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Abstract

Outbreak of Ebola virus disease in early 2014 in Wescéfis a major highlight for many researchers
throughout the world because of the high mortality rateol& disease is caused by a virus called|the
Ebola virus which can be transmitted from infected aosto uninfected humans through direct contact
with the body fluids. Research has placed evidence that Eivotacan be transmitted through the bodies
of humans who recently died of the disease. Because of tat epidemic model of

(S E .1, 1,,R,D)is presented to study the dynamical spread of Ebola impdpelation. The

existences of the disease free and unique endemic equiibvere determined under certain conditions.
Furthermore, the Local Stability analysis of the diseaee-equilibrium (DFE) was investigated via the

threshold parameter (Reproduction numiSg} obtained using the next generation matrix technique. |The
result shows that the DFE is asymptotically stable aré&kiction number less than uni(}T\’0 <1) and

Unstable whenever Reproduction number is greater than (Rjt? 1). Numerical simulations arg

carried out to confirm the analytical results and expibeepossible behaviour of the formulated modlel.
Numerical simulation shows that if the detection rate fe#fdted undetected is sufficiently large, then the
isolation techniques can lead to the eradication of tleasgésin the population.
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1 Introduction

Ebola virus disease (EVD) formerly known as Ebola Haehegic fever named after the river in
Democratic Republic of Congo (formerly Zaire), is a sevefeen fatal illness in human [1,2,3]. Ebola first
appeared in 1976 in two simultaneous outbreaks in Nzara, Santhim Yambuku, Democratic Republic of
Congo [4,3]. The latter was in a village situated neaEtiala River, from which the disease takes its name.
It is a virulent filo virus that is known to affect humaansd primates. Ebola virus is 1 of 3 members of the
filovirdae family (filo virus), along with genus Marburg viraad genus Cueva virus. Ebola virus comprises
of 5 distinct species namely: Bundibugyo Ebola Virus (BDBXaire Ebola virus (EBOV), Reston Ebola
Virus (RESTV), Sudan Ebola Virus (SUDV) and TaiforesbBbVirus (TAFV). BDBV, EBOV, and SUDV
have been associated with large EVD outbreak in Africareds RESTV and TAFV have not. The RESTV
species found in Philippines and China Republic can imfestans, but no illness or death in humans from
the species has been reported to date except BDBV. EBO®DY which has same number of mortality
rate [5,6].

Ebola was introduced into human population through closégacomwith the blood, secretions, organs or
other bodily fluids of infected animals. In Africa, infem has been documented through the handling of
infected chimpanzees, gorillas, fruit bats, monkeys stoaatelope and porcupines found ill or dead in the
rainforest. It then spread in the community through humérutoan transmission, with infection resulting
from direct contact (through broken skin or mucous memBijanith the blood, secretions, organs or other
bodily fluids of infected people, and indirect contact véittvironments contaminated with such fluids [5,6].
The incubation period of this deadly disease is 2 — 21 dagsnfectious period is 4 -10 days [7]. Ebola is
characterized by initial flu — like symptoms includingiislen onset of high fever greater than 38.6 degree
Celsius or 101.5 degree Fahrenheit, fatigue, muscle g@imach pain, diarrhea sore throat, abdominal pain,
unexplained hemorrhage and headache”. This then rapidly pregressomiting of blood, rash, symptoms
of impaired Kidney and Liver function, and in some casesaitl$ to both internal and external bleeding
[5,8]. Most infected individuals die within 10 days of ithmitial infection [9,10]. Burial ceremonies in
which mourners have direct contact with the body of the deckperson can also play a role in the
transmission of Ebola [2,4].

In early 2014 outbreak in West Africa, it was reporteat #bout 30% of infections were caused by a contact
with the dead bodies that recently died of Ebola disea%#,[2]. The number of dead bodies who recently
died because of Ebola disease is related to the félbe infection because of its burial process [2,18]sT
evidence motivates us to explore the effect of burial pode a model of Ebola virus transmission by
adding the dead compartment.

The threat posed by Ebola virus in human population initiategheordpted this research work to develop an
epidemiological model that incorporated the dead individuafected undetected, infected detected and
isolated individuals. There are two control measures thattaffe transmission of Ebola virus. One form of
the control is to accelerate the safe burial processeobodies of people who recently died from the Ebola
disease. This form of control is necessary due to titettiat the Ebola virus can survive in the dead bodies
for 7 days [13]. The other control is to isolate infectetmans who have been detected to reduce the
transmission of Ebola virus from infected humans.

