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Abstract

In this paper we deduce the integer n satisfying Ln = 3x2 and Fn = 3x2, respectively after

obtaining the Legendre-Jacobi symbol

(
−3

Lk

)
= −1 and

(
−7

Lk

)
= −1 for Lk ≡ 3 (mod 4) with

2|k, 3 - k.
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1 Introduction

We may define the Fibonacci numbers, Fn, by

F0 = 0, F1 = 1, and, Fn+2 = Fn+1 + Fn.
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Fibonacci numbers associated with Lucas numbers Ln, which we may define by

L0 = 2, L1 = 1, and, Ln+2 = Ln+1 + Ln.

Fibonacci numbers and Lucas numbers can also be extended to negative index n satisfying

F−n = (−1)n+1Fn and L−n = (−1)nLn. (1.1)

We shall require the following results which are easily proved from the definitions. Throughout this
paper, the following n, m, and k will denote integers, not necessarily positive, and r will denote a
non-negative integer. Also wherever it occurs, k will denote an even integer, not divisible by 3 :

2Fm+n = FmLn + FnLm, (1.2)

2Lm+n = 5FmFn + LmLn, (1.3)

L2m = L2
m + (−1)m−12, (1.4)

gcd(Fn, Ln) = 2 if 3|n, (1.5)

gcd(Fn, Ln) = 1 if 3 - n, (1.6)

2|Ln if and only if 3|n, (1.7)

3|Ln if and only if n ≡ 2 (mod 4), (1.8)

Lk ≡ 3 (mod 4) if 2|k, 3 - k, (1.9)

Ln+2k ≡ −Ln (mod Lk), (1.10)

Fn+2k ≡ −Fn (mod Lk). (1.11)

In this article, we mainly obtain the following results based on J. H. E. Cohn’s method in [1] and
[2]. In fact, N. Robbins gave the solutions of Theorem 1.2 and Theorem 1.3 in [3] for a natural
number n. But here we find those solutions for integer n by using another method:

Theorem 1.1. Let Lk ≡ 3 (mod 4) with 2|k, 3 - k as in (1.9). Then we have

(a) (
−3

Lk

)
= −1.

(b) (
−7

Lk

)
= −1.

Theorem 1.2. If Ln = 3x2, then n = 2 or n = −2.

Theorem 1.3. If Fn = 3x2, then n = 0 or n = 4.
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2 Proofs of Theorem 1.1, Theorem 1.2, and Theorem
1.3

Proposition 2.1. (See [1], [2]) We have

(a) If Ln = x2, then n = 1 or 3.

(b) If Ln = 2x2, then n = 0 or ±6.

(c) If Fn = x2, then n = 0, ±1, 2, or 12.

(d) If Fn = 2x2, then n = 0, ±3, or 6.

We can easily show the following lemma by Proposition 2.1 (a) :

Lemma 2.1. If Ln = 4x2, then n = 3.

Proof. Now it yields that

Ln = 4x2 = (2x)2 = y2

and so by Proposition 2.1 (a) we have n = 1 or 3. Then

L1 = 1 and L3 = 4

so the solution is n = 3.

In another point of view we try to prove Lemma 2.1 and in that process we find Theorem 1.1.

Proof of Theorem 1.1. (a) Since Lemma 2.1 has solution only n = 3 thus for n ≡ 2 (mod 8)
there does not exist a solution. Then L2 = 3, whereas if n 6= 2 we can write n = 2 + 2 · 3r · k
with 2|k, 3 - k and so by (1.10),

4Ln = 4L2+2·3r·k ≡ −4L2 (mod Lk) ≡ −4 · 3 (mod Lk).

Therefore by (1.9), the following Legendre-Jacobi symbol must satisfy

−1 =

(
−4 · 3
Lk

)
=

(
−3

Lk

)
since −1 is a non-residue of Lk.

(b) In a similar manner to part (a), if n ≡ 4 (mod 8) then L4 = 7, whereas if n 6= 4 we can write
n = 4 + 2 · 3r · k with 2|k, 3 - k and so by (1.10),

4Ln = 4L4+2·3r·k ≡ −4L4 (mod Lk) ≡ −4 · 7 (mod Lk).

so by (1.9), we conclude that

−1 =

(
−4 · 7
Lk

)
=

(
−7

Lk

)
.
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Lemma 2.2. If Fn = 4x2, then n = 0 or n = 12.

Proof. We can see that

Fn = 4x2 = (2x)2 = y2

and so by Proposition 2.1 (c) we have n = 0, ±1, 2, or 12. Therefore

F0 = 0, F1 = 1, F−1 = 1, F2 = 1, and F3 = 144

so the solution is n = 0 or n = 12.

