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Abstract

The aim of this paper is to generalize Caristi’s fixed point theorem. For that we extend the Szaz
maximum principle in normed space and, we introduce a new class of functions which generalize

the notion of dominated function in Caristi’s fixed point theorem. As a consequence, we obtain
some common fixed point results.
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1 Introduction
In [1, 2], Caristi proved the following result:

Theorem 1.1. Let (X,d) be a complete metric space and T : X — X be a mapping satisfying for
each x in X

d(z,Tz) < ¢ (z) — ¢ (Tz),
where ¢ : X — [0,00) is lower semi continuous, then T has a fized point.

The above mentioned theorem can be considered as the most important generalization of Banach
principle [3] obtained in metric fixed point theory. This result is equivalent to the well known
Ekeland variational principle [4, 5, 6] which is useful tool to solve problems in optimization, optimal
control theory, game theory, nonlinear equations and dynamical systems [7, 8, 5, 6, 9].

Since the discovery of Caristi’s fixed point theorem, there have appeared many extensions and
equivalence formulations, see for instance [10, 11, 12, 13].

In 2007, [14] introduced the notion of cone metric spaces as a generalization of metric spaces
replacing the set of real numbers by an ordered Banach space. The originality of their work is the
introduction of the concept of convergence in cone metric spaces via the interior of the cone what
they called a solid cone and then obtained some fixed point theorems for contractive mappings.

The cone metric spaces and cone normed spaces have several profound applications in fixed point
theory and the numerical analysis. Some applications of cone metric spaces can be seen in [15, 16,
17, 18]. One can cite the famous Russian mathematician Kantorovich in [19] that has showed the
importance of cone normed spaces in numerical analysis.

In [20, 21], Cho and Bae gave an extension of Caristi’s theorem in the setting of complete cone
metric spaces and, they proved that these result and Ekeland variational principle are equivalent.In
the last decade, several authors have studied fixed point theorems and cone metric spaces over solid
topological vector spaces (see [22, 23, 24, 25, 26, 27] and the references therein).

Brézis and Browder in [28] have provided an important general principle concerning order relations
which unifies several results in nonlinear functional analysis including the Bishop-Phelps theorem
[29] and Ekeland’s theorem [4] as well. However in [30] it is shown that Caristi’s theorem can
be derived directly from the order principle of Brézis and Browder without recourse to Ekeland’s
Theorem.

The Brézis—Browder principle has an extensive application in mathematics theory, particularly in
control theory, geometric theory and global analysis of Banach space. Its generalizations are the
main concern of most researchers in the last few decades (see [31, 32, 33] and references therein).
Concerning these generalizations, one can cite Turinici [33] who gave some better formulations and
metric generalizations of the Altman’s maximum principle [31]. In [34], Szdz also proved some
generalizations of Altman’s results. However, these generalizations contain several superfluous
hypotheses. The results of [34] were substantially improved in the subsequent paper [35]. However,
this improvement still unsatisfactory from several points of view. Afterwards, Szdz in [36] improve
the results of [35]. Then, by using these improvements, he proved some generalizations of the most
important particular cases of Brgndsted’s maximality theorem [37] and gave an improved maximum
principle of the Brézis—Browder ordering principle.
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In this paper, we give an extension of Szdz principle [36] in a normed vector space and from
this preorder principle we obtained a very general Caristi’s fixed point theorem in the setting of
cone metric spaces, which implies most of the known Caristi-Type fixed point results and their
improvements. We derive some common fixed point theorems for two single-valued mappings.

2 Preliminaries

In this section we recall some definitions and properties of cone metric spaces.
Let E be a topological vector space, a subset P C F is called a convex cone if:

1. P+PCP,

2. for every A > 0, AP C P,

3. PN (—P) = {0}, where 6 denotes the zero of E.
It is well-known that a convex cone P C E generates a partial-ordering on E (i.e. a reflexive,
antisymmetric and transitive relation) by

r3ysy—xze P

We write < y to indicate that x < y but z # y. For z,y € E, z < y stand for y — x € int (P),
where int (P) is the interior of P.

Over this paper, (F, ||.||) is normed vector space and P is a convex cone in E.

Asadi et al. in [38] gave some examples of cones in normed space that do not enjoy the ordinary
properties unlike the real line, for that we state the following definitions that will be needed in the
sequel.

