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Abstract

This paper introduces a new heuristic function with high efficiency for an optimum solving of the 8-
puzzle, this one being the double of the Chebyshev distance. The comparative study is realized among
this new heuristic (Chebyshev heuristic), the Hamming heuristic and the Manhattan heuristic using A*
algorithm implemented in Java. The Chebyshev heuristic function is more informed than Hamming and
Manhattan heuristics. This paper also presents the necessary stages in object oriented development of an
interactive software dedicated to simulate the A* search algorithm for 8-puzzle. The modeling of the
software is achieved through specific UML diagrams representing the phases of analysis, design and
implementation, the system thus being described in a clear and practical manner. In order to confirm the
obtained theoretical results which show that Chebyshev heuristic is more efficient, two performance
criteria were used: space complexity and time complexity. The space complexity was measured by the
number of generated nodes from the search tree, by the number of the expanded nodes and by the
effective branching factor. The time complexity was measured by the running time. From the
experimental results obtained by using the Chebyshev heuristic, improvements were observed regarding
space and time complexity of A* algorithm versus Hamming and Manhattan heuristics.
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1 Introduction

8-Puzzle represents a model problem which is very popular for measuring the performances of the heuristic
search algorithms. The effort for improve search algorithms consists in determining of strong estimation
heuristic functions which have to guide the search process to the most promising side of the search tree.
Commonly used heuristics for this problem include counting the number of misplaced tiles (Hamming
heuristic) and finding the sum of the Manhattan distances between each block and its position in the goal
configuration (Manhattan heuristic).

From its inventing by Sam Loyd [1] till now, the solving of the 8-puzzle has been represented a continuous
researching subject. There can be invented many algorithms that bring a game table from any start
configuration to a given goal configuration. The difficulty appears when is desired to obtain in real time an
optimal solution (as number of movements to find the solution).

8-puzzle [2] consists in 8 labeled tiles that can be moved using the only free available square space. The
problem requires to be found the movements in order, starting from an initial configuration and reaching to a
determined configuration. The actions represent the tiles movements, but an efficient approach from the
point of view of solution search is considered that the free space is moving. In this way it result a simple
problem formulation in which exist four possible actions: north movement, south movement, east movement
and west movement of the free space.

2 Heuristic Functions

The heuristic algorithms take into consideration two pre-requisites: to find some distinction criteria which
permit finding the solution with less resources that impose the uninformed algorithms and, on the other side,
to determine the correct choices in order to reach the final state using the optimal path. So, the heuristic
algorithms used information from the domain of the problem to be solved.

These information are usually used through an evaluation function [3] which has as argument a node of the
search tree and determines a number as result, indicating the measure in which the respective node is
indicated for expanding. A* search algorithm [4] combines Greedy algorithm with breadth-first search
algorithm and the evaluation function has the following relation:

f(S) = &(S) + h(S), 2.1

where g(S) is the path cost from the start node to current node S, and h(S) is an estimation of the path cost
from the current node to the goal node.

As it is shown in the followings, for this 8-puzzle problem there was used three heuristic functions:
Hamming heuristic, Manhattan heuristic and Chebyshev heuristic. Hamming heuristic [5] is a simple

heuristic function which is determined by the number of misplaced tiles.

The most used admissible and informed heuristic function recorded so far and specified to this puzzle
problem is Manhattan heuristic [6]. This is calculated as follows:

hv(S) =)’ ManhattanDistance(k), where k € {1,2,3,...,N}. 2.2)

ManhattanDistance(k) represents the distance of k number position (on horizontal and also on vertical axis)
in S state towards its position in the goal state which is calculated with the following relation [7]:

ManhattanDistance(k) = [Xi-Xkg| + [Yk-Yiql» (2.3)
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where (Xy,yi) represent the coordinates of k number position in current state and (Xig,Yig) represent the
coordinates of k number position in goal state.

Hereinafter the results obtained using Manhattan heuristic were improved by introducing a new heuristic
function that is being calculated as the double of Chebyshev distance:

hc(S) =2 -Y ChebyshevDistance(k), where k € {1,2,3,...,N}. 2.4)

ChebyshevDistance(k) [8] is the maximum between the horizontal distance and the vertical distance of the k
number position in S state versus its position in goal state. Distance is calculated as follows:

ChebyshevDistance(k) = max(|Xx-Xg|, [Yk-Yiel)> (2.5)
where (X, yi) and (Xk,,Ykg) have the same signification as in the case of Manhattan distance.
Because:

a+b<2-max(ab), Va,b € R (2.6)
results that:

[Xi-Xigl + [Yi-Viel S 2 MAX(X Xy, | YirYicgl)- (2.7)

Based on the definitions of two heuristic functions presented in relations (2.2) and (2.4) and using relation
(2.7) it result the following relation between these heuristic functions for any intermediary state S:

he(S) = hyu(S). (2.8)

The last relation demonstrates that the heuristic function h¢ is more informed then the heuristic function hy,
therefore the A* algorithm corresponding to function h¢ is dominating the A* algorithm corresponding to
function hy;.

