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Abstract

In this paper, Cantor’s intersection theorem and Baire’s category theorem are proven by using

G-metric spaces.
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1 Introduction

The concept of G- metric spaces was introduced by Mustafa and Sims [1] in order to extend and
generalize the notion of metric space. Many authors have focused on the fixed point results in
G- metric spaces (see e.g.[2, 3, 4, 5]).Also, Dhanorkar and Salunke proved fixed point theorems
in semicompatibility with an unbounded G-metric spaces [6], and using contractive condition of
integral type [7]. In this paper, I am proving Cantor’s intersection theorem and Baire’s category
theorem by using the concept and properties of G-metric spaces.
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2 Preliminary Notes

Definition 2.1 (see[1]). Let X be a nonempty set and G : X×X×X → R+ be a function satisfying
the following properties:
(i) G(x, y, z) = 0 if x = y = z (Coincidence),
(ii) G(x, x, y) > 0, for all x, y ∈ X with x ̸= y,
(iii) G(x, x, z) ≤ G(x, y, z), for all x, y, z ∈ X with z ̸= y,
(iv) G(x, y, z) = G(ρ{x, z, y}), where ρ is a permutation of x, y, z (Symmetric),
(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (Rectangular inequality).

Then the function G is called a generalized metric, or a G-metric on X, and the pair (X,G) is called
a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

The following are examples of G-metric spaces.

Example 2.2 (see[1]). Let (R, d) be the usual metric space. Define Gs by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ R. Then it is clear that (R, Gs) is a G-metric space.

Example 2.3 (see[1]). Let X = {a, b}. Define G on X ×X ×X by

G(a, a, a) = G(b, b, b) = 0,

G(a, a, b) = 1, G(a, b, b) = 2.

Then it is clear that (X,G) is a G-metric space.

Definition 2.4 (see[1]). Let (X,G) be a G-metric space, and let {xn} be a sequence of points of
X, a point x inX is said to be the limit of the sequence {xn}, if limn,m→∞ G(x, xn, xm) → 0, and
we say that the sequence {xn} is G-convergent to x or {xn} G-converges to x.

Thus, xn → x in a G-metric space (X,G) if for any ϵ > 0, there exists k ∈ N such thatG(x, xn, xm) <
ϵ for all m,n ≥ k.

Proposition 2.5 (see[1]). Let (X,G) be a G-metric space. Then the following are equivalent.
(1) {xn} is G-convergent to x.
(2) G(xn, xn, x) → 0 as n → +∞.
(3) G(xn, x, x) → 0 as n → +∞.
(4) G(xn, xm, x) → 0 as n,m → ∞.

Definition 2.6 (see[1]). Let (X,G) be a G-metric space a sequence {xn} is called G-Cauchy if for
every ϵ > 0, there is k ∈ N such that G(xn, xm, xl) < ϵ, for all n,m, l ≥ k that is, G(xn, xm, xl) → 0
as n,m, l → +∞.

Definition 2.7 (see[1]). A G-metric space (X,G) is called G-complete if every G-Cauchy sequence
in (X,G) is G-convergent in (X,G).

Proposition 2.8 (see[1]). Let (X,G) be a G-metric space. Then the following are equivalent.

(i) The sequence {xn} is G− Cauchy.

(ii) For every ϵ > 0, there is k ∈ N such that G(xn, xm, xm) < ϵ, for all n,m ≥ k.
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3 Open Ball in G-metric Space

Now we define the notion of open ball in G-metric space as follows.

Definition 3.1. Let (X,G) be a G-metric space, x0 ∈ X, r > 0, then B(x0, r) is called G-open or
open ball centered at x0 with radius r if

B(x0, r) = {x0} ∪
{
x ∈ X : sup

y∈B∗(x0,r)

G(x0, x, y) < r
}

where B∗(x0, r) = {x ∈ X : G(x0, x, x) < r}

Definition 3.2. A set U in a G-metric space is said to be open if it contains a open ball. i.e. given
any point x ∈ U , there exists r > 0 and an open ball B(x, r) such that B(x, r) ⊂ U .