Definition 2.1 ([39, 40]). A cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is, if (zn),, is a sequence such that for some z € E

o1 < a2 <<

then there exists T € F such that limz,, = Z. Equivalently, a cone P is regular if and only if every

n
decreasing sequence which is bounded from below is convergent.

Definition 2.2 ([20, 39]). A cone P is strongly minihedral if every upper bounded non-empty
subset A of F, sup A exists in E. Dually, A cone P is strongly minihedral if every lower bounded
nonempty subset A of E, inf A exists in E.

Definition 2.3 ([20]). A strongly minihedral cone P is continuous if, for any bounded chain (z4)
we have

ael’
inf [lz — inf {za; @ € T}[ = 0

and
sup [|za — sup {za; @ € T}| = 0.

a€el

Definition 2.4 ([14]). Let X be a nonempty set and d : X x X — FE be a mapping satisfying for
all z,y,z € X:

1. 6 X d(z,y) and d(x,y) = 0 if and only if x = y,

2. d(x,y) =d(y,z),
3. d(z,2) 2d(z,y) +d(y,2).
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Then d is called a cone metric on X and (X, d) is called a cone metric space.
The next definition is crucial throughout our work.

Definition 2.5 ([14]).

1. A sequence (xn), of a cone metric space (X,d) converges to a point z € X if for any
¢ € int(P), there exists N € N such that for all n > N , d(zn,xz) < c¢. Denoted by

lim z,, =z or x,, — .
n— o0

2. A sequence (z,), of a cone metric space (X, d) is Cauchy if for any ¢ € int(P), there exists
N € N such that for all n,m > N | d(2n,zm) < c.

3. A cone metric space (X, d) is called complete if every Cauchy sequence is convergent.
We have the following result.

Lemma 2.1 ([14]). Let (X,d) be a cone metric space over a cone P in E. Then one has the
following:

1. Int(P) + Int(P) C Int(P) and AInt(P) C Int(P), A > 0.
2. If ¢>> 0, then there exists & > 0 such that ||b]| < & implies b < c.
¢
3. For any given ¢ > 0 and co > 0 there exists no € N such that n—o < c.
0

4. If (an) , (bn) are sequences in E such that a,, — a, b, — b and an < b, for alln > 0, then
a=<b.

Definition 2.6 ([20]). A function ¢ : X — FE is called lower semi-continuous if, for every sequence
(zn), C X converging to some point z € X, we have

¢ (z) < liminf @ (zn),

where liminf ¢ (z,) := sup inf ¢ (z.,)
neNm2n

3 Caristi-type Fixed Point Result

In this section we establish a full statement of the Caristi’s fixed point theorem in cone metric space
over a strongly minihedral cone. The main result of this section generalizes, extends and completes
some results of Cho and Bae [20, 21], Caristi [1, 2], Park [41] and others.

In a nonempty set X, we define a reflexive and transitive relation < called a preorder and we said
that (X, <) is preorder set. z € X is maximal element if

rYy=r=y,
for all y € X. We recall that S(z) ={y € X : = < y}.
We start with an extension of Széz principle to a normed space.

Theorem 3.1. Let P C E be a strongly minihedral and continuous cone, (X, <) be a preordered
set and a € X. Let @ : X x X — E and suppose that the function vo : X — E defined by

vo () =sup P (z,y),

<y

satisfies the following conditions:
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(S1) There exists m € E such that m < va() for each v € X.
(S2) There exists M € E such that ve(a)<m -

(83) For every nondecreasing sequence (Tn), oy C X, with xo = a, there exists some x € X such
that zn < x for all m € N, and liminf @ (zn, Tnt1) = a for some a € E.
n—oo

(S4) a <P (z,y) for all x,y € S (a) with z < y.

Then there exists a mazximal element T € X.

Proof. Let o = a. Since P is strongly minihedral v& (x0) exists and by the conditions (S1), (S2)
we get,
mo = ye (w0) 2 M,

for some mo, M € P. Therefore, P is continuous we obtain

sup || (zo0,y) — v& (zo)| = 0,

z<y

hence we can choose x1 € X with xg < 1 such that
1
12 (20, 21) = e (o)l < 5
and using the fact that ys is decreasing and condition (S1) we get

m1 = ye (21) 2 ye (w0),

where m;y € P.

