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Abstract 
 

Let g∆  be the Laplacian on smooth functions on a compact Riemannian manifold ),( gM  and gζ  the 

associated spectral zeta function. Some special values of the spectral zeta function and their 
generalisations such as the spectral height and spectral determinant usually defined in terms of the 

spectral zeta function to be (0)gζ ′  and (0))(exp gζ ′  respectively, have been computed explicitly, see 

e.g [1,2] and [3]. Another special value of the spectral zeta function which has been a fundamental issue 
in quantum field theory is  the Vacuum (Casimir) energy. Casimir energy is defined, mathematically, via 
the spectral zeta function as a function on the set of metrics on the manifold by ),

2

1
(−gζ  [4,5] and [6]. In 

this paper, a general technique for computing the Casimir energy of the Laplacian on the unit n -

dimensional sphere, ,nS  by factoring the spectral zeta function through the Riemann zeta function Rζ  is 

presented.  
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1 Introduction 
 
The study of Vacuum energy (also known as Casimir energy) is believed to originate from the work of 
Hendrik B. G. Casimir (1909 - 2000), who in the year 1948 pointed out the existence of a force between a 
pair of neutral perfectly conducting parallel plates, [7] and [8]. The Casimir energy may be thought-of as the 
energy difference due to the distortion of the vacuum, [6]. The energy difference gives rise to what is known 
as the Casimir force. Although Casimir energy is a concept arising in quantum field theory with observable 
consequences in physics, research is on-going in the modern aspects of spectral geometry, formulating the 
notion in a purely mathematical framework; you may see again [8] and the numerous literature cited there-
in. 
 

In most physics literature, the Casimir energy, popularly denoted by casE  is written as sum over the 

eigenvalues kk λω =  of the Laplacian on smooth functions on M ,  i.e kk
E ω∑=cas  which is the 

spectral zeta function gζ  at .
2

1
= −s  Because the spectral zeta function depends on the choice of metric 

g , [9,10,4,11,12], the Casimir energy )
2

1
(−gζ  is defined via the spectral zeta function as a function on 

the set of metrics on the manifold ,M  see [7]. However, this sum is usually divergent and has to be 
regularized. 
 
The regularization of this a priori divergent sum has been variously addressed using different methods; see 
e.g [8,13,14,5,2,15,16,17,9] and mostly recently [3] and [6] among many other literature. For example in [7], 
Elizalde had to split the sphere into hemispheres and imposing Dirichlet boundary condition on one of the 
hemispheres and Neumann boundary condition on the other to be able compute Casimir energy on 

1,2,3,4=,nSn . The authors in [3] followed similar procedure as in [8] to compute functional determinant 

corresponding to massive Laplacian in arbitrary dimensional spheres. In this paper, a more general method 

of computing the Casimir energy )
2

1
(−gζ  of the Laplacian g∆  on the n-sphere, nS  which only employs 

factoring the spectral zeta function )(sgζ  through the Riemann zeta function )(sRζ  is introduced. This 

method has an advantage of computing the Casimir energy of arbitrary dimensional spheres less tediously 
over the method of taking the full sphere as the union of Dirichlet and Neumann problems on hemispheres. 

This is simply obtained by computing the finite part, ,FP  of the spectral zeta function, ,nS
ζ  of the 

Laplacian on the spheres given by  
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 for each n where the finite part function, ,FP  is defined by  
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We proceed by giving the notion of the Laplacian and the spectral zeta function of the Laplacian on 
Riemannian manifolds. 
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2 Basic Concepts 
 
2.1  The Laplacian on the unit n-sphere 
 
The Laplacian on smooth functions on ),( gM  is the operator  

 

)()(: MCMCg
∞∞ →∆                                                                                                            (2.1) 

 
 defined in local coordinates by  
 

)||(
||

1
=)grad(div =

,
j

ij
i

ji
g x

gg
xg ∂

∂
∂
∂−−∆ ∑                                                     (2.2) 

 

where ijg  are the components of the dual metric, [18, 19] and [20]. 
 

The operator g∆  extends to a self-adjoint operator on )()()( 222 MLMHML →⊃  with compact 

resolvent. This implies that there exists an orthonormal basis )(}{ 2 MLk ∈ψ  consisting of eigenfunctions 

such that  
 

kkkg ψλψ =∆                                                                                                                               (2.3) 

 
 where the eigenvalues are listed with multiplicities  
 

;<=0 3210 LL ≤≤≤≤≤ kλλλλλ                                                                                 (2.4) 

 

see for example, ([18,20] and [17]). The Laplacian g∆  thus, has one-dimensional null space consisting 

precisely of constant functions. 
 

The n-dimensional sphere of radius r , +∈Rr  is the set of points in 1+nR  at a distance r  from a given 

central point; i.e },=:{=)( 1 rxxrS nn ||||R +∈  [17,21,22] and [2]. We call nS  a unit n -sphere or 

simply an n-sphere when the radius 1=r  and write the unit n-sphere as the set 
  

1}=:{= 1 ||||R xxS nn +∈                                                                                                         (2.5) 
 

 where |||| ⋅  is the usual norm on )(2 nSL , see e.g. [23]. 
 
