

SCIENCEDOMAIN international www.sciencedomain.org

Applying G-metric Space for Cantor's Intersection and Baire's Category Theorem

G. A. Dhanorkar^{1*}

¹ VPKBIET, Vidyanagari, MIDC, Baramati, Pune (MS), India.

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2017/30935 <u>Editor(s)</u>: (1) Andrej V. Plotnikov, Department of Applied and Calculus Mathematics and CAD, Odessa State Academy of Civil Engineering and Architecture, Ukraine. <u>Reviewers</u>: (1) Ali Mutlu, Celal Bayar University, Muradiye Campus, Turkey. (2) Mahkame Megan Khoshyaran, Economics Traffic Clinic - ETC, France. (3) Anil Kumar, Government College Bahu, Jhajjar, Haryana, India. Complete Peer review History: http://www.sciencedomain.org/review-history/18359

Original Research Article

Received: 9th December 2016 Accepted: 3rd February 2017 Published: 27th March 2017

Abstract

In this paper, Cantor's intersection theorem and Baire's category theorem are proven by using G-metric spaces.

Keywords: G- metric space; G-open; G-closed; G-closure; G-Cauchy.

Mathematics Subject Classification: 47H10, 54H25.

1 Introduction

The concept of G- metric spaces was introduced by Mustafa and Sims [1] in order to extend and generalize the notion of metric space. Many authors have focused on the fixed point results in G- metric spaces (see e.g.[2, 3, 4, 5]). Also, Dhanorkar and Salunke proved fixed point theorems in semicompatibility with an unbounded G-metric spaces [6], and using contractive condition of integral type [7]. In this paper, I am proving Cantor's intersection theorem and Baire's category theorem by using the concept and properties of G-metric spaces.

^{*}Corresponding author: E-mail: gdhanorkar81@yahoo.com;

2 Preliminary Notes

Definition 2.1 (see[1]). Let X be a nonempty set and $G : X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

 $\begin{array}{l} (i) \ G(x,y,z) = 0 \ if \ x = y = z \ (Coincidence), \\ (ii) \ G(x,x,y) > 0, \ for \ all \ x,y \in X \ with \ x \neq y, \\ (iii) \ G(x,x,z) \leq G(x,y,z), \ for \ all \ x,y,z \in X \ with \ z \neq y, \\ (iv) \ G(x,y,z) = G(\rho\{x,z,y\}), \ where \ \rho \ is \ a \ permutation \ of \ x,y,z \ (Symmetric), \\ (v) \ G(x,y,z) \leq G(x,a,a) + G(a,y,z) \ for \ all \ x,y,z,a \in X \ (Rectangular \ inequality). \end{array}$

Then the function G is called a generalized metric, or a G-metric on X, and the pair (X, G) is called a G-metric space.

Every G-metric on X defines a metric d_G on X by

 $d_G(x,y) = G(x,y,y) + G(y,x,x) \text{ for all } x, y \in X.$

The following are examples of G-metric spaces.

Example 2.2 (see[1]). Let (\mathbb{R}, d) be the usual metric space. Define G_s by

 $G_s(x, y, z) = d(x, y) + d(y, z) + d(x, z)$

for all $x, y, z \in \mathbb{R}$. Then it is clear that (\mathbb{R}, G_s) is a G-metric space. Example 2.3 (see[1]). Let $X = \{a, b\}$. Define G on $X \times X \times X$ by

$$G(a, a, a) = G(b, b, b) = 0,$$

 $G(a, a, b) = 1, G(a, b, b) = 2.$

Then it is clear that (X, G) is a G-metric space.

Definition 2.4 (see[1]). Let (X, G) be a *G*-metric space, and let $\{x_n\}$ be a sequence of points of X, a point x in X is said to be the limit of the sequence $\{x_n\}$, if $\lim_{n,m\to\infty} G(x, x_n, x_m) \to 0$, and we say that the sequence $\{x_n\}$ is *G*-convergent to x or $\{x_n\}$ *G*-converges to x.

Thus, $x_n \to x$ in a G-metric space (X, G) if for any $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that $G(x, x_n, x_m) < \epsilon$ for all $m, n \ge k$.

Proposition 2.5 (see[1]). Let (X, G) be a G-metric space. Then the following are equivalent.

(1) $\{x_n\}$ is G-convergent to x.