Again, P is continuous, we can choose 2 € X with 1 < x2 such that
1
19 (21, 22) =72 (21)]] < 3

and m2 = ve (z2) < v (1) where ma € P.

Now, by induction, it is clear that there exists an increasing sequence (z,), in X such that

1
@ nydn - n PR
I (2n, 1) = o (za)ll < -

for all n € N*.

Hence,
limvyg (zn) = Um P (zn, Tnt1) ,

then by the condition (S3) we have

lim~yg (xr) = Mm@ (2, Tny1) = Uminf @ (25, Tnt1) < .
Moreover, by the condition (S3), there exists Z € X such that z, < Z for all n € N. Thus, in
particular a = zo < Z. Furthermore, since ¢ is decreasing, it is clear that ve (Z) =< ve (z5) for all

n € N, and thus
Yo (Z) < limvys (zn) < a,

then v¢ (Z) < a with a < Z and thus @ (Z,y) < « for each y € X with T < y.

Now, it remains only to show that Z is maximal. Assume that Z is not a maximal element, that is
Z # y and T < y then by the condition (S4) we obtain @ < @ (Z,y) = «, which is a contradiction. [

The next definition is a generalization of dominanted function in Caristi’s fixed point theorem [1].
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Definition 3.1. Let zg € X. A function @ : X x X — FE will be called an LZ-function if the
following hold:

(K1) N-super-additivity: @ (z,z) = 6 and @ (z,y) + @ (y, 2) = D (z, 2) for each z,y,z € X;
(K2) y — @ (z,y) is upper semi continuous for each z € X (i.e. if y, — yin X then limsup @ (z,yn) <

n— o0
@ (z,y) for each z € X);

(K3) sup @ (zo,y) < M for some M € int(P);
yeX

(K4) =+ @ (x,y) is bounded below for each y € X.

Example 3.2. (LZ-function in cone metric space).

Let X = [1,2] endowed by the usual distance and E = R? equipped with the usual norm. Let
P={(z,y) € E; 2,y >0} and

(z,9) 2 (u,v) o z<uandy < v.
Define®: X x X — FE by

= (((1) - B(2))).
for all z,y € X.

Let z,y,z € X, then & (z,z) =0 and

then the condition (K1) holds. Since (x,y) — In Y1 is a continuous function we get the condition
x
(K2). It is clear that the conditions (K3) and (K4) hold since X is bounded subset.

It is worthy to note that the last example shows that @ (z,y) has not the form of ¢ (x) — ¥ (y), and
it is a generalized concept of dominated function in Caristi’s fized point result.

The next lemma leads to define a preorder in a cone metric space.

Lemma 3.3. Let (X,d) be a cone metric space and & : X x X — E be an LZ-function. A binary
relation defined by
rsye v=y ord(zy) P(z,y), 3.1)

is a preorder on X.

Theorem 3.4. Let (X, d) be a complete cone metric space over a strongly minshedral and continuous
cone P and T : X — 2% be a set valued map. If there exists an LZ-function ® : X x X — E
satisfying for each x € X there exists y € T'x such that

d(z,y) 2P (z,y), (3.2)
then T has a fixed point in X.



Lazaiz et al.; ARJOM, 3(2), 1-13, 2017; Article no. ARJOM.31645

Proof. We define a preorder < on X as (3.1).
If x < y and = # y, then 0 < d(z,y) < @ (z,y), and by the condition (K1) we obtain

é(xvy) j@(w,z)—@(y,z),

for all y < z. Since P is strongly minihedral sup @ (z, z) and sup @ (y, z) exist so
Tz Ytz

Yo (y) = v (2),

then z +— v¢ () is decreasing and by the condition (K4), vs (.) is bounded from below.

Choose zo € X such that the condition (K3) holds. Then by assumption, there exists 1 € Tzo
such that
d (LL‘o, $1) j [ (1’0, 3,’1) .

We construct inductively a sequence (zr)n starting at xzo and satisfies for each n € N
d(Zn, Tnt1) 2P (Tn, Tny1) - (3.3)

Note that if there exists no € N such that x, = =, for all n > ng then x,, is a fixed point of T.
Assume that for all n,m € N we get z, # =, hence (z,), is an increasing sequence with respect
to <.