Remark 3.3. If 0 < r1 < r2 then
(i) B∗(x0, r1) ⊂ B∗(x0, r2)
(ii) B(x0, r1) ⊂ B(x0, r2)

Lemma 3.4. Every G-open ball B(x0, r), x ∈ X, r > 0 is an open set in X.
Proof: Consider the ball B(x0, r) in X and let x ∈ B(x0, r) then

sup
a∈B∗(x0,r)

G(x0, x, a) = r1 < r and G(x0, a, a) = r2 < r.

Now we choose 0 < r0 = max{r1, r2} < r then

sup
a∈B∗(x0,r)

G(x0, a, a) ≤ r0 < r

This implies x ∈ B(a, r0) ⊂ B(x0, r) This proves that B(x0, r) is an open set in X.

4 G-metric Topology

In this section we discuss the topology on G-metric space X. We show that the collection β =
{B(x0, r) : x ∈ X, r > 0} of G-open balls induces a topology on X, called G-metric topology.

Theorem 4.1. The collection β of all G-open balls forms a basis for a topology τ on X.
Proof. Let τ be a topology on X. To show that the collection β is a basis for τ it is enough to show
that the collection β satisfies the following conditions:
(i) Obviously, X ⊂ (∪x∈XB(x, r)) and
(ii) if x ∈ B(x1, r) ∩B(x2, r), r > 0 for some x1, x2 ∈ X, then

sup
a∈B∗(x1,r)

G(x1, x, a) = s1 < r and sup
b∈B∗(x2,r)

G(x1, x, b) = s2 < r

We choose 0 < s = max{s1, s2} < r then from remark 3.3 we have

B(x, s) ∈ B(x1, r) ∩B(x1, r)

The collection β is a basis for τ .

Thus the G-metric space X together with a topology τ generated by G-metric is called a G-metric
topological space and τ is called G-metric topology on X.

A topological space X is called G-metrizable if there exists a G-metric G on X that induces a
topology on X. A G-metric space X is G-metrizable space together with the specific G-metric that
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induces the topology of X.

A set U is G-open in X in the G-metric topology τ induced by G-metric G if and only if for each
x ∈ U , there is a r > 0 such that B(x, r) ⊂ U . Similarly, a set V is called τ -closed if its compliment
X \ V is τ -open.

Lemma 4.2. A subset U of (X, τ) is G-open if and only if for any x ∈ U there are finite real
numbers r1, r2, ..., rn > 0 such that

x ∈ B(x, r1) ∩B(x, r2) ∩ ... ∩B(x, rn) ⊂ U

Proof. Since finite intersection of open ball is open, i.e.

B(x, r1) ∩B(x, r2) ∩ ... ∩B(x, rn)

is open and hence U is G-open.

Conversely, let U be G-open and x ∈ U . Consider a finite number of G- balls B(xi, ri) for i =
1, 2, 3, ...,m such that

x ∈ B(xi, ri) ⊂ U

Since x ∈ B(xi, ri) so G(x, xi, y) = si < ri, where y ∈ B∗(xi, ri) for i = 1, 2, 3, ...,m. Choose
ti <

ri−si
2

. Then B(x, ti) ∩B(xi, ti) ∈ B(xi, ri) holds for all i = 1, 2, 3, ...,m. So

x ∈ B(x, t1) ∩B(x1, t1) ∩B(x, t2) ∩B(x2, t2) ∩B(x, tm) ∩B(xm, tm)

⊂
m∩
i=1

B(xi, ri) ⊂ U.

This proves the lemma.

Theorem 4.3. Arbitrary union and finite intersection of open balls B(x, r), x ∈ X are open.

Proof. Let x ∈ ∪B(xi, ri) ∈ U then for some i, x ∈ B(xi, ri) ∈ U hence U is open.

Definition 4.4. A set U in a G-metric space X, is said to be closed if its complement X − U is
τ -open.

Theorem 4.5. Finite union and arbitrary intersection of closed balls in a G-metric space are
closed.