If it is considered the goal state presented in Fig. 1, the Hamming heuristic associated to an intermediary
state is determined as in Fig. 2, the Manhattan heuristic associated to an intermediary state is determined as
in Fig. 3 and the Chebyshev heuristic associated to the same intermediary state is determined as in Fig. 4.

=1111111=4

Fig. 2. Determination of the Hamming heuristic corresponding to a current state
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Fig. 3. Determination of the Manhattan heuristic corresponding to a current state
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hC 7 5 =2-max(2.0)+2-max(1,1)+2-max(0,2)+2-max(1,1)
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Fig. 4. Determination of the Chebyshev heuristic corresponding to a current state

3 Object Oriented Modeling of the Interactive Application

In order to observe how are updated the two lists which were used for implementing A* search algorithm
(open list and closed list), but, also, to compare the obtained results by the use of the three heuristic
functions that were described previously, there was implemented an interactive Java application [9], built as
a game. For object oriented development of the application, Unified Modeling Language was used. The
achievement of the UML diagrams was done using the ArgoUML software [10].

3.1 Analysis phase

By the instrumentality of UML [11], interactive application analysis consists in making use case diagram
and activity diagrams. The software is exposing in a precise and concrete manner by representing the use
cases [12]. Each case describes the interactions between user and interactive application. The use case
represents a collection of possible scenarios that are referring to communication between software and
external actors, characterized by some scopes.

Use case diagram is created in an iterative mode. First, there were identified the actors, starting from the
formulated problem by identifying the roles played by different persons and external resources that are
implicated in interactions. Identifying the uses cases and the relations between them was based on the
analysing the responsibilities accomplished by every actor and also the global specification that are referring
to the functional requisites.

The use case diagram representation is shown in Fig. 5. The diagram described defines the interactive
application domain, allowing the visualization of the size and sphere of the action for the entire development
process. This includes:

e One actor - the user who is external entity with which the Java application interact;

e Ten use cases that describe the functionalities of the interactive application;

e Relationships between user and use cases (association relationships) and relationships between use
cases (dependency and generalization relationships).

3.2 Design phase

Object oriented methodologies introduce the representation of the static structure of interactive application
using classes [13] and relations between them. Conceptual modeling allows identifying the most important
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concepts for the interactive application. Inheritance was not used only as a generalization process, which is
when derived classes are specializations of the base class. The class diagram is represented in Fig. 6 in order
to be observed the connection mode between the classes and the interfaces that are used and also the
composition and aggregation relationships between these class instances. The interactive application was
built as flexible can be in order to permit adding of new algorithms for the resolution of 8-puzzle problem,
using the possibilities offered by Java interfaces.

Resolution using Manhattan heuristic

=<include==
F ~

AT algorithm simulation using Hamming heuristic

Fig. 5. Use case diagram
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Fig. 6. Class diagram

public void ExpandeditodePuz=le(ExpandediMNodePuzzle n}
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In this way, for memorizing a game state configuration, there was implemented “StatePuzzle” class which
implements “State” interface. For storing a node of the search tree, there was implemented “NodePuzzle”
class which realizes “Node” interface and for memorizing an expanded node together with its successors,
there was implemented “ExpandedNodePuzzle” class which realizes “ExpandedNode” interface.

A* search algorithm was implemented by using “AlgorithmAStarPuzzle” class which realizes “Algorithm-
AStar” interface. An instance of this class is composed by two instances of “NodePuzzle” class, according to
composition relationship which exists in the class diagram, but can also contain instances of
“ExpandedNodePuzzle” class, as it can be observed from the aggregate relationship presented in the same
diagram.

For realizing the two windows that will compose the graphical interface of the application, there were
implemented the following classes: “Puzzle” for the main window and “PuzzleSimulation” for the
simulation of A* algorithm that uses Hamming, Manhattan or Chebyshev heuristics. We can observe that the
“PuzzleSimulation” class inherit attributes and methods of the “Puzzle” class, but implements the
“Runnable” interface.