The n -sphere is an n -dimensional compact manifold in 1)( +n -space of constant positive sectional 

curvature, namely 2.  1, ≥+ n  So, in particular, the 0-sphere, 1-sphere and the 2-sphere are respectively a 

pair of points on a line segment, a circle on a plane and the ordinary sphere in 3-dimension. 
 

Let nSf ∈  be any function on the n-sphere and f
~

 be its extension to an open neighbourhood of nS  that 

is constant along rays from the centre of .nS  We say that )(2 nSCf ∈  if f
~

 is a 2C  function of that 
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neighbourhood. For such functions (not containing {0} ) on nS  the Laplacian n∆  equals  

 

ff gn

~
= ∆∆                                                                                                                                  (2.6) 

 

 where g∆  on the right-hand side of (2.6) is the usual Laplacian in .1+nR  
 

In 2, , ≥nnR  every point 0≠x  can be represented in polar coordinates as a couple ),( θr  where 

0|>:=| xr  is the polar radius and 
1

||
:= −∈ nS

x

xθ  is the polar angle. In the polar coordinates, the 

Riemannian measure on nS  is given by .sin= 1 θrdrddV n−
 

 
For the unit n-sphere, the Laplacian (2.6) in polar coordinates reduces to  
 

12
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1 sin

1
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n
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                                                                        (2.7) 

 

where 1−∆n  is the Laplacian on .1−nS  
 
Following [24, 14, 22] and [23], we give the following definitions.  
 

Definition 2.1 A function CR →nf :  is called homogeneous of degree k  if it satisfies )(=)( xfttxf k  

for all nx R∈  and 0>t  fixed.  
 

Definition 2.2 Let )(nkP  denote the space of homogeneous polynomials of degree k  in 1)( +n  variables. 

The space }shomogeneou 0,=:)({:=)( kkgkkk ppnpn ∆∈PH  is called the space of harmonic 

homogeneous polynomials.  
 

 Note, if )(np kk H∈  then  
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Also, if ,   )(=)( i.e ;|=| n
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since they are both polynomials. One may see [2, 25, 5] for more details. 
 

Theorem 2.3 [23]. The dimension )(ndk  of the space of harmonic polynomial kH  is given by the formula  
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We make the following lemma.  
 

Lemma 2.4 The multiplicities )(ndk  of the eigenspace of the spectrum }{ kλ  can be expressed as  
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2.2  Spectral zeta function 
 
Spectral zeta function is best explained through the well-known Riemann zeta function. Recall that the 

Riemann zeta function Rζ  is the function defined as CC →ℜ∈ 1}>)(:{: ssRζ  with  
 

1>)(  ;
1

=)(
1=

s
k

s
s

k
R ℜ∑

∞

ζ                                                                                                       (2.10) 

 
 c.f: [4] and [10]. Notice that since  
 

,
1

|=
1

|
)(

1=1=
s

k
s

k kk ℜ

∞∞

∑∑                                                                                                                  (2.11) 

 
the series on the right-hand-side of (2.11) converges absolutely if and only if 1.>)(sℜ  The Riemann zeta 

function defined by (2.10) above is holomorphic in the region indicated. It, however, admits a meromorphic 
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continuation to the whole s -complex plane with only simple pole at 1=s  and has residue 1; see e.g. 
[19,21, 16, 4, 10]. 
 

A generalization of the Riemann zeta function (2.10) is the Hurwitz zeta function ).,( asHζ   
 

Definition 2.5 [4,10] Let C∈s  and 1.<0 ≤a  Then for 1,>)(sℜ  the Hurwitz zeta function is defined 

by  
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 Clearly, ).(=,1)( ss RH ζζ  Expression for R∈+ bba 1;=  follows by observing that  
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Theorem 2.6 For 1,<0 ≤a  we have  
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Proof. Note that for 1|<| z  the following binomial expansion holds  
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which gives the expansion  
 
Another generalisation of the Riemann zeta function is the spectral zeta function, which is the function of 
interest in this paper. The Laplacian defined in (2.2) acting on smooth functions on the closed and connected 

Riemannian n-dimensional manifolds is a non-negative operator and has the discrete spectrum ∞
1=}{ kkλ  

listed with multiplicities. We define  
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ζ                                                                                               (2.15) 

 
 see e.g. [21,11]. 
 

The integral kernel, ),,( yxsgζ , associated with the spectral zeta function is defined via the operator 
s

g
−∆  

(see e.g. [9]) given by the following properties, [23] and [6].   
 