(2) $G(x_n, x_n, x) \to 0 \text{ as } n \to +\infty.$

(3) $G(x_n, x, x) \to 0 \text{ as } n \to +\infty.$

(4) $G(x_n, x_m, x) \to 0 \text{ as } n, m \to \infty.$

Definition 2.6 (see[1]). Let (X, G) be a *G*-metric space a sequence $\{x_n\}$ is called *G*-Cauchy if for every $\epsilon > 0$, there is $k \in \mathbb{N}$ such that $G(x_n, x_m, x_l) < \epsilon$, for all $n, m, l \ge k$ that is, $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

Definition 2.7 (see[1]). A G-metric space (X, G) is called G-complete if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 2.8 (see[1]). Let (X, G) be a G-metric space. Then the following are equivalent.

- (i) The sequence $\{x_n\}$ is G Cauchy.
- (ii) For every $\epsilon > 0$, there is $k \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \epsilon$, for all $n, m \ge k$.

3 Open Ball in G-metric Space

Now we define the notion of open ball in G-metric space as follows.

Definition 3.1. Let (X,G) be a G-metric space, $x_0 \in X$, r > 0, then $B(x_0,r)$ is called G-open or open ball centered at x_0 with radius r if

$$B(x_0, r) = \{x_0\} \cup \left\{ x \in X : \sup_{y \in B^*(x_0, r)} G(x_0, x, y) < r \right\}$$

where $B^*(x_0, r) = \{x \in X : G(x_0, x, x) < r\}$

Definition 3.2. A set U in a G-metric space is said to be open if it contains a open ball. i.e. given any point $x \in U$, there exists r > 0 and an open ball B(x, r) such that $B(x, r) \subset U$.

Remark 3.3. If $0 < r_1 < r_2$ then (i) $B^*(x_0, r_1) \subset B^*(x_0, r_2)$ (ii) $B(x_0, r_1) \subset B(x_0, r_2)$

Lemma 3.4. Every G-open ball $B(x_0, r), x \in X, r > 0$ is an open set in X. Proof: Consider the ball $B(x_0, r)$ in X and let $x \in B(x_0, r)$ then

$$\sup_{a \in B^*(x_0, r)} G(x_0, x, a) = r_1 < r \text{ and } G(x_0, a, a) = r_2 < r.$$

Now we choose $0 < r_0 = \max\{r_1, r_2\} < r$ *then*

$$\sup_{a \in B^*(x_0, r)} G(x_0, a, a) \le r_0 < r$$

This implies $x \in B(a, r_0) \subset B(x_0, r)$ This proves that $B(x_0, r)$ is an open set in X.

4 G-metric Topology

In this section we discuss the topology on G-metric space X. We show that the collection $\beta = \{B(x_0, r) : x \in X, r > 0\}$ of G-open balls induces a topology on X, called G-metric topology.

Theorem 4.1. The collection β of all G-open balls forms a basis for a topology τ on X. Proof. Let τ be a topology on X. To show that the collection β is a basis for τ it is enough to show that the collection β satisfies the following conditions: (i) Obviously, $X \subset (\bigcup_{x \in X} B(x, r))$ and

(*ii*) if $x \in B(x_1, r) \cap B(x_2, r), r > 0$ for some $x_1, x_2 \in X$, then

$$\sup_{a \in B^*(x_1, r)} G(x_1, x, a) = s_1 < r \text{ and } \sup_{b \in B^*(x_2, r)} G(x_1, x, b) = s_2 < r$$

We choose $0 < s = \max\{s_1, s_2\} < r$ then from remark 3.3 we have

$$B(x,s) \in B(x_1,r) \cap B(x_1,r)$$

The collection β is a basis for τ .

Thus the G-metric space X together with a topology τ generated by G-metric is called a G-metric topological space and τ is called G-metric topology on X.

A topological space X is called G-metrizable if there exists a G-metric G on X that induces a topology on X. A G-metric space X is G-metrizable space together with the specific G-metric that

induces the topology of X.

A set U is G-open in X in the G-metric topology τ induced by G-metric G if and only if for each $x \in U$, there is a r > 0 such that $B(x, r) \subset U$. Similarly, a set V is called τ -closed if its compliment $X \setminus V$ is τ -open.

Lemma 4.2. A subset U of (X, τ) is G-open if and only if for any $x \in U$ there are finite real numbers $r_1, r_2, ..., r_n > 0$ such that

 $x \in B(x, r_1) \cap B(x, r_2) \cap \ldots \cap B(x, r_n) \subset U$

Proof. Since finite intersection of open ball is open, i.e.

$$B(x,r_1) \cap B(x,r_2) \cap \ldots \cap B(x,r_n)$$

is open and hence U is G-open.

