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Abstract 
 

Outbreak of Ebola virus disease in early 2014 in West Africa is a major highlight for many researchers 
throughout the world because of the high mortality rate. Ebola disease is caused by a virus called the 
Ebola virus which can be transmitted from infected humans to uninfected humans through direct contact 
with the body fluids. Research has placed evidence that Ebola virus can be transmitted through the bodies 
of humans who recently died of the disease. Because of that, an epidemic model of 

( , , , , , , )u d sS E I I I R D is presented to study the dynamical spread of Ebola in the population. The 

existences of the disease free and unique endemic equilibrium were determined under certain conditions. 
Furthermore, the Local Stability analysis of the disease – free equilibrium (DFE) was investigated via the 

threshold parameter (Reproduction number0R ) obtained using the next generation matrix technique. The 

result shows that the DFE is asymptotically stable at Reproduction number less than unity 0( 1)R <  and 

Unstable whenever Reproduction number is greater than unity0( 1)R > . Numerical simulations are 

carried out to confirm the analytical results and explore the possible behaviour of the formulated model. 
Numerical simulation shows that if the detection rate of infected undetected is sufficiently large, then the 
isolation techniques can lead to the eradication of the disease in the population. 

Original Research Article 
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1 Introduction 
 
Ebola virus disease (EVD) formerly known as Ebola Haemorrhagic fever named after the river in 
Democratic Republic of Congo (formerly Zaire), is a severe, often fatal illness in human [1,2,3]. Ebola first 
appeared in 1976 in two simultaneous outbreaks in Nzara, Sudan, and in Yambuku, Democratic Republic of 
Congo [4,3]. The latter was in a village situated near the Ebola River, from which the disease takes its name. 
It is a virulent filo virus that is known to affect humans and primates. Ebola virus is 1 of 3 members of the 
filovirdae family (filo virus), along with genus Marburg virus and genus Cueva virus. Ebola virus comprises 
of 5 distinct species namely: Bundibugyo Ebola Virus (BDBV), Zaire Ebola virus (EBOV), Reston Ebola 
Virus (RESTV), Sudan Ebola Virus (SUDV) and Taiforest Ebola Virus (TAFV). BDBV, EBOV, and SUDV 
have been associated with large EVD outbreak in Africa, whereas RESTV and TAFV have not. The RESTV 
species found in Philippines and China Republic can infect humans, but no illness or death in humans from 
the species has been reported to date except BDBV. EBOV and SVDV which has same number of mortality 
rate [5,6]. 
 
Ebola was introduced into human population through close contact with the blood, secretions, organs or 
other bodily fluids of infected animals. In Africa, infection has been documented through the handling of 
infected chimpanzees, gorillas, fruit bats, monkeys, forest antelope and porcupines found ill or dead in the 
rainforest. It then spread in the community through human to human transmission, with infection resulting 
from direct contact (through broken skin or mucous membranes) with the blood, secretions, organs or other 
bodily fluids of infected people, and indirect contact with environments contaminated with such fluids [5,6]. 
The incubation period of this deadly disease is 2 – 21 days and infectious period is 4 -10 days [7]. Ebola is 
characterized by initial flu – like symptoms including “sudden onset of high fever greater than 38.6 degree 
Celsius or 101.5 degree Fahrenheit, fatigue, muscle pain, stomach pain, diarrhea sore throat, abdominal pain, 
unexplained hemorrhage and headache”. This then rapidly progresses to vomiting of blood, rash, symptoms 
of impaired Kidney and Liver function, and in some cases it leads to both internal and external bleeding 
[5,8]. Most infected individuals die within 10 days of their initial infection [9,10]. Burial ceremonies in 
which mourners have direct contact with the body of the deceased person can also play a role in the 
transmission of Ebola [2,4]. 
 
In early 2014 outbreak in West Africa, it was reported that about 30% of infections were caused by a contact 
with the dead bodies that recently died of Ebola disease [2,11,12]. The number of dead bodies who recently 
died because of Ebola disease is related to the rate of the infection because of its burial process [2,13]. This 
evidence motivates us to explore the effect of burial process in a model of Ebola virus transmission by 
adding the dead compartment. 
 