Note that (vs (z)),, is bounded sequence in P and since P is strongly minihedral, o = ian'ygs (zn)
ne

exists in E. Since, P is continuous,
inf | (22) — o] = 0.
and hence lim v¢ (z,) = @ and a < vg (z,) for all n > 0.
n— oo

By inequality (3.3) we get for m > n,
D (Tn,Tm) +P(Tm,2) 2P (Tn,2),

which implies
P (@n, Tm) + Y2 (Tm) = Y (Tn),

then
d(xnaxm) <o (1'117 zm) e’ (xn) — Yo (-’rm) 5

hence we get
d(Tn,Tm) = Yo (Tn) — a.

Since P is strongly minihedral and continuous we get

lim~yg () = Mm@ (Tn, Tnt1) = @,

so (xn), is a Cauchy sequence, then the sequence (), converges to some & € X. Note that the
mapping y — P (x,y) is upper semi continuous then for each n,m € N with m > n,

d(Tn, Tm) 2D (Tn,Tm),
so taking the limit with respect to m yields

d(l’nyf) = @(zn,f) ;
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since d is continuous. This proves that z,, < ¥ for all n € N. It is clear that
a<o(z,y),
for each < y in S (zo) by the definition of a.

By Theorem 3.1 (X, <) has a maximal element, say, z*. Since the condition (3.2) implies there
exists y* € Tx* such that z* < y* it must be the case that z* = y*. O

If & (z,y) = ¢ (x) — ¢ (y) we get the following result.

Corollary 3.5 ([20]). Let (X, d) be a complete cone metric space such that P is strongly minihedral
and continuous. And, let T : X — X be a mapping satisfying for each x in X

d(x,Tx) < ¢ (x) — o (Ta), (3.4)
where ¢ : X — P is lower semi continuous, then T has a fized point.

The next result is a generalization of Ekeland’s variational principle in the setting of cone metric
spaces.

Theorem 3.6. Let (X, d) be a complete cone metric space over a strongly minshedral and continuous
cone P and ® : X x X — E be an LZ-function.

For each ¢ > 0 and xo € X such that @ (zo,20) = infzex @ (x,x0) + ¢, there exists T € X such that:
(1) @ (x0,T) — cd (x0,T) € P;
(2) ¢ (z,y) —cd (T,y) ¢ P for each T # y.

Proof. For each z € X we define a nonempty set W (z) by
W)={yeX; z=y or cd(z,y) XP(z,y)}

and by continuity of y — d(z,y) and lower semi continuity of y — —& (z,y) the set W (z) is closed
subset of X and hence a complete cone metric space.

Choose 2o € X such that the condition (K3) holds. For each = € W (zo) set

H(z) ={y € X \{z}; cd(z,y) 2 P (2, y)}

and define a set valued mapping

[ {a} L H@)=0
T"”*{H(x) it, H (z) # 0,

then T is a self set valued mapping from W (o) to 2"(“0). Indeed, if H (z) = ) then Tz € 2"V (*0)
by the definition. If H (z) # 0 let y € H (z) then y # « and d (z,y) < @ (x,y) which implies that
xz =y and since ¢ € W (x¢) i.e. zo < x then zo < y which leads to

o=y or cd(zo,y) 2 P(z0,y),
hence y € W (o) .
Note that for each z € W (x¢) there exists y € T'z such that
cd (2, y) 2 @ (z,y),

by Theorem 3.4, T has a fixed point T € W (o), it follows that H (Z) = 0. That is, ? (T, y) < cd (T, y)
for each y € X \{Z} and since T € W (z0) we get cd (z0,T) <X P (z0,T). This complete the proof. [
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4 Common Fixed Point Results

In this section, we obtain several common fixed point results for mappings satisfying more general
Caristi type condition in the setting of cone metric spaces.

The next result follow easily from Theorem 3.4.