Conversely, let U be G-open and $x \in U$. Consider a finite number of G- balls $B(x_i, r_i)$ for i = 1, 2, 3, ..., m such that

$$x \in B(x_i, r_i) \subset U$$

Since $x \in B(x_i, r_i)$ so $G(x, x_i, y) = s_i < r_i$, where $y \in B^*(x_i, r_i)$ for i = 1, 2, 3, ..., m. Choose $t_i < \frac{r_i - s_i}{2}$. Then $B(x, t_i) \cap B(x_i, t_i) \in B(x_i, r_i)$ holds for all i = 1, 2, 3, ..., m. So

$$x \in B(x, t_1) \cap B(x_1, t_1) \cap B(x, t_2) \cap B(x_2, t_2) \cap B(x, t_m) \cap B(x_m, t_m)$$

$$\subset \bigcap_{i=1}^m B(x_i, r_i) \subset U.$$

This proves the lemma.

Theorem 4.3. Arbitrary union and finite intersection of open balls B(x,r), $x \in X$ are open.

Proof. Let $x \in \bigcup B(x_i, r_i) \in U$ then for some $i, x \in B(x_i, r_i) \in U$ hence U is open.

Definition 4.4. A set U in a G-metric space X, is said to be closed if its complement X - U is τ -open.

Theorem 4.5. Finite union and arbitrary intersection of closed balls in a G-metric space are closed.

Proof. Suppose $B = \bigcup_{i=1}^{n} B[x_i, r_i]$, then it is sufficient to show that complement of B = C(B) is open. $C(B) = C(\bigcup_{i=1}^{n} B[x_i, r_i]) = \bigcap_{i=1}^{n} C(B[x_i, r_i])$ is open. Hence B is closed.

Now let $B[x_i, r_i]$ be the collection of closed bolls and $B = \cap B[x_i, r_i]$. Consider $C(B) = C(\cap B[x_i, r_i]) = \cup C(\cap B[x_i, r_i])$ is open. Hence B is closed.

Definition 4.6. \overline{A} is called the *G*-closure of *A* if it is the intersection of all *G*-closed sets containing *A*

$$\overline{B^*(x_0,r)} = \left\{ x \in X : G(x_0,x,x) \le r \right\} \text{ is the closure of } B^*(x_0,r) \text{ and}$$
$$\overline{B(x_0,r)} = \left\{ x \in X : \sup_{y \in B^*(x_0,r)} G(x_0,x,y) \le r \right\} \text{ is the closure of } B(x_0,r).$$

Remark 4.7. It is clear that $B^*(x_0, r) \subset \overline{B^*(x_0, r)}$ and $B(x_0, r) \subset \overline{B(x_0, r)}$.

Lemma 4.8. If there exist a point $x \in B(x_0, r)$ with $G(x_0, x, x) = r_1 < r$, then $B(x_0, r_1) \subset B(x_0, r)$.

Proof: For $x \in B(x_0, r)$ with $G(x_0, x, x) = r_1 < r$. Let

$$x \in \overline{B(x_0, r_1)} = \{ z \in X : \sup_{x \in B^*(x_0, r_1)} G(x_0, x, x) \le r_1 \}$$
$$\subseteq \{ z \in X : \sup_{x \in B^*(x_0, r)} G(x_0, x, x) < r \}$$
$$= B(x_0, r).$$

Definition 4.9. If A nonenpty subset of X, and $x \in (X,G)$ is said to be G-limit point of A, for any G-open set U containing x, there exist

$$A \cap U - \{x\} = \phi.$$

Definition 4.10. A sequence $\{x_n\}$ in a G-metric space (X,G) is said to be convergent (or Gconvergent) if there exists an element x in X, for given $\epsilon > 0$ there exists $n_0 \in N$ such that $G(x_m, x_n, x) < \epsilon$ for all $m, n \ge n_0$.

In such a case, it is said that $\{x_n\}$ converges to x and x is a limit point of $\{x_n\}$ and we write $x_n \to x$.

Lemma 4.11. A sequence $\{x_n\}$ is convergent to x in (X, G) if and only if for any G-open set U containing x there exists a positive integer m such that $x_n \in U$ for all $n \ge m$.