The threat posed by Ebola virus in human population initiated and prompted this research work to develop an 
epidemiological model that incorporated the dead individuals, infected undetected, infected detected and 
isolated individuals. There are two control measures that affect the transmission of Ebola virus. One form of 
the control is to accelerate the safe burial process of the bodies of people who recently died from the Ebola 
disease. This form of control is necessary due to the fact that the Ebola virus can survive in the dead bodies 
for 7 days [13]. The other control is to isolate infected humans who have been detected to reduce the 
transmission of Ebola virus from infected humans. 
 

2 Model Formulation 
 
A dynamical system consisting ordinary differential equation is used to construct the Ebola disease model in 

this article. We assume that the human population is divided into seven (7) compartments namely: 

susceptible (S), exposed (E), Infected undetected (Iu), Infected detected (Id), Infected isolated (Is), Recovered 

(R), and death individuals (D).  
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The susceptible population is increased by recruitment into the population at a rate π , this population is 
decreased by infection acquired from effective contact rate with infectious individuals in the Infected 
undetected , Infected detected and the infected dead individuals at a rate given by 1 2 3( , , )β β β  respectively; 

and finally reduced by the Natural death rate µ . 

 
The fraction 1 2 3( )u dSI SI Dβ β β+ +  move to the Exposed individuals and the population is further reduced by 

σ  which is the rate at which the exposed individuals are being isolated, κ  which is the progression rate of 
the exposed individuals to the active Ebola stage, and by natural death rateµ . 

 
The population of the infected undetected individuals is increased by the progression rate of exposed 

individualsκ , and finally reduced by 1γ  which is the rate of discovery of the undetected individuals by 

contact tracing, and ( , )uδ µ which is the disease induced rate of the undetected individuals due to the 

disease and by natural death rate respectively. 
 
The undetected infected population is increased by the progression rate of exposed individuals κ , reduced 

by the rate at which the undetected individuals are being isolated due to facilities in the environment 2( )γ
and finally decreased by the ( , )dδ µ which is the disease induced death rate of the detected individuals due 

to the disease and by natural death rate respectively. 
 

Infected isolated population is increased by 2( , )σ γ  which is the isolation rate of the exposed individuals 

and infected detected individuals respectively. The population was decreased by disease induced rate of 

isolated individuals( )sδ , natural death rate ( )µ , and the recovery rate of the isolated individuals ( ).α  
 

The recovered population is increased by the recovery rate of the isolated individuals ( ),α  and reduced by 

natural death rate ( ).µ  
 
Finally, the infected dead individual is increased by the disease induced rate of infected undetected, infected 

detected and isolated individuals ( , , ).u d sδ δ δ The population is reduced by the safe burial rate of the 

infected dead bodies( )θ . 
 

In summary, the govern model is given by the system of differential equations below: 

 

 
 

 
 

 
 

                                                                                     (1)                           
 

1 2 3u d

dS
SI SI SD S

dt
π β β β µ= − − − −

1 2 3u d

dE
SI SI SD E E E

dt
β β β σ κ µ= + + − − −

( ) 11u
u u u u

dI
E I I I

dt
ω κ γ δ µ= − − − −

1 2
d

u d d d d

dI
E I I I I

dt
ωκ γ γ δ µ= + − − −
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s

dR
I R

dt
α µ= −

 
 

 
 

Table 1. Description of parameter of the model 
 

Parameters       Description 
       Recruitment rate 

2β
 

Contact rate with undetected infected 

2β
 

Contact rate with detected Infected  

3β  
Contact rate with dead bodies 

µ
 Natural death rate 

σ  The rate at which exposed individuals are isolated due to contact tracing 
κ  Progression rate of individuals in exposed stage to active Ebola 
ω  Endogenous reactivation rate 

1γ  
Detection rate for infected undetected Individuals 

 
The rate at which Infected detected individuals are Isolated 

uδ
 

Disease – induced death rate for undetected individuals 

dδ
 

Disease – induced death rate for detected individuals 

sδ
 

Disease – induced death rate for Isolated Infected Individuals 

α
 Recovery rate of isolated individuals 

θ  
Safe Burial rate 

                              

3 Analysis of the Model 
 
3.1 Disease free equilibrium (DFE) 
 
At equilibrium, (1) is set to be equal to zero.  
 
