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Abstract

In this paper we deduce the integer n satisfying L, = 3z? and F, = 322, respectively after

obtaining the Legendre-Jacobi symbol (;—3> = —1 and (;) = —1 for Ly = 3 (mod 4) with
k k

2|k, 3 1 k.
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1 Introduction

We may define the Fibonacci numbers, F,,, by

Fo = O, F1 = 1, and, Fn+2 = Fn+1 + Fn

*Corresponding author: E-mail: ae_ran_kim@hotmail.com;


www.sciencedomain.org
http://www.sciencedomain.org/abstract/18559

Kim; ARJOM, 3(3), 1-8, 2017: Article no. ARJOM.32312

Fibonacci numbers associated with Lucas numbers Ln, which we may define by

Lo =2, L =1, and, Lny2 = Lny1+ Ln.
Fibonacci numbers and Lucas numbers can also be extended to negative index n satisfying

F,=(-1)""F, and L_,=(-1)"L,. (1.1)

We shall require the following results which are easily proved from the definitions. Throughout this
paper, the following n, m, and k£ will denote integers, not necessarily positive, and r will denote a
non-negative integer. Also wherever it occurs, k£ will denote an even integer, not divisible by 3 :

2 Fpin = FpLn + FyLnm, (1.2)

2Ly 4n =5FnFy + Ly Ly, (1.3)

Lop = L3, + (=1)""'2, (1.4)

ged(Frn, Ly) =2 if 3|n, (1.5)
ged(Fo, Ly) =1 if 31{n, (1.6)

2|Ly, if and only if 3|n, (1.7)

3|Ln if and only if n=2 (mod 4), (1.8)
Ly =3 (mod4)  if 2|k 31k, (1.9)
Lypiox = —Ly  (mod L), (1.10)

Foiox = —F, (mod Ly). (1.11)

In this article, we mainly obtain the following results based on J. H. E. Cohn’s method in [1] and
[2]. In fact, N. Robbins gave the solutions of Theorem 1.2 and Theorem 1.3 in [3] for a natural
number n. But here we find those solutions for integer n by using another method:

Theorem 1.1. Let L =3 (mod 4) with 2|k,31k as in (1.9). Then we have
(a)
-3
() -
-7
=) =1
(2)

Theorem 1.2. If L, = 322, then n =2 orn = —2.

(b)

Theorem 1.3. If F,, = 322, thenn =0 orn = 4.
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2 Proofs of Theorem 1.1, Theorem 1.2, and Theorem
1.3
Proposition 2.1. (See [1], [2]) We have
(a) If L, = 22, thenn =1 or 3.
(b) If L, = 222, then n = 0 or 6.
(c) If F, = 2°, thenn =0, £1, 2, or 12.
(d) If F,, = 2a?%, thenn =0, £3, or 6.

We can easily show the following lemma by Proposition 2.1 (a) :
Lemma 2.1. If L, = 43:2, then n = 3.

Proof. Now it yields that

L, =42 = (22)° = ¢°

and so by Proposition 2.1 (a) we have n =1 or 3. Then

L1:1 and L3I4

so the solution is n = 3.

In another point of view we try to prove Lemma 2.1 and in that process we find Theorem 1.1.

Proof of Theorem 1.1.  (a) Since Lemma 2.1 has solution only n = 3 thus for n = 2 (mod 8)
there does not exist a solution. Then Ly = 3, whereas if n # 2 we can write n =2+2-3" - k
with 2|k, 3 1 &k and so by (1.10),

4Ln = 4L2+2.3r.k = —4L2 (mod Lk) =-—-4-3 (mod Lk)

Therefore by (1.9), the following Legendre-Jacobi symbol must satisfy
1= —4-3\ _ (=3
T\ L ) \ Lk

(b) In a similar manner to part (a), if n =4 (mod 8) then Ly = 7, whereas if n # 4 we can write
n=4+2-3"k with 2|k,3 1tk and so by (1.10),

since —1 is a non-residue of Ly.

4Ln = 4L4+2.3r.k = —4L4 (mod Lk) =-—4.7 (mod Lk)

so by (1.9), we conclude that

2= ()= (@)
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Lemma 2.2. If F,, = 422, then n =0 orn = 12.

Proof. We can see that

F, =42 = (22)* =¢°

and so by Proposition 2.1 (c) we have n = 0, £1, 2, or 12. Therefore

F():O, F1 :1, F,1:17 F2:1, and F3:144

so the solution is n =0 or n = 12.
O

Another Proof of Lemma 2.2. (i) If n = 1 (mod 4), then Fi = 1, whereas if n # 1, n =
1+2-3"k with 2|k,3tk and so by (1.11),

4Fn = 4F1+2.3'rnk = —4F1 (mod Lk) =—-4-1 (mod Lk) (2.1)
Now by (1.9) we can know that

Ly =411 +3 for Iy €Z (2.2)
and so (2.1) implies that

()~ () - (@)= -

thus 4F, # y?, that is, F}, # 42,

(ii) If n = 7 (mod 8) = —1 (mod 8), then F_; = 1, whereas if n # —1, n = =1+ 2-3" - k with
2|k,3 1k and so by (1.11),
4Fn = 4F,1+2.3r.]€ = —4F,1 (IIlOd Lk) =-4-1 (mod Lk)

Then from (2.2) we have

() (£~ @)

and so 4F,, # 12, that is, F}, # 4z°.