Another Proof of Lemma 2.2. (i) If n ≡ 1 (mod 4), then F1 = 1, whereas if n 6= 1, n =
1 + 2 · 3r · k with 2|k, 3 - k and so by (1.11),

4Fn = 4F1+2·3r·k ≡ −4F1 (mod Lk) ≡ −4 · 1 (mod Lk). (2.1)

Now by (1.9) we can know that

Lk = 4l1 + 3 for l1 ∈ Z (2.2)

and so (2.1) implies that

(
4Fn

Lk

)
=

(
−4 · 1
Lk

)
=

(
−1

Lk

)
= (−1)

4l1+3−1
2 = −1

thus 4Fn 6= y2, that is, Fn 6= 4x2.

(ii) If n ≡ 7 (mod 8) ≡ −1 (mod 8), then F−1 = 1, whereas if n 6= −1, n = −1 + 2 · 3r · k with
2|k, 3 - k and so by (1.11),

4Fn = 4F−1+2·3r·k ≡ −4F−1 (mod Lk) ≡ −4 · 1 (mod Lk).

Then from (2.2) we have

(
4Fn

Lk

)
=

(
−4 · 1
Lk

)
=

(
−1

Lk

)
= (−1)

4l1+3−1
2 = −1

and so 4Fn 6= y2, that is, Fn 6= 4x2.

(iii) If n ≡ 3 (mod 8), then F3 = 2, whereas if n 6= 3, n = 3 + 2 · 3r · k with 4|k, 3 - k and so by
(1.11),

4Fn = 4F3+2·3r·k ≡ −4F3 (mod Lk) ≡ −4 · 2 (mod Lk). (2.3)

Here since 4|k we can put k = 2k1 for 2|k1 and 3 - k1. Thus by (1.4) and (2.2) we deduce that

Lk = L2k1 = L2
k1

+ (−1)k1−12 = L2
k1
− 2 = (4l1 + 3)2 − 2 ≡ 7 (mod 8)

so we can write

Lk = 8l2 + 7 for l2 ∈ Z. (2.4)
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Therefore (2.3) shows that

(
4Fn

Lk

)
=

(
−4 · 2
Lk

)
=

(
−1

Lk

)(
2

Lk

)
= (−1)

8l2+7−1
2 (−1)

(8l2+7)2−1
8 = −1

and so Fn 6= 4x2.

(iv) Suppose that n is even and Fn = 4x2. Then by (1.2) we obtain

4x2 = Fn = Fn
2
Ln

2

and so (1.5) and (1.6) give three possibilities :

(a) 3|n, Fn
2

= 2y2; Ln
2

= 2z2. By Proposition 2.1 (b), the second of these is satisfied only by

n

2
= 0, 6, or − 6⇔ n = 0, 12, or − 12.

Also by Proposition 2.1 (d), the first of these is satisfied only by

n

2
= 0, 3,−3, or 6⇔ n = 0, 6,−6, or 12.

Thus the common factors are n = 0 and 12.

(b) 3 - n, Fn
2

= y2; Ln
2

= 4z2. Lemma 2.1 shows that

n

2
= 3⇔ n = 6,

which is contradiction to 3 - n.

(c) 3 - n, Fn
2

= 4y2; Ln
2

= z2. From Proposition 2.1 (a) the latter is satisfied only for

n

2
= 1 or 3⇔ n = 2 or 6.

However the last of these must be rejected since it does not satisfy 3 - n and also because F1 = 1 6=
4y2 we delete n = 2 case.

This concludes the proof.

Proof of Theorem 1.2. (i) If n ≡ 1 (mod 4), then L1 = 1, whereas if n 6= 1, we can write
n = 1 + 2 · 3r · k with 2|k, 3 - k and so by (1.10),

3Ln = 3L1+2·3r·k ≡ −3L1 (mod Lk) ≡ −3 · 1 (mod Lk).

Thus by Theorem 1.1 (a) we have

(
3Ln

Lk

)
=

(
−3

Lk

)
= −1

and so Ln 6= 3x2.
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(ii) If n ≡ 3 (mod 4), then L3 = 4, whereas if n 6= 3, n = 3 + 2 · 3r · k with 2|k, 3 - k and so by
(1.10),

3Ln = 3L3+2·3r·k ≡ −3L3 (mod Lk) ≡ −3 · 4 (mod Lk).

Then from Theorem 1.1 (a) we observe that

(
3Ln

Lk

)
=

(
−3 · 4
Lk

)
=

(
−3

Lk

)
= −1

and so Ln 6= 3x2.

(iii) If n ≡ 2 (mod 4), then L±2 = 3 = 3x2, whereas if n 6= ±2, n = 2 + 2 · 3r · k with 2|k, 3 - k and
so by (1.10),

3Ln = 3L2+2·3r·k ≡ −3L2 (mod Lk) ≡ −3 · 3 (mod Lk).