2 Model Formulation

A dynamical system consisting ordinary differential eqprats used to construct the Ebola disease model in
this article. We assume that the human population is dlvidéo seven (7) compartments namely:
susceptible (S), exposed (E), Infected undetectgdiiffected detected )l Infected isolated {J, Recovered
(R), and death individuals (D).
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The susceptible population is increased by recruitment int@aopelation at a ratg7, this population is
decreased by infection acquired from effective conta@ weith infectious individuals in the Infected
undetected , Infected detected and the infected dead indwidualrate given byg, 5,,3,) respectively;

and finally reduced by the Natural death rate

The fraction 5 SI, + 5, S|, + 8, D move to the Exposed individuals and the population is furtiderces by

O which is the rate at which the exposed individuals areghislated,x which is the progression rate of
the exposed individuals to the active Ebola stage, andtoyat death ratg/ .

The population of the infected undetected individuals is ase by the progression rate of exposed
individualsx , and finally reduced by); which is the rate of discovery of the undetected indiv&liby

contact tracing, anc(5u,,u)which is the disease induced rate of the undetected individiugsto the
disease and by natural death rate respectively.

The undetected infected population is increased by the psignesite of exposed individuaks , reduced
by the rate at which the undetected individuals are beingésbthte to facilities in the environme(y,)

and finally decreased by t}"(eé-d,,u) which is the disease induced death rate of the detectedduals due
to the disease and by natural death rate respectively.

Infected isolated population is increased(&y }/2) which is the isolation rate of the exposed individuals
and infected detected individuals respectively. The padpulaas decreased by disease induced rate of
isolated individual§d, ) , natural death raté/f) , and the recovery rate of the isolated individu@).

The recovered population is increased by the recovery rate éfolated individual§@), and reduced by
natural death rat//).

Finally, the infected dead individual is increased bydisease induced rate of infected undetected, infected
detected and isolated individua(®,, d,4,0,).The population is reduced by the safe burial rate of the

infected dead bodid#) .

In summary, the govern model is given by the system of diffeal equations below:

ds

= BSl,~B,S\~B,SD-p €

dE

E=@SIU+,B’ZSI(,+,BBSD—J Exk BEuE

d|”=(1—a))KE— Il =01 —ul

dt yl u u u ﬂ u

dl, _

__CUKE"'Vllu_yzld_Jdld_/UI d

dt 1)
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di,
dt :JE+y2|d_65|s_al s_IUI s
dR

—=al,-uR

dt " #

dD

Ezdulu-l-ddld-i-a! s_aj

Table 1. Description of parameter of the model

Parameters Description

T Recruitment rate

,32 Contact rate with undetected infected

,32 Contact rate with detected Infected

133 Contact rate with dead bodies

H Natural death rate

g The rate at which exposed individuals are isolated due toatdrdaaing

K Progression rate of individuals in exposed stage to aEtoda

w Endogenous reactivation r.

Vi Detection rate for infected undetected Individuals

A The rate at which Infected detected individuals are Isolated

o Disease — induced death rate for undetected individuals
u

5d Disease — induced death rate for detected individuals

) Disease — induced death rate for Isolated Infected Indiddual
S

a Recovery rate of isolated individuals

2] Safe Burial rate

3 Analysis of the Model

3.1 Disease free equilibrium (DFE)

At equilibrium, (1) is set to be equal to zero.

That is:

= = U= d=-"s=_" =_"~"=(Q (2)
dt dt dt dt dt dt dt

The disease free equilibrium is obtained as,

(S.E L, Id,IS,R,D)=(§,O,O,O,O,O,} 3)
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3.2 Endemic equilibrium point (EEP)

Besides the disease — free equilibrium point, we shalvsthat the formulated model (1) has an endemic

equilibrium point. The endemic equilibrium point is a positiveadyly state solution where the disease persists
in the population.