Proof. Suppose $x \in X$ and $\epsilon > 0$, since $x \in B(x, \epsilon)$ is G-open there exist $m \in \mathbb{N}$ such that $x_n \in B(x, \epsilon)$, for all $n \ge m$ gives $G(x_n, x_n, x) < \epsilon$ for $n \ge m$ i.e. $G(x_n, x_n, x) \to 0$ as $n \to \infty$. Thus $\{x_n\}$ converges to x in (X, G).

Conversely, suppose $\{x_n\}$ converges to x in (X,G). Let U be a G- open set with $x \in U$. From Lemma 4.2, we have

$$x \in B(x, r_1) \cap B(x_1, r_1) \cap B(x, r_1) \cap B(x_1, r_1) \cap \dots \cap B(x, r_k) \cap B(x_k, r_k) \subset U_{x_k}$$

For some $x_1, x_2, \dots, x_k \in X$ and $r_1, r_2, \dots, r_k > 0$. Since $G(x_n, x_k, x) \to 0$ as $n \to \infty$, there exists $m_k \in N$ such that $G(x_n, x, x_k) < r_k$ for all $n \ge m_k$ i.e. $x_n \in B(x, r_k)$ for all $n \ge m_k$ and this is true for each $i = 1, 2, \dots k$. Taking $m = \max\{r_1, r_2, \dots, r_k\}$ we obtain

$$x_n \in B(x, r_1) \cap B(x_1, r_1) \cap B(x, r_1) \cap B(x_1, r_1) \cap \cdots$$
$$\cap B(x, r_k) \cap B(x_k, r_k) \subset U, \quad \forall n \ge m.$$

Thus the lemma is proved.

Definition 4.12. $A \subset X$ is said to be dense in X if $\overline{A} = X$.

Definition 4.13. $A \subset X$ is said to be no-where dense if $int(\overline{A}) = \phi$ where interior of a set B is defined to be the union of all G-open sets contained in B.

5 Cantor's and Baire's Theorem in G-metric Spaces

We define for $A \subset X$, and

$$\delta_a(A) = \sup_{a \in X} \{ G(x, y, a) : x, y \in A \}$$

The term $\delta_a(A)$ need not be considered as the diameter of A.

Lemma 5.1. For any $A \subset X$ and $a \in X$, then $\delta_a(A) = \delta_a(\overline{A})$

Proof: Since $A \subset \overline{A}$ it follows that $\delta_a(A) \leq \delta_a(\overline{A})$. Now let $x, y \in \overline{A}$. If both $x, y \in A$, then clearly $G(x, y, a) \leq \delta_a(A)$. If suppose first that one of them, say, $x \notin A$ but $y \in A$. Let $0 < \epsilon_1 < \epsilon$ and since $x \in \overline{A}$ there exists z such that $z \in A \cap B(x, \epsilon_1)$ and this also implies $z \in A \cap B(x, \epsilon)$ as $z \in A \cap B(x, \epsilon_1) \subset A \cap B(x, \epsilon)$. Therefore

$$\begin{aligned} G(x,y,a) &\leq G(x,z,z) + G(z,y,a) \\ &\leq G(y,z,a) + \epsilon \end{aligned}$$

Since this is true for every $\epsilon > 0$, we conclude that

$$G(x, y, a) \leq \delta_a(A)$$
 for $y \in A$ and $x \in \overline{A}$.

Finally, if $x, y \in \overline{A} - A$ then repeating the same argument we can show that in this case also $G(x, y, a) \leq \delta_a(A)$. Hence

$$\delta_a(\bar{A}) = \sup\{G(x, y, a) : x, y \in \bar{A}\} \le \delta_a(A)$$

so $\delta_a(A) = \delta_a(\bar{A}).$

Theorem 5.2. Cantor's Intersection Theorem Suppose that (X,G) is a complete G-metric space. If $\{F_n\}$ is any decreasing sequence of G-closed sets with $\delta_a(F_n) \to 0$ as $n \to \infty$, $\forall a \in X$ then $\bigcap_n F_n$ is non-empty and contains at most one point.