Thus by (2.2) we deduce that

(
3Ln

Lk

)
=

(
−3 · 3
Lk

)
=

(
−1

Lk

)
= (−1)

4l1+3−1
2 = −1

and so Ln 6= 3x2.

(iv) If n ≡ 0 (mod 8), then L0 = 2, whereas if n 6= 0, n = 2 · 3r · k with 4|k, 3 - k and so by (1.10),

3Ln = 3L2·3r·k ≡ −3L0 (mod Lk) ≡ −3 · 2 (mod Lk).

Now because of 4|k we can apply (2.4) to Lk. Then also by Theorem 1.1 (a) we note that(
3Ln

Lk

)
=

(
−3 · 2
Lk

)
=

(
−3

Lk

)(
2

Lk

)
= −(−1)

(8l2+7)2−1
8 = −1 (2.5)

and so Ln 6= 3x2.

(v) If n ≡ 4 (mod 8), then L4 = 7, whereas if n 6= 4, n = 4 + 2 · 3r · k with 2|k, 3 - k and so by
(1.10),

3Ln = 3L4+2·3r·k ≡ −3L4 (mod Lk) ≡ −3 · 7 (mod Lk).

Therefore from Theorem 1.1 we obtain

(
3Ln

Lk

)
=

(
−3 · 7
Lk

)
=

(
−3

Lk

)(
7

Lk

)
= −1 · 1 = −1

since Theorem 1.1 (b) and (2.2) show that

−1 =

(
−7

Lk

)
=

(
−1

Lk

)(
7

Lk

)
= (−1)

4l1+3−1
2

(
7

Lk

)
= −

(
7

Lk

)
thus

(
7

Lk

)
= 1.
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Proof of Theorem 1.3. (i) If n ≡ 1 (mod 4), then F1 = 1, whereas if n 6= 1, we can write
n = 1 + 2 · 3r · k with 2|k, 3 - k and so by (1.11),

3Fn = 3F1+2·3r·k ≡ −3F1 (mod Lk) ≡ −3 · 1 (mod Lk).

Thus by Theorem 1.1 (a) we see that

(
3Fn

Lk

)
=

(
−3

Lk

)
= −1.

(ii) If n ≡ 3 (mod 8), then F3 = 2, whereas if n 6= 3, n = 3 + 2 · 3r · k with 4|k, 3 - k and so by (2.5)
we conclude that Fn 6= 3x2.

(iii) If n ≡ 7 (mod 8) ≡ −1 (mod 8), then F−1 = 1, whereas if n 6= −1, n = −1 + 2 · 3r · k with
2|k, 3 - k and so by (1.11),

3Fn = 3F−1+2·3r·k ≡ −3F−1 (mod Lk) ≡ −3 · 1 (mod Lk).

Thus Theorem 1.1 (a) implies that

(
3Fn

Lk

)
=

(
−3

Lk

)
= −1.

(iv) Suppose that n is even and Fn = 3x2. Then by (1.2) we obtain

3x2 = Fn = Fn
2
Ln

2

and so (1.5) and (1.6) give four possibilities :

(a) 3|n, Fn
2

= 6y2; Ln
2

= 2z2. By Proposition 2.1 (b), the second of these is satisfied only by

n

2
= 0, 6, or − 6⇔ n = 0, 12, or − 12.

And since

F0 = 0, F6 = 8, and F−6 = −8,

we choose n = 0.

(b) 3|n, Fn
2

= 2y2; Ln
2

= 6z2. By Proposition 2.1 (d), the first of these is satisfied only by

n

2
= 0, 3,−3, or 6⇔ n = 0, 6,−6, or 12.

Then since

L0 = 2, L3 = 4, L−3 = −4, and L6 = 18,

there is no solution.
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(c) 3 - n, Fn
2

= 3y2; Ln
2

= z2. Proposition 2.1 (a) requests

n

2
= 1 or 3⇔ n = 2 or 6.

However n = 6 must be rejected since it does not satisfy 3 - n also n = 2 is deleted by F1 = 1 6= 3y2.

(d) 3 - n, Fn
2

= y2; Ln
2

= 3z2. From Theorem 1.2 we have

n

2
= 2 or − 2⇔ n = 4 or − 4.

Similarly by Proposition 2.1 (c), we note that

n

2
= 0, 1,−1, 2, or 12⇔ n = 0, 2,−2, 4, or 24

and so the common factor is n = 4.

Hence we have in all the two values, n = 0 or n = 4.

3 Conclusion

We can find more general solutions of square Fibonacci numbers and square Lucas numbers in [3],
[4], and [5].
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