Setting (a+/(+,u) = ﬂ,(l—w) =¢27(V1+5u +y) =¢3,(y2+5d +y) =¢4,(55+a'+,u) = @, into
equation (1) to have:

ds
o =m-pBSl,-B,S,-B,SD-u <

dE
E:ﬂlslu +B,Sl+ 5, SD-

dl
L= pKE-|
dt % U%
OL:a)/(E+yI -1,0 (4)
dt 1'u d74

dl
E:UE"'yzld_lsms

dR
—=al_-uR
dt sH

C(Ij_ltjzdulu-i-a_dld-l-a! s_a:)

We define(S, E L.l 1R, D)=(§ JE U,HI d,**l S,HR D )and set (4) to be equal to zero.
Thus,

S = a (5)
(BA+B,C+ [,H)
E" = T_ H (6)
a (BA+B,C+B;H)
|2 TBK @KU @
" ae  @(BA+BLHBH)
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|+ o TCKG+ypr) (@K@ k)

®)

i a0y, PP BA+BL+BH)

= = (0BG, + v 00K+ vy 9K) [ T 7 } @)

) BOB @, (BA+BL+LH)

r = 300G+ y.pK + vy 9K) { _ 7 } 10
BopHM @ (BA+BL+BH)

o =L [Ju o+ S KBHYGR) | 5S(U¢3¢4+VM!(+H/S0£()}[7_T_ u } 1)

o, @ PP, o (BA+BL+BH)

Where:

P g KPIVPK L] 5 SlKBHYRR) | 55(0¢3¢4+VM3’(+VM0£()} oy
z a9, o, 2 00,

3.3 Basic reproduction number

In many mathematical model of infectious disease, Bagicoduction nhumber plays an important role to
describe qualitative analysis of the model. The bagicodiction number ) measures the average
number of secondary infected individual generated in hiseorinfectious period in the population of
Susceptible [5,14]. IfR, <1, then the disease dies out and spread whenever it excegdseufR, <1).
Using the Next generation matrix, the non — negative matrixtfreonew infection terms (Transmission) and
the non — singular matrix V of the other remaining tran&fems (Transition) are given tFW_l:

Where:
0 '%” /%” 0 '8;” P 0 0 0 O
P R 0 0 0
=0 0 0 000 P )
o 0o 0 0 0 | Tk (’)/1 C (12)
O 0 0 0 O OU 5 gz s,
00 0 0 0 W "% 7Y%

Where: B, =(0+k+ 1), B, =(1-wK,B= 1+, + ), B=(V,+ o + 1), R= O, +a + )

The basic reproduction numbeR, = p(FV™), is the spectral radius of the produe¥ ™. Hence, for
the model (1), we arrive at:
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RD:ﬂ(ﬂ:lPZP4PSH+Ka)9P3P582+0F)Zpﬁyl+l(wR&%éﬂ+Kw By #0 RBI+ RRBA+ RROy+ Boyy)
HRRRRE

3.4 Local stability of the model

Using the basic reproduction number obtained for the modelélpnalyze the stability of the equilibrium
point in the following result.

Theorem: The disease — free state, is locally asymptoticallylsté R, <1 and unstable ifR, >1 [14].

Proof: The Jacobian matrix of the system (1) evaluated adifease — free equilibrium point, obtained as

oo BT BT oo o BT
H H H
0 -R Ar B 0O O 2
H H H
J=| 0 -B -R 0 0O O 0 (13)
0 wk ) -P, 0O O 0
0 o 0 v, —-PB O 0
0 0 0 0 a -u 0
0 O o, Oy o, 0 -6

Where: B =(0+Kk+ 1), B, =(1-wK,B=(,+0, + 1), B=(V,+ o + 1), R= O, +a + )

We need to show that all the eigenvaluesJofare negative. The eigenvalues of the matlixare the roots
of the characteristic equation

AT+ 1A+, %41 A 4 AP A2 H A4, =0 (14)
Where

I ( fori =1, 2...€) are representative of some expression

I; =B R,PRO+ WO RRE,+ 0 BRE y i+ ke R g, + kw B Qy # 0 R 4+
R, RREO, + TRRB Oy + TRE Oy Y 7~ O PREF

Employing the Descartes’ rule of signs [15], which statasah roots of polynomial (14) have negative real
part and distinct, if and only if the coefficiefitare negative fot =1,2,3,4,5,6,".

Hence, it idocally Asymptotically stablé I, > 0:
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Such that:

[Tﬂpﬁpﬂ’fmwg%%ﬁ’ﬁw RRBy i+ 1w RIP 9y + ke B Qy # 0 B 3+

>0(15)
R,RRBA, + TR RO,y +* TREOY Y w16 PRRR J

Further simplification in terms of reproduction number yields

T APPRE+KWORRB,+ORRBy ik B, +kw By 10 REA+ RRAA+ RRSY % BOyy),,(16)
HPRRRY

Equation (16) impliesR, <1

Therefore, all the eigenvalues of the Jacobian malribhave negative real parts Wheﬁ% <1, hence the
disease-free equilibrium point is locally Asymptoticadtable.