Proof: Let x_n be a point of F_n , for each positive integer n. First we show $\{x_n\}$ is Cauchy in X. Since $\{F_n\}$ is decreasing, $x_m \in F_n$ for all $m \ge n$. Now for any arbitrary $a \in X, m \ge n$

$$G(x_m, x_n, a) \le \delta_a(F_n) \to 0$$

as $n \to \infty$. This shows that $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there is $x \in X$ such that $x_n \to x$. Now our aim to show that $x \in \cap Fn$. If $x_k \neq x$ from some k onward, otherwise there is nothing to prove. Let $n \in N$ be fixed. Let U be any G-open set containing x. By Lemma 4.11, there is $n_1 \in N$ such that $x_k \in U$, for all $k \ge n_1$. Then $x_k \in [U - \{x\}] \cap F_n$, for all $k \ge \max\{n, n_1\}$. This shows that $x \in \overline{F_n} = F_n$, since F_n is G-closed. As this is true for all $n \in N$, $x \in \bigcap F_n$.

Now we have to show $\bigcap F_n$ contains exactly one point. suppose that it contains two distinct points x and y. Choose $z \in X, z \neq x \neq y$.

$$G(x, y, z) \leq \delta_z(F_n), \quad \forall n \in N.$$

Since $\delta_z(F_n) \to 0$ as $n \to \infty$ gives G(x, y, z) = 0 i.e. x = y = z which is a contradiction. Hence This proves $\cap F_n$ contains exactly one point.

Theorem 5.3. If in a G-metric space (X, G), for any decreasing sequence of G- closed sets $\{F_n\}$ with $\delta_a(Fn) \to 0$ as $n \to \infty$ for all $a \in X$, $\bigcap_n F_n$ consists of a single point, then (X, G) is complete.

Proof: Let $\{x_n\}$ be a Cauchy sequence in X. Let $F_n = \{x_n, x_{n+1}, \dots\}$ for any $n \in N$. Then $F_n \supset F_{n+1}$ gives $\overline{F}_n \supset \overline{F}_{n+1}$, for all $n \in N$. So $\{F_n\}$ is a decreasing sequence of G-closed sets. For $a \in X$ and $\epsilon > 0$ be a arbitrary, there is $n_1 \in N$ such that

$$G(x_m, x_n, a) \leq \epsilon, \quad \forall m, n \geq n_1.$$

This gives $\delta_a(F_{n_1}) \leq \epsilon$ and so by Lemma 5.1 we can write $\delta_a(\bar{F}_{n_1}) \leq \epsilon$. Since $\{\bar{F}_n\}$ is decreasing, for $n \geq n_1$, $\delta_a(\bar{F}_n) \leq \delta_a(\bar{F}_{n_1}) \leq \epsilon$. Therefore $\delta_a(\bar{F}_n) \to 0$ as $n \to \infty$. Hence by the given condition, $\bigcap \bar{F}_n = \{x_0\}$, say. This gives that for any $a \in X$, $G(x_n, x_0, a) \leq \delta_a(\bar{F}_n) \to 0$ as $n \to \infty$ which implies $x_n \to x_0$ in X and hence (X, G) is complete.

Lemma 5.4. For any $x_0 \in X$ and r > 0,

$$C(x_0, r) = \{x_0\} \cup \{x \in X : \sup_{y \in C^{\star}(x_0, r)} G(x_0, x, y)\}$$

where $C^{\star}(x_0, r) = \{x \in X : G(x_0, x, x) \leq r\}$ then $C(x_0, r)$ is G-closed set.

Proof: We will show that no point outside $C(x_0, r)$ is a G-limit point of $C(x_0, r)$. Let $d \notin C(x_0, r)$. Then $G(x_0, y, d) > r$. If possible, let d be a G-limit point of $C(x_0, r)$. Let $\epsilon > 0$ be given. Since $B(x_0, \epsilon) \cap B(d, \epsilon)$ is a G-open set containing d, there exists $e \in C(x_0, r) \cap \left(B(x_0, \epsilon) \cap B(d, \epsilon) - \{d\}\right)$. Then

$$G(x_0, y, d) \le G(x_0, e, e) + G(e, y, d)$$
$$\le G(x_0, y, e) + G(e, y, d)$$
$$< r + \epsilon$$

Since $\epsilon > 0$, we have $G(x_0, y, d) \leq r$ which is a contradiction. Thus d cannot be a G-limit point of $C(x_0, r)$. Hence $C(x_0, r)$ contains all its G-limit points and so $C(x_0, r)$ is G-closed.