That is:  
 

               (2) 

 
The disease free equilibrium is obtained as, 
 

               (3) 

 

2
s

d s s s s

dI
E I I I I

dt
σ γ δ α µ= + − − −

u u d d s s

dD
I I I D

dt
δ δ δ θ= + + −

π

2γ

0u d sdI dI dIdS dE dR dD

dt dt dt dt dt dt dt
= = = = = = =

( , , , , , , ) ,0,0,0,0,0,0u d sS E I I I R D
π
µ

 =  
 
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3.2 Endemic equilibrium point (EEP) 
 
Besides the disease – free equilibrium point, we shall show that the formulated model (1) has an endemic 
equilibrium point. The endemic equilibrium point is a positive steady state solution where the disease persists 
in the population. 
 

Setting  into 

equation (1) to have: 
 

 
 

1 2 3 1u d

dE
SI SI SD E

dt
β β β φ= + + −

 
 

2 3
u

u

dI
E I

dt
φ κ φ= −

 
 

1 4
d

u d

dI
E I I

dt
ωκ γ φ= + −                    (4) 

 

2 5
s

d s

dI
E I I

dt
σ γ φ= + −

 
 

s

dR
I R

dt
α µ= −

 
 

u u d d s s

dD
I I I D

dt
δ δ δ θ= + + −

 
 

We define ( ) ( )** ** ** ** ** ** **, , , , , , , , , , , ,u d s u d sS E I I I R D S E I I I R D= and set (4) to be equal to zero. 

 Thus, 
 

** 1

1 2 3( )
S

A C H

φ
β β β

=
+ +

                  (5) 

 

**

1 1 2 3( )
E

A C H

π µ
φ β β β

= −
+ +

                 (6) 

 

                 (7) 

( ) ( ) ( ) ( ) ( )1 2 1 3 2 4 5, 1 , , ,u d sσ κ µ φ ω φ γ δ µ φ γ δ µ φ δ α µ φ+ + = − = + + = + + = + + =

1 2 3u d

dS
SI SI SD S

dt
π β β β µ= − − − −

** 2 2

1 3 3 1 2 3( )uI A C H

πφ κ φ κµ
φ φ φ β β β

= −
+ +
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                             (8) 

 

                            (9) 

 

                          (10) 

 

 (11) 

 
Where:   
 

3 1 2

3 4

,C
ωκφ γ φ κ

φ φ
+ =

 
 

3.3 Basic reproduction number 
 
In many mathematical model of infectious disease, Basic reproduction number plays an important role to 

describe qualitative analysis of the model. The basic reproduction number ( 0R ) measures the average 

number of secondary infected individual generated in his or her infectious period in the population of 

Susceptible [5,14]. If 0 1R < , then the disease dies out and spread whenever it exceeds unity i.e 0( 1)R < . 

Using the Next generation matrix, the non – negative matrix F of the new infection terms (Transmission) and 

the non – singular matrix V of the other remaining transfer terms (Transition) are given by 1FV − : 
 

Where: 
 

31 20 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

F

β πβ π β π
µ µ µ

 
 
 
 

=  
 
 
 
                

1

2 3

1 4

2 5

0 0 0 0

0 0 0

0 0

0 0

0 u d s

P

P P

V P

P

ωκ γ
σ γ

δ δ δ θ

 
 − 
 = − −
 − − 
 − − − 

                         (12) 

 

Where: 1 2 3 1 4 2 5( ), (1 ) , ( ), ( ), ( )u d sP P P P Pσ κ µ ω κ γ δ µ γ δ µ δ α µ= + + = − = + + = + + = + +
 

 

The basic reproduction number, 1
0 ( )R FVρ −= , is the spectral radius of  the  product 1FV − . Hence, for 

the model (1), we arrive at: 

** 3 1 2 3 1 2

1 3 4 3 4 1 2 3

( ) ( )

( )dI
A C H

π ωκφ γ φ κ µ ωκφ γ φ κ
φ φ φ φ φ β β β

+ += −
+ +

** 3 4 2 3 1 2 2

3 4 5 1 1 2 3

( )

( )sI
A C H

σφ φ γ ωφ κ γ γ φ κ π µ
φ φ φ φ β β β

 + += − + + 

** 3 4 2 3 1 2 2

3 4 5 1 1 2 3

( )

