, say. This gives that for any a € X, G(xn,z0,a) < §o(Fn) — 0 as n — oo which
implies x,, — 2o in X and hence (X, G) is complete.
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Lemma 5.4. For any xo € X and r > 0,

C(zo,r) ={zo}U{z e X: sup G(zo,z,y)}
yeC* (x0,r)

where C*(zg,7) = {z € X : G(xo,z,z) < 1} then C(xo,r) is G-closed set.
Proof: We will show that no point outside C(zo,7) is a G-limit point of C(zo,r). Let d ¢ C(zo, 7).
Then G(zo,y,d) > r. If possible, let d be a G-limit point of C(xo,7). Let € > 0 be given. Since
B(zo,e)NB(d, €) is a G-open set containing d, there exists e € C(zo,7) N (B(mo, e)NB(d,e) — {d})
Then
G(zo,y,d) < G(zo,€,€) + G(e, y,d)
< G(zo,y, ) + Gle,y,d)
<r+e

Since € > 0, we have G(xo,y,d) < r which is a contradiction. Thus d cannot be a G-limit point of
C(zo,r). Hence C(zo,r) contains all its G-limit points and so C(zo,r) is G-closed.

Theorem 5.5. Baire’s Category Theorem

A complete G-metric space (X, G) satisfying the condition X C (UzexB(z,r)) for every pair of
points x,y € X, there exists a sequence of G-closed balls { By, } with center at x and with §,(Br) — 0
as n — oo, for all a € X.

Proof: Suppose if possible,
X=Ux.= X
nenN nenN

where each X, is no-where dense i.e. X, does not contain any non-empty G-open set. Let U be
any G-open set. Since X; is no-where dense, X; cannot contain U. So there exists 1 € U such
that #1 ¢ Xi. Since U — X; is G-open and x1 € U — X1, by Lemma 4.2 there exists some real
r1,72, -,y all positive such that

rmeVicU—-X;
where Vi = B(z1,r1) N B(z1,r2) N -+ N B(z1,70)
Without any loss of generality, because of the condition X C (Ugzex B(z,7)), we can choose B(z1,71)
such that dq(B(z1,71)) < 1 for all @ € X. Then §,(V1) < 1 for all a € X. Choose
U, = B(xl,r1/2) N---N B(xl,rn/Q)
Then by Lemma 5.4
Ui C C(LIZ’1,7"1/2) M--- 00(331,7"”/2) cVicU— Xl

and 6a7(lj1) < 0.(Vi) < 1, for all a € X. Again since U; is G-open and X is no-where dense,
Uy — X2 # ¢. So there exists z2 € U; — X2. Continuing as above we can find a G-open set Uz such
that

22 €Uy CU; CUL — X
and §q(U2) < 1/2 for all a € X.

Continuing in this way we obtain a sequence ofiG—closed sets {Un} such that U,41 C U, for all
n € N, 0a(Un) < 1/n for all a € X ie. 0a(Un) — 0 as n — oo for all @ € X. By Cantors
Intersection Theorem 5.2, (U, is non-empty and contains at most one point. Let (\Un = {z0o}.

Since U, N X, = ¢ foralln € N, zo ¢ () X, which is a contradiction. This proves the theorem.
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Conclusion

In this work I have proved results on open and closed ball in G-metrics space and using using theory
of G-metric space proved Canter’s Intersection and Baire’s Category theorems.
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