1. It is linear on )(2 ML  with 1-dimensional null space consisting of constant functions. This ensures 

that the smallest eigenvalue of 
s

g
−∆  is 0 of multiplicity 1 with corresponding eigenfunction 

V

1
 

where V  is the volume of .M  

2. The image of 
s

g
−∆  is contained in the orthogonal complement of constant functions in )(2 ML  i.e. 
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3.  )(=)( xx k
s

kk
s

g ψλψ −−∆  for all 0> ; kkψ  an orthonormal basis of eigenfunction of 
.g∆
 

 

Then for 
2

>)(
n

sℜ , we see by property (3.) that 
s

g
−∆  is trace class, with trace given by the spectral zeta 

function, namely  
 

.
2
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1

=)(
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n
sdVxxss gM

s
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∞
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Theorem 2.7 [17,25]. Let ∞
1=}{ kkψ  be an orthonormal eigenbasis for g∆  corresponding to the eigenvalues 

∞
1=}{ kkλ  listed with multiplicities. Then the zeta kernel, ),,( yxsgζ , also called the point-wise zeta 

function, is equal to  
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From here on, we suppress the subscript g  in )(sgζ  and .g∆  We simply write )(sζ  and ∆  for )(sgζ  

and g∆  respectively, unless for purpose of emphasis. 

 

3 Casimir Energy of g∆  on nS  
 
Using the properties of the Riemann and Hurwitz zeta functions reviewed above, we can now compute the 

Casimir energy of the Laplacian g∆  for the round metric on .nS  As mentioned earlier, sometimes zeta 
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regularisation is not sufficient to define the Casimir energy, because gζ  has a pole at 1/2− . In this case, 

we define the Casimir energy as the finite part of gζ  at 1/2= −s , where FP is the finite part function 

given by  
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.pole a is  if ),
Residue

)((lim

pole  anot    is    if  )(
:=)]([FP

0
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                                                    (3.1) 

 
Now note that the zeta function on the n-sphere is specifically given by  
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with )(ndk  defined by equation (2.8), [2,13,12,17,25,23,5]. 

 
The following theorems will be used to switch limits and integrals; and sum and integrals.  
 

Theorem 3.1 [18,19]. (Dominated Convergence Theorem). Let nR⊆Ω  be open and let }{ kψ  be a 

sequence of integrable functions on .Ω  Suppose that )(=)(lim xxkk ψψ∞→  µ -almost everywhere. 

Further suppose that there exists 0≥ω  with ∞∫Ω <)(d)( xx µω  such that .  )()( kxxk ∀≤ ωψ  Then 

)()( xx ωψ ≤  µ -almost everywhere and  
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 where )(d xµ  is the measure form on .Ω   
 

Theorem 3.2 [18,19]. (Fubini - Tonelli theorem). Let }{ kψ  be a sequence of measurable functions. Sum 

and integral such as dxxkk
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Consequently, for 1,=n  ie the unit circle, we have  
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s
k

S kk

k
s

1))((

12
=)(

1=
2 +

+
∑

∞

ζ                                                                                                            (3.7) 

  

and from 3.3 making the substitution 
2

1
= +kw  yields  

 

sw
S

w

w

)
4

1
(

2
=

21=
2

−
∑

∞

ζ

 
 
 which reduces from (3.4) to  
 

).
2

3
1,2(2

)(!4

)(
2=

0=
2 −+

Γ
+Γ

∑
∞

ms
sm

ms
Hm

m
S

ζζ                                                                            (3.8) 

 

 Therefore, the Casimir energy )
2

1
(2 −

S
ζ  of g∆  on 2S  becomes  

  

0.265096.)]
2

1
([FP 2 −≈−

S
ζ                                                                                                    (3.9) 

 

Similarly, on the 3-sphere, we have  
 

s
k

S kk

k
s

2))((

1)(
=)(

2

1=
3 +

+
∑

∞

ζ                                                                                                          (3.10) 

 

 and let 1= +kw  so that  
 

s
w

S w

w
s

1)(
=)(

2

2

1=
3 −∑

∞

ζ
 

 
 and thus  
 

2,2)2(2
)(!

)(
=)(

0=
3 −+

Γ
+Γ

∑
∞

ms
sm

ms
s H

m
S

ζζ                                                                           (3.11) 

 

 which has simple pole at 2=m  with residue 
6

1−  for ).
2

1
(3 −

S
ζ  Therefore,  



 
 
 

Omenyi; ARJOM, 1(5): 1-14, 2016; Article no.ARJOM .30523 
 
 
 

11 
 
 

0.411503.)]
2

1
([FP 3 −≈−

S
ζ                                                                                               (3.12) 

 

On ,4S  we have  
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Unsurprisingly, 
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0.431743.−≈                                                                                                                           (3.15) 
 

Furthermore, for ,5S  we have  
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The formula (3.17) has simple poles for 
2

1
= −s  at 2=m  and 3=m  with residues 

12

1
 and 

6

1−  

respectively. Hence, the Casimir energy of the Laplacian on 5S  is  
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The Casimir energy )
2

1
(−∆ g

ζ  of the Laplacian g∆  on higher dimensional unit spheres may be computed 

similarly using the formula (3.4). 
 

4 Conclusion 
 
We have shown that for a given dimension n of the unit sphere, our formula (3.4) reduces to a simpler 
formula in terms of the Riemann zeta function or its generalisation, the Hurwitz zeta function. The Casimir 
energy is then simply read-off as 
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This approach may be employed to compute many other special values of the spectral zeta function of the 
Laplacian on some other Riemannian manifolds. 
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