Proof. Suppose B = ∪n
i=1B[xi, ri], then it is sufficient to show that complement of B = C(B) is

open. C(B) = C(∪n
i=1B[xi, ri]) = ∩n

i=1C(B[xi, ri]) is open. Hence B is closed.

Now let B[xi, ri] be the collection of closed bolls and B = ∩B[xi, ri].
Consider C(B) = C(∩B[xi, ri]) = ∪C(∩B[xi, ri]) is open. Hence B is closed.

Definition 4.6. A is called the G-closure of A if it is the intersection of all G-closed sets containing
A

B∗(x0, r) =
{
x ∈ X : G(x0, x, x) ≤ r

}
is the closure of B∗(x0, r) and

B(x0, r) =
{
x ∈ X : sup

y∈B∗(x0,r)

G(x0, x, y) ≤ r
}

is the closure of B(x0, r).

Remark 4.7. It is clear that B∗(x0, r) ⊂ B∗(x0, r) and B(x0, r) ⊂ B(x0, r).
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Lemma 4.8. If there exist a point x ∈ B(x0, r) with G(x0, x, x) = r1 < r, then B(x0, r1) ⊂ B(x0, r).

Proof: For x ∈ B(x0, r) with G(x0, x, x) = r1 < r. Let

x ∈ B(x0, r1) = {z ∈ X : sup
x∈B∗(x0,r1)

G(x0, x, x) ≤ r1}

⊆ {z ∈ X : sup
x∈B∗(x0,r)

G(x0, x, x) < r}

= B(x0, r).

Definition 4.9. If A nonenpty subset of X, and x ∈ (X,G) is said to be G-limit point of A, for
any G-open set U containing x, there exist

A ∩ U − {x} = ϕ.

Definition 4.10. A sequence {xn} in a G-metric space (X,G) is said to be convergent (or G-
convergent) if there exists an element x in X, for given ϵ > 0 there exists n0 ∈ N such that
G(xm, xn, x) < ϵ for all m,n ≥ n0.
In such a case, it is said that {xn} converges to x and x is a limit point of {xn} and we write
xn → x.

Lemma 4.11. A sequence {xn} is convergent to x in (X,G) if and only if for any G-open set U
containing x there exists a positive integer m such that xn ∈ U for all n ≥ m.

Proof. Suppose x ∈ X and ϵ > 0, since x ∈ B(x, ϵ) is G-open there exist m ∈ N such that
xn ∈ B(x, ϵ), for all n ≥ m gives G(xn, xn, x) < ϵ for n ≥ m i.e. G(xn, xn, x) → 0 as n → ∞. Thus
{xn} converges to x in (X,G).

Conversely, suppose {xn} converges to x in (X,G). Let U be a G- open set with x ∈ U . From
Lemma 4.2, we have

x ∈ B(x, r1) ∩B(x1, r1) ∩B(x, r1) ∩B(x1, r1) ∩ · · · ∩B(x, rk) ∩B(xk, rk) ⊂ U.

For some x1, x2, · · · , xk ∈ X and r1, r2, · · · , rk > 0. Since G(xn, xk, x) → 0 as n → ∞, there exists
mk ∈ N such that G(xn, x, xk) < rk for all n ≥ mk i.e. xn ∈ B(x, rk) for all n ≥ mk and this is
true for each i = 1, 2, · · · k. Taking m = max{r1, r2 · · · , rk} we obtain

xn ∈B(x, r1) ∩B(x1, r1) ∩B(x, r1) ∩B(x1, r1) ∩ · · ·
∩B(x, rk) ∩B(xk, rk) ⊂ U, ∀n ≥ m.

Thus the lemma is proved.

Definition 4.12. A ⊂ X is said to be dense in X if Ā = X.

Definition 4.13. A ⊂ X is said to be no-where dense if int(Ā) = ϕ where interior of a set B is
defined to be the union of all G-open sets contained in B.