( )
R

A C H

α σφ φ γ ωφ κ γ γ φ κ π µ
φ φ φ µ φ β β β

 + += − + + 

** 3 1 2 3 4 2 3 1 2 2
2

3 4 4 5 1 1 2 3

( ) ( )1

( )
d s

uD
A C H

δ ωκφ γ φ κ δ σφ φ γ ωφ κ γ γ φ κ π µδ φ κ
θφ φ φ φ φ β β β

   + + += + + −   + +   

2

3

,A
φ κ
φ

= 3 1 2 3 4 2 3 1 2 2
2

3 4 4 5

( ) ( )1 d s
u H

δ ωκφ γ φ κ δ σφ φ γ ωφ κ γ γ φ κδ φ κ
θφ φ φ φ

 + + ++ + = 
 
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( )1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 3 2 4 5 3 2 5 3 1 2 3 1 2
0

1 3 4 5

d s s u d sP P P P P P P P P P P P P P P P P P
R

PP P P

π β θ κωθ β θ β γ κω β δ κω β δ γ σ β δ β δ β δ γ β δ γ γ
µ θ

+ + + + + + + +
=

 
 

3.4 Local stability of the model 
 
Using the basic reproduction number obtained for the model (1), we analyze the stability of the equilibrium 
point in the following result. 
 

Theorem: The disease – free state, is locally asymptotically stable if 0 1R <  and unstable if  0 1R >  [14]. 

 
Proof: The Jacobian matrix of the system (1) evaluated at the disease – free equilibrium point, obtained as 
 

31 2

31 2
1

2 3

1 4

2 5

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0u d s

P

P PJ

P

P

β πβ π β πµ
µ µ µ

β πβ π β π
µ µ µ

ωκ γ
σ γ

α µ
δ δ δ θ

 − − − − 
 
 − 
 

− − =
 − 
 −
 

− 
 − 

                          (13) 

 

Where: 1 2 3 1 4 2 5( ), (1 ) , ( ), ( ), ( )u d sP P P P Pσ κ µ ω κ γ δ µ γ δ µ δ α µ= + + = − = + + = + + = + +
 

 

We need to show that all the eigenvalues of J  are negative. The eigenvalues of the matrix J  are the roots 
of the characteristic equation 
 

7 6 5 4 3 2
5 71 2 3 4 6 0r r r r r r rλ λ λ λ λ λ λ+ + + + + + + =                                          (14) 

 
Where 
 

ir ( for 1,2...6i = ) are representative of some expression 

 

1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 37 d s sP P P P P P P P P P P Pr πβ θ πκωθ β πθ β γ πκω β δ πκω β δ γ πσ β δ= + + + + + +  

12 4 5 3 2 5 3 1 2 3 1 2 3 4 5u d sP P P P P P P P P Pπ β δ π β δ γ π β δ γ γ µθ+ + −
 

 
Employing the Descartes’ rule of signs [15], which states that all roots of polynomial (14) have negative real 

part and distinct, if and only if the coefficient ir are negative for 1,2,3,4,5,6,7i = . 

 

Hence, it is locally Asymptotically stable if 7 0:r >
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Such that:  
 

1

1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 3

2 4 5 3 2 5 3 1 2 3 1 2 3 4 5

0
d s s

u d s

P P P P P P P P P P P P

P P P P P P P P P P

πβ θ πκωθ β πθ β γ πκω β δ πκω β δ γ πσ β δ
π β δ π β δ γ π β δ γ γ µθ

+ + + + + + 
> + + − 

(15) 

 
Further simplification in terms of reproduction number yields 
 

( )1 2 4 5 3 5 2 2 5 2 1 3 5 3 3 3 2 3 4 3 2 4 5 3 2 5 3 1 2 3 1 2

1 3 4 5

1d s s u d sP P P P P P P P P P P P P P P P P P

PP P P

π β θ κωθ β θ β γ κω β δ κω β δ γ σ β δ β δ β δ γ β δ γ γ
µ θ

+ + + + + + + +
< (16) 

 

Equation (16) implies 0 1R <
 

 

Therefore, all the eigenvalues of the Jacobian matrix J  have negative real parts when 0 1R < , hence the 

disease-free equilibrium point is locally Asymptotically stable. 
 

4 Numerical Results  
 
In this phase, we study numerically the expression and behaviour of the system (1) employing some                  
of the parameter values compatible with Ebola [5,13] as given in Table 2 and by considering the                   

initial conditions, (0) 1000,S = (0) 500,E = (0) 300,uI = (0) 250,dI = (0) 150,sI = (0) 100,R =
(0) 20.D =  

 
The numerical simulations are evaluated using the Runge-Kutta order 4 embedded in mathematical software 
(Maple 18). The results (figures) of the numerical solutions are given in the Figs. 1 – 4. 
 