4 Numerical Results

In this phase, we study numerically the expression amchvieur of the system (1) employing some
of the parameter values compatible with Ebola [5,13]ga®n in Table 2 and by considering the

initial conditions, S(0) = 1000, E(0) = 500,1,(0) = 300,1,(0) = 250,1,(0) =150, R(0) = 100,
D(0) = 20.

The numerical simulations are evaluated using the Runge-8uata 4 embedded in mathematical software
(Maple 18). The results (figures) of the numerical sohgiare given in the Figs. 1 — 4.

1300 —
1600 —
1400 —
1200
5D 1000 o n
: Susceptible
— Tend
200 -
600 —

400 —

200

T T T 1
o 2 4 6 8 10
Time ( deays)

Fig. 1. The graph of (S, D) population against time where:
£,=0.00011845, = 0.00011%,= 0.0001}18= 0.62 @.2, &6,0.03), = 0.12
y,=0.120, = 0.9375, = 0.93B,= 0.937= 0225
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Fig. 2. The graph of varried exposed population against timewhere:

£,=0.0001183, = 0.00011%,= 0.0001187 062 0.8B,0=0.6w= 0.03y,= 0.1:

y,=0.124,= 0.9373,= 0.937,= 0937~ 02

4304
400 4
330 4
=012
Infectedwndetected | 70 - T N e 1= 032
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Fig. 3. The graph of varried Infected undetected population against time where:
(3,=0.0001185,= 0.00011%,= 0.000118; 062 g2 08, (03

y,=0.124,= 0.9373,= 0.938,= 0.937= 0285 0.2

0122,
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Fig. 4. Thegraph of varried Infected detected population against time where:

/3,=0.0001183, = 0.000118, =
y,=0.12..0.723, = 0.933, =

0.000118=

0.937, =

R2 ©OF,

0.937= 0.225,

Table 2. Baseline parameter sand values used in simulation

%03,
0.2
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0.12,

Parameters Values Reference
T Assumed
B 0.000118 Assumed
B, 0.000118 Assumed
B 0.000118 Assumed
H 0.02 [5]

d 0.2 [5]

K 0.6 5]

w 0.03 [5]

14 0.12 (5]

Y, 0.12 [5]

9, 0.937 [7]

3, 0.937 [7

o, 0.937 [7]

a 0.225 Assume:
g 0.2 [5]

10
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5 Discussion and Conclusion

An epidemic model ofS, E |, I,,1,R, D) is presented to study and analyzed to gain more inisight
the dynamical spread of Ebola in the population. Furtherntbeeresearch shows that the disease free
equilibrium is locally asymptotically stable if the tehold parameter (Reproduction num%l) obtained

using the next generation matrix technique is less thap QF@ <1) and Unstable whenever Reproduction

number is greater than un([R) >1). The model shows the danger posed by infected individuaishave
not been detected and a need to improve the strategy fotidgténe infected individuals.

Numerical solution shows the following results:
Fig. 1: Shows the graph rﬁiS, D) population as time increases.

Fig. 2: Shows the effect o in the exposed population. It shows that when the isolation of E&pos
individual is sufficiently large, it reduces the exposedividuals and increases the isolated individuals
tremendously.

Fig. 3: Shows the effect of;on the infected undetected population. It shows that whemlékection

rate of undetected individuals due to contact tracing is l@wy the infected undetected individuals
increases tremendously which will cause the total amotimifected individuals to increase in that
population.

Fig. 4: Shows the effect of,on the infected detected population. It shows that theehitite rate at

which infected detected individuals move to isolated individuats td isolation techniques, the lower
would be the infected detected individuals in the population.

Conclusively, since the contact ra(tgl,ﬂz,&) plays a very vital role in the spread of the diseaséén t

population, it is strongly recommended that to reduce treadpof the disease the detection rate of infected
undetected must be sufficiently large and isolation ef EHxposed and infected population together with
increase in safe burial rate of the dead bodies can le&é &radication of the disease in the population. In
further research, it is necessary to look into the Seitgitinalysis and Bifurcation analysis to gain more

insight to the spread posed by the disease in the pgpulat
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