5 Cantor’s and Baire’s Theorem in G-metric Spaces

We define for A ⊂ X, and

δa(A) = sup
a∈X

{G(x, y, a) : x, y ∈ A}

The term δa(A) need not be considered as the diameter of A.
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Lemma 5.1. For any A ⊂ X and a ∈ X, then δa(A) = δa(Ā)

Proof: Since A ⊂ Ā it follows that δa(A) ≤ δa(Ā). Now let x, y ∈ Ā. If both x, y ∈ A, then clearly
G(x, y, a) ≤ δa(A). If suppose first that one of them, say, x /∈ A but y ∈ A. Let 0 < ϵ1 < ϵ and
since x ∈ Ā there exists z such that z ∈ A ∩ B(x, ϵ1) and this also implies z ∈ A ∩ B(x, ϵ) as
z ∈ A ∩B(x, ϵ1) ⊂ A ∩B(x, ϵ). Therefore

G(x, y, a) ≤ G(x, z, z) +G(z, y, a)

≤ G(y, z, a) + ϵ

Since this is true for every ϵ > 0, we conclude that

G(x, y, a) ≤ δa(A) for y ∈ A and x ∈ Ā.

Finally, if x, y ∈ Ā − A then repeating the same argument we can show that in this case also
G(x, y, a) ≤ δa(A). Hence

δa(Ā) = sup{G(x, y, a) : x, y ∈ Ā} ≤ δa(A)

so δa(A) = δa(Ā).

Theorem 5.2. Cantor’s Intersection Throrem Suppose that (X,G) is a complete G-metric
space. If {Fn} is any decreasing sequence of G-closed sets with δa(Fn) → 0 as n → ∞, ∀a ∈ X then∩

n Fn is non-empty and contains at most one point.

Proof: Let xn be a point of Fn, for each positive integer n. First we show {xn} is Cauchy in X.
Since {Fn} is decreasing, xm ∈ Fn for all m ≥ n. Now for any arbitrary a ∈ X, m ≥ n

G(xm, xn, a) ≤ δa(Fn) → 0

as n → ∞. This shows that {xn} is a Cauchy sequence in X. Since X is complete, there is x ∈ X such
that xn → x. Now our aim to show that x ∈ ∩Fn. If xk ̸= x from some k onward, otherwise there
is nothing to prove. Let n ∈ N be fixed. Let U be any G-open set containing x. By Lemma 4.11,
there is n1 ∈ N such that xk ∈ U , for all k ≥ n1. Then xk ∈ [U −{x}]∩Fn, for all k ≥ max{n, n1}.
This shows that x ∈ F̄n = Fn, since Fn is G-closed. As this is true for all n ∈ N , x ∈

∩
Fn.

Now we have to show
∩

Fn contains exactly one point. suppose that it contains two distinct points
x and y. Choose z ∈ X, z ̸= x ̸= y.

G(x, y, z) ≤ δz(Fn), ∀n ∈ N.

Since δz(Fn) → 0 as n → ∞ gives G(x, y, z) = 0 i.e. x = y = z which is a contradiction. Hence
This proves ∩Fn contains exactly one point.

Theorem 5.3. If in a G-metric space (X,G), for any decreasing sequence of G- closed sets {Fn}
with δa(Fn) → 0 as n → ∞ for all a ∈ X,

∩
n Fn consists of a single point, then (X,G) is complete.

Proof: Let {xn} be a Cauchy sequence in X. Let Fn = {xn, xn+1, · · · } for any n ∈ N . Then
Fn ⊃ Fn+1 gives F̄n ⊃ F̄n+1, for all n ∈ N . So {Fn} is a decreasing sequence of G-closed sets. For
a ∈ X and ϵ > 0 be a arbitrary, there is n1 ∈ N such that

G(xm, xn, a) ≤ ϵ, ∀m,n ≥ n1.