Theorem 5.5. Baire's Category Theorem

A complete G-metric space (X,G) satisfying the condition $X \subset (\bigcup_{x \in X} B(x,r))$ for every pair of points $x, y \in X$, there exists a sequence of G-closed balls $\{B_n\}$ with center at x and with $\delta_a(B_n) \to 0$ as $n \to \infty$, for all $a \in X$.

Proof: Suppose if possible,

$$X = \bigcup_{n \in N} X_n = \bigcup_{n \in N} \bar{X_n}$$

where each X_n is no-where dense i.e. X_n does not contain any non-empty G-open set. Let U be any G-open set. Since X_1 is no-where dense, X_1 cannot contain U. So there exists $x_1 \in U$ such that $x_1 \notin X_1$. Since $U - \bar{X_1}$ is G-open and $x_1 \in U - \bar{X_1}$, by Lemma 4.2 there exists some real r_1, r_2, \dots, r_n all positive such that

$$x_1 \in V_1 \subset U - X_1$$

where $V_1 = B(x_1, r_1) \cap B(x_1, r_2) \cap \cdots \cap B(x_1, r_n)$ Without any loss of generality, because of the condition $X \subset (\bigcup_{x \in X} B(x, r))$, we can choose $B(x_1, r_1)$ such that $\delta_a(B(x_1, r_1)) < 1$ for all $a \in X$. Then $\delta_a(V_1) < 1$ for all $a \in X$. Choose

$$U_1 = B(x_1, r_1/2) \cap \cdots \cap B(x_1, r_n/2)$$

Then by Lemma 5.4

$$U_1 \subset C(x_1, r_1/2) \cap \cdots \cap C(x_1, r_n/2) \subset V_1 \subset U - \bar{X_1}$$

and $\delta_a(\bar{U}_1) \leq \delta_a(V_1) < 1$, for all $a \in X$. Again since U_1 is G-open and X_2 is no-where dense, $U_1 - \bar{X}_2 \neq \phi$. So there exists $x_2 \in U_1 - \bar{X}_2$. Continuing as above we can find a G-open set U_2 such that

$$x_2 \in U_2 \subset \bar{U}_2 \subset U_1 - \bar{X}_2$$

and $\delta_a(\bar{U}_2) < 1/2$ for all $a \in X$.

Continuing in this way we obtain a sequence of G-closed sets $\{\bar{U}_n\}$ such that $\bar{U}_{n+1} \subset \bar{U}_n$ for all $n \in N$, $\delta_a(\bar{U}_n) < 1/n$ for all $a \in X$ i.e. $\delta_a(\bar{U}_n) \to 0$ as $n \to \infty$ for all $a \in X$. By Cantors Intersection Theorem 5.2, $\bigcap \bar{U}_n$ is non-empty and contains at most one point. Let $\bigcap \bar{U}_n = \{x_0\}$. Since $\bar{U}_n \cap \bar{X}_n = \phi$ for all $n \in N$, $x_0 \notin \bigcap \bar{X}_n$ which is a contradiction. This proves the theorem.

6 Conclusion

In this work I have proved results on open and closed ball in G-metrics space and using using theory of G-metric space proved Canter's Intersection and Baire's Category theorems.

Competing Interests

Author has declared that no competing interests exist.

References

- Mustafa Z, Sims B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006;7(2):289-297.
- [2] Choudhury BS, Maity P. Coupled fixed point results in generalized metric spaces. Math. Comput. Modelling. 2011;54:73-79.
- [3] Hassen Aydi, Shatanawi W, Calogero Vetro. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011;62:4222-4229.
- [4] Mustafa H. Obiedat, Awawdeh F. Some fixed point theorem for mapping on complete Gmetric spaces. Fixed Point Theory and Applications; 2008. Article ID 189870.
- [5] Mustafa Wasfi Shatanawi, Malik Bataineh. Existence of fixed point results in g-metric spaces. International Journal of Mathematics and Mathematical Sciences; 2009. Article ID 283028. DOI: 10.1155/2009/283028.
- [6] Dhanorkar GA, Salunke JN. fixed point theorems in g-metric space with maps satisfying a general contractive condition of integral type. Bulletin of the Marathwada Mathematical Society. 2015;16(1):19-27.
- [7] Gajanan A. Dhanorkar, Salunke JN. semicompatibility and fixed point theorem in an unbounded g-metric spaces. Bulletin of the Allahabad Mathematical Society. 2012;27(2):143-158.

© 2017 Dhanorkar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

$Peer\mbox{-}review\ history:$

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/18359