(iii) If » = 3 (mod 8), then F5 = 2, whereas if n # 3, n = 3+ 23" - k with 4|k,3 1 k and so by
(1.11),

AF, = AF3 530 = —4F; (mod Ly) = —4-2 (mod Ly). (2.3)
Here since 4|k we can put k = 2k; for 2|k; and 3 { k1. Thus by (1.4) and (2.2) we deduce that

Li=1Low =L, + ()" '2 =13 —2=(4L +3)>-2=7 (mod 8)

SO we can write

Ly =8l+7 for 1> € Z. (2.4)
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Therefore (2.3) shows that

() () - () @)oo=

and so F,, # 472,

(iv) Suppose that n is even and F,, = 422, Then by (1.2) we obtain

4132 = Fn = Fﬁ Lﬂ
2 2
and so (1.5) and (1.6) give three possibilities :
(a) 3|n, Fn = 2% Ly = 22%. By Proposition 2.1 (b), the second of these is satisfied only by
n p—

5—0767 or —6&n=0,12, or —12.

Also by Proposition 2.1 (d), the first of these is satisfied only by

g:Q&—&m6©n:Q&—&oH2

Thus the common factors are n = 0 and 12.

(b) 3tn, Fo = v Ly = 42®. Lemma 2.1 shows that
5 =3en=6

which is contradiction to 3 1 n.

(c) 3tn, Fn = 4yy?; Ly = 2%. From Proposition 2.1 (a) the latter is satisfied only for

g:10r3<:>n=20r6.

However the last of these must be rejected since it does not satisfy 3 1 n and also because F1 = 1 #
4y? we delete n = 2 case.

This concludes the proof.
O

Proof of Theorem 1.2. (i) If n = 1 (mod 4), then Ly = 1, whereas if n # 1, we can write
n=1+2-3"-k with 2|k,3{ k and so by (1.10),
3Ln = 3L1+243r.k = 73L1 (mod Lk) =-3-1 (mod Lk)

Thus by Theorem 1.1 (a) we have

and so L, # 3x2.
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(if) If n = 3 (mod 4), then Ls = 4, whereas if n # 3, n = 3+ 2-3" - k with 2|k,3 { k and so by
(1.10),

3Ln = 3L3+243T.k = —3L3 (mod Lk) =-3-4 (mod Lk)

Then from Theorem 1.1 (a) we observe that
8L\ _ (=8:4) _(=3\_ _,
Li ) Ly, T\ Ly )

(iii) If n = 2 (mod 4), then Lio = 3 = 32%, whereas if n # £2, n = 2 +2-3" - k with 2|k, 3 { k and
so by (1.10),

and so L, # 3xz°.

3Ln = 3L2+243T.k = —3L2 (mod Lk) =-3-3 (mod Lk).
Thus by (2.2) we deduce that

()~ (59 (@)= -

(iv) If n =0 (mod 8), then Lo = 2, whereas if n # 0, n = 23" - k with 4|k,3 t k and so by (1.10),

and so L, # 3z°.

3L, =3Ly3r.x =—3Lo (mod Ly)=-3-2 (mod Lz).
Now because of 4|k we can apply (2.4) to Li. Then also by Theorem 1.1 (a) we note that

(%) -(57) - (@) () ™ - 25

(v) If n =4 (mod 8), then Ly = 7, whereas if n # 4, n =4+ 2-3" - k with 2|k,3 t k and so by
(1.10),

and so L, # 3x°.

3Ln = 3L4+243r.k = —3L4 (mod Lk) =-3.7 (mod Lk).

Therefore from Theorem 1.1 we obtain

() ()~ @) () -

since Theorem 1.1 (b) and (2.2) show that

2 (@) @) @) @)

thus
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Proof of Theorem 1.3. (i) If n = 1 (mod 4), then Fi = 1, whereas if n # 1, we can write
n=14+2-3"-k with 2|k, 31k and so by (1.11),

3Fn = 3F1+2.3r.]€ = —3F1 (mOd Lk) =-3-1 (mod Lk)

Thus by Theorem 1.1 (a) we see that

£)-@)--

(ii) If n = 3 (mod 8), then F3 = 2, whereas if n # 3, n = 3+ 2-3" - k with 4]k,3 t k and so by (2.5)
we conclude that F,, # 3z2.

(iii) If n = 7 (mod 8) = —1 (mod 8), then F_; = 1, whereas if n # —1, n = =1+ 2-3" - k with
2|k,3 1 k and so by (1.11),

3Fn = 3F,1+2.3T.k = —3F_1 (mOd Lk) =-3-1 (mod Lk)

Thus Theorem 1.1 (a) implies that

3En _ (23 _ -1
Ly ) \L.)
(iv) Suppose that n is even and F,, = 3z2. Then by (1.2) we obtain

32> =F,=FuzlLn
2 2
and so (1.5) and (1.6) give four possibilities :
(a) 3n, Fz = 69> Ly = 22%. By Proposition 2.1 (b), the second of these is satisfied only by

3:0,6, or —6sn=0,12, or —12.
And since
F() = 0, FG = 8, and F_6 = —8,

we choose n = 0.

(b) 3|n, Fn = 212 Lz = 622. By Proposition 2.1 (d), the first of these is satisfied only by

3:0,3,73, or6 < n=0,6 -6, or 12.

Then since

L() = 2, L3 = 47 L73 = —4, and La = 18,

there is no solution.
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(c) 3f{n, Fn = 347 Ln = 2%, Proposition 2.1 (a) requests

g:10r3<:>n=20r6.

However n = 6 must be rejected since it does not satisfy 3 { n also n = 2 is deleted by Fi =1 # 3y
(d) 31n, Fo = v Lz = 322, From Theorem 1.2 we have
n
2
Similarly by Proposition 2.1 (¢), we note that

=2o0or —2&n=4or —4.

g =0,1,-1,2, or 12 n=0,2,-2,4, or 24
and so the common factor is n = 4.

Hence we have in all the two values, n =0 or n = 4.

3 Conclusion

We can find more general solutions of square Fibonacci numbers and square Lucas numbers in [3],
[4], and [5].
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