This gives δa(Fn1) ≤ ϵ and so by Lemma 5.1 we can write δa(F̄n1) ≤ ϵ. Since {F̄n} is decreasing,
for n ≥ n1, δa(F̄n) ≤ δa( ¯Fn1) ≤ ϵ. Therefore δa(F̄n) → 0 as n → ∞. Hence by the given condition,∩

F̄n = {x0}, say. This gives that for any a ∈ X, G(xn, x0, a) ≤ δa(F̄n) → 0 as n → ∞ which
implies xn → x0 in X and hence (X,G) is complete.
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Lemma 5.4. For any x0 ∈ X and r > 0,

C(x0, r) = {x0} ∪ {x ∈ X : sup
y∈C⋆(x0,r)

G(x0, x, y)}

where C⋆(x0, r) = {x ∈ X : G(x0, x, x) ≤ r} then C(x0, r) is G-closed set.

Proof: We will show that no point outside C(x0, r) is a G-limit point of C(x0, r). Let d /∈ C(x0, r).
Then G(x0, y, d) > r. If possible, let d be a G-limit point of C(x0, r). Let ϵ > 0 be given. Since

B(x0, ϵ)∩B(d, ϵ) is a G-open set containing d, there exists e ∈ C(x0, r)∩
(
B(x0, ϵ)∩B(d, ϵ)−{d}

)
.

Then

G(x0, y, d) ≤ G(x0, e, e) +G(e, y, d)

≤ G(x0, y, e) +G(e, y, d)

< r + ϵ

Since ϵ > 0, we have G(x0, y, d) ≤ r which is a contradiction. Thus d cannot be a G-limit point of
C(x0, r). Hence C(x0, r) contains all its G-limit points and so C(x0, r) is G-closed.

Theorem 5.5. Baire’s Category Theorem
A complete G-metric space (X,G) satisfying the condition X ⊂ (∪x∈XB(x, r)) for every pair of
points x, y ∈ X, there exists a sequence of G-closed balls {Bn} with center at x and with δa(Bn) → 0
as n → ∞, for all a ∈ X.

Proof: Suppose if possible,

X =
∪
n∈N

Xn =
∪
n∈N

X̄n

where each Xn is no-where dense i.e. Xn does not contain any non-empty G-open set. Let U be
any G-open set. Since X1 is no-where dense, X1 cannot contain U. So there exists x1 ∈ U such
that x1 /∈ X1. Since U − X̄1 is G-open and x1 ∈ U − X̄1, by Lemma 4.2 there exists some real
r1, r2, · · · , rn all positive such that

x1 ∈ V1 ⊂ U − X̄1

where V1 = B(x1, r1) ∩B(x1, r2) ∩ · · · ∩B(x1, rn)
Without any loss of generality, because of the conditionX ⊂ (∪x∈XB(x, r)), we can choose B(x1, r1)
such that δa(B(x1, r1)) < 1 for all a ∈ X. Then δa(V1) < 1 for all a ∈ X. Choose

U1 = B(x1, r1/2) ∩ · · · ∩B(x1, rn/2)

Then by Lemma 5.4

U1 ⊂ C(x1, r1/2) ∩ · · · ∩ C(x1, rn/2) ⊂ V1 ⊂ U − X̄1

and δa(Ū1) ≤ δa(V1) < 1, for all a ∈ X. Again since U1 is G-open and X2 is no-where dense,
U1 − X̄2 ̸= ϕ. So there exists x2 ∈ U1 − X̄2. Continuing as above we can find a G-open set U2 such
that

x2 ∈ U2 ⊂ Ū2 ⊂ U1 − X̄2

and δa(Ū2) < 1/2 for all a ∈ X.

Continuing in this way we obtain a sequence of G-closed sets {Ūn} such that Ūn+1 ⊂ Ūn for all
n ∈ N , δa(Ūn) < 1/n for all a ∈ X i.e. δa(Ūn) → 0 as n → ∞ for all a ∈ X. By Cantors
Intersection Theorem 5.2,

∩
Ūn is non-empty and contains at most one point. Let

∩
Ūn = {x0}.

Since Ūn ∩ X̄n = ϕ for all n ∈ N , x0 /∈
∩

X̄n which is a contradiction. This proves the theorem.
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6 Conclusion

In this work I have proved results on open and closed ball in G-metrics space and using using theory
of G-metric space proved Canter’s Intersection and Baire’s Category theorems.
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