 
 

Fig. 1. The graph of ( ),S D  population against time where: 

 

1 2 3 10.000118, 0.000118, 0.000118, 0.02, 0.2, 0.6,0.03, 0.12,β β β µ σ κ ω γ= = = = = = = =

2 0.12, 0.937, 0.937, 0.937, 0.225, 0.2u d sγ δ δ δ α θ= = = = = =
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Fig. 2. The graph of varried exposed population against time where: 

 

 

 
 

Fig. 3. The graph of varried Infected undetected population against time where: 

1 2 3 10.000118, 0.000118, 0.000118, 0.02, 0.2, 0.6, 0.03, 0.12...0.72,β β β µ σ κ ω γ= = = = = = = =

2 0.12, 0.937, 0.937, 0.937, 0.225, 0.2u d sγ δ δ δ α θ= = = = = =  

 

1 2 3 10.000118, 0.000118, 0.000118, 0.02, 0.2...0.8, 0.6, 0.03, 0.12,β β β µ σ κ ω γ= = = = = = = =

2 0.12, 0.937, 0.937, 0.937, 0.225, 0.2u d sγ δ δ δ α θ= = = = = =
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Fig. 4. The graph of varried Infected detected population against time where: 

1 2 3 10.000118, 0.000118, 0.000118, 0.02, 0.2, 0.6, 0.03, 0.12,β β β µ σ κ ω γ= = = = = = = =

2 0.12...0.72, 0.937, 0.937, 0.937, 0.225, 0.2u d sγ δ δ δ α θ= = = = = =
 

 
Table 2. Baseline parameters and values used in simulation 

 
Parameters Values Reference 
π   Assumed 

1β  0.000118 Assumed 

2β
 

0.000118 Assumed 

3β
 

0.000118 Assumed 

µ
 0.02 

[5] 

σ
 0.2 

[5] 

κ
 0.6 

[5] 

ω
 0.03 

[5] 

1γ
 

0.12 
[5] 

2γ
 

0.12 
[5] 

uδ
 

0.937 
[7] 

dδ
 

0.937 
[7] 

sδ
 

0.937 
[7] 

α
 0.225 

Assumed 

θ
 

0.2 
[5] 
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5 Discussion and Conclusion 
 
An epidemic model of( , , , , , , )u d sS E I I I R D  is presented to study and analyzed to gain more insight into 

the dynamical spread of Ebola in the population. Furthermore, the research shows that the disease free 

equilibrium is locally asymptotically stable if the threshold parameter (Reproduction number0R ) obtained 

using the next generation matrix technique is less than unity 0( 1)R <  and Unstable whenever Reproduction 

number is greater than unity 0( 1)R > . The model shows the danger posed by infected individuals who have 

not been detected and a need to improve the strategy for detecting the infected individuals. 
 
Numerical solution shows the following results: 
 

Fig. 1: Shows the graph of ( ),S D  population as time increases.  

 
Fig. 2: Shows the effect of σ  in the exposed population. It shows that when the isolation of Exposed 
individual is sufficiently large, it reduces the exposed individuals and increases the isolated individuals 
tremendously. 
 

Fig. 3: Shows the effect of 1γ on the infected undetected population. It shows that when the detection 

rate of undetected individuals due to contact tracing is very low, the infected undetected individuals 
increases tremendously which will cause the total amount of infected individuals to increase in that 
population. 
 

Fig. 4: Shows the effect of 2γ on the infected detected population. It shows that the higher the rate at 

which infected detected individuals move to isolated individuals due to isolation techniques, the lower 
would be the infected detected individuals in the population. 

 
Conclusively, since the contact rate ( )1 2 3, ,β β β  plays a very vital role in the spread of the disease in the 

population, it is strongly recommended that to reduce the spread of the disease the detection rate of infected 
undetected must be sufficiently large and isolation of the Exposed and infected population together with 
increase in safe burial rate of the dead bodies can lead to the eradication of the disease in the population. In 
further research, it is necessary to look into the Sensitivity analysis and Bifurcation analysis to gain more 
insight to the spread posed by the disease in the population. 
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