Theorem 4.1. Let (X, d) be a complete cone metric space over a strongly minihedral and continuous
cone P and @ : X X X — E be an LZ-function.
Then (X, %) has a mazimal element, where the relation < is given by the formula (3.1)

Theorem 4.2. Let (X,d) be a complete cone metric space and let P be a strongly minihedral and
continuous cone of comparable elements, ® : X x X — F be an LZ-function and T,S : X — X be
two mappings such that for all x € X,

Proof. Let zo € X and define a subset of X as follows
Xo={z € X;0<P(x0,2)},
since y — @ (xo,y) is upper semi-continuous, Xy is a nonempty closed subset of X.
We define a preorder < on X( as Lemma 3.3, that is for each z,y € Xo
Kysz=yord(z,y) 2P (z,y),
then using Theorem 4.1, we conclude that (Xo, <) has a maximal element T € X such that

d(z,Tz) X ¢ (T, ST)
<9

d (%, ST) (Z,TT). (4.1)

& (z,TZ) or ¢ (Z,T7T) =

By hypothesis, the elements of P are comparable. Then either @ (Z, ST) <
) X &(z,T7) and so from the

@ (z,Sz). Without loss of generality, we may assume that @ (Z, ST
inequalities (4.1), we obtain
d(z,Tz) X ¢ (z,Tx),

then T < TZ which implies 77 = ST = 7. O
If the LZ-function is written as follows ®(x,y) = ¢(x) — ¥ (y) one can obtain the following result.

Corollary 4.3. Let (X,d) be a complete cone metric space and let P be a strongly minihedral and
continuous cone of comparable elements, ¢, : X — E be two lower semi-continuous functions and
T,5: X — X be two mappings such that for all x € X

{d(xTw>< ¢ () — ¢ (Sz)
d(z,5z) < ¢ () — ¢ (Tz).

Then there exists an element T € X such that TdT = ST =7

If (X,d) is a complete metric space then we have the following corollary.
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Corollary 4.4. Let (X,d) be a complete metric space, ¢, : X — Ry be two lower semi-continuous
functions and T, S : X — X be two mappings such that for all x € X

{d@aTm><¢ww)—¢wSx>
d(z,5z) < ¢ (z) — ¢ (Tx).

Then there exists an element T € X such that TT = ST =T.

Theorem 4.5. Let (X,d) be a complete cone metric space and let P a strongly minihedral and
continuous of comparable elements cone and ®,¥ : X x X — E be two LZ-functions. Let T,S :
X — X be two continuous mappings such that for all x € X,

d(z,Tx) 2 & (z,Sx)
d(z,Sz) XV (z,Tx).

Assume that there exists xo € X such that @ (xo, Szo) =X @ (x0,Tx0) and ¥ (xo, Txo) =X ¥ (z0, Sxo).

Then there exists an element T € X such that TZ = ST = 7.
Proof. Define a subset Xy of X as follows:
Xo={z € X;¥ (z,Tz) X @ (x,Sz) and ® (z, Sz) < ¥ (z,Tx)},
then Xo # @ and since T',S,¥ and & are upper semi continuous, Xo is a complete subset of X.

We define a preorder < on Xy as follows

<y e d(y) = (@) +7 (),

for each x,y € Xo. Note that the sum of two LZ-functions is an LZ-function. Hence, using Theorem
4.1, we conclude that (Xo, <) has a maximal element T € X, such that

d(z,Tz) < & (T, ST) (4.2)
d(z,ST) ¥ (z,TT). '

Since P has a comparable elements, either d(z,Sz) < d(z,Tz) or d (z,Tz) < d (7, ST). Without
loss of generality, we may assume that d (Z,T7) < d (T, ST) we get by the inequalities (4.2)

1 1
d(z,Tz) = 3 (@ (z,57) + ¥ (z,TT)) = 3 (¢ (z,Tz) + ¥ (z,T7)),
i.e. T < TT which implies that T = T'Z, by the inequalities (4.2) we obtain T =TT = ST.

The same conclusion holds in the case d (Z,ST) =< d (T, TZ). O

5 Conclusion

We shall give a brief summary of our manuscript:
a In Section (2), we recalled the most useful results and definitions in cone metric space.

b In Section (3), we started with an extension of Szdz maximum principle in normed space
(Theorem 3.1), afterward, we have introduced a new class of functions (Definition 3.1) which
allows us to give a more generalized version of Caristi’s fixed point theorem (Theorem 3.4).

10
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¢ In Section (4), we have applied our results of section (3) to obtain several common fixed point

theorems.
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