3.3 Implementation phase
Component diagram [14] is similar to package diagram, allowing visualization of how the interactive

application is divided and the dependencies between modules. The diagram presented in Fig. 7 describes the
collection of components that together provide application functionalities.
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Fig. 7. Component diagram
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The central component of the diagram is “Puzzle.class”, a component obtained by transforming into
executable code the “Puzzle.java” component by the Java compiler. There can be observed that this
component interacts directly with the following components: “AlgorithmAStarPuzzle.class”,
“NodePuzzle.class”, “PuzzleSimulation.class” and “StatePuzzle.class”. The “AlgorithmAStarPuzzle.class”
component interacts directly with “ExpandedNodePuzzle.class” component and ‘“NodePuzzle.class”
component. The “ExpandedNodePuzzle.class” component interacts directly with “TransitionPuzzle.class”
component and “NodePuzzle.class” component.

4 Interactive Application Interface

A configuration on the game table which has to be solved can be introduced by the user or can be
automatically generated, is being solved by using the implemented algorithm.

In Fig. 8 is presented the main graphical user interface of the application, a instance of “Puzzle” class which
contains components that specify the start configuration, the goal configuration and an intermediary
configuration of solution, lists for viewing the solutions obtained by using Hamming, Manhattan and
Chebyshev heuristics and, also, a component for comparing the three variances of A* algorithm from the
point of view of space and time complexity. In Fig. 8 are generated the solutions of a configuration which is
introduced from the standard input by using the three heuristics. In this case, the optimal solution is being
obtained in 22 movements.

The application also permits the representation of a 3x3 configuration corresponding to an intermediary state
of solution, by selection of this one from the list.

5 Experimental Results

In order to confirm the obtained theoretical results which show that Chebyshev heuristic is more efficient,
two performance criteria were used: space complexity [15] and time complexity [16]. The space complexity
was measured by the generated nodes number from the search tree, by the number of the expanded nodes
and by the effective branching factor [17]. The time complexity was measured by the running time.

I took, by convention, the configuration presented in Fig. 1 to be the goal state. There are 9! possible
permutations on a 3 x 3 board, and every second permutation is solvable [18]. Hence, there is a total of
91/2=181440 solvable problem instances.

For 8-puzzle game there was tested a set including 10000 random configurations. This was done by running
of the interactive application presented in the previous paragraph. The average length of all optimal solution
paths is £*=21,98, that means that almost 22 moves are needed to solve a given random configuration. Fig. 9
shows the distribution of the optimal solution path lengths for all tested configurations.

5.1 The graphical comparison of the results regarding the generated nodes number

For presenting the efficiency of the Chebyshev heuristic from the minimum generated nodes number point of
view there are represented graphical the experimental values obtained for average value of solutions (move
values belonging to the closed interval [8,20]), as well as for solutions of high values (move values
belonging to the closed interval [21,30]).

The comparison of the average value of solutions, presented in Fig. 10, is realized for the three analyzed
functions: Hamming heuristic, Manhattan heuristic and Chebyshev heuristic. The solutions of high value are
compared for the two most efficient heuristics: Manhattan and Chebyshev heuristic, and the graphical
representation it is shown in Fig. 11.
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For presenting the efficiency of Chebyshev heuristic from the point of view of the maximum generated
nodes number the values obtained experimental of the medium dimension solutions and the grand dimension
solutions are represented graphical.

The comparison of the results of medium dimension is presented in Fig. 12, the comparative study is made
for the three functions: Hamming heuristic, Manhattan heuristic and Chebyshev heuristic. The grand
dimension solutions are compared for the two most efficient heuristics: Manhattan and Chebyshev, and the

graphic it is represented in Fig. 13.
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For presenting the efficiency of Chebyshev heuristic from the point of view of the medium generated nodes
number the values obtained experimental of the medium dimension solutions and the grand dimension
solutions are represented graphical. The comparison of the results of medium dimension is presented in Fig.
14, and for the grand dimension is represented in Fig. 15.

5.2 The graphical comparison of the results regarding the expanded nodes number

With the purpose of showing the superiority of the Chebyshev heuristic from the minimum of the expanded
nodes number point of view are presented graphical the experimental results. The examination of the
medium dimension solutions, presented in Fig. 16, is referring to the three studied functions: Hamming,
Manhattan and Chebyshev heuristics. The grand dimension solutions are presented for the two most efficient
heuristics: Manhattan and Chebyshev, and the results are shown in Fig. 17.
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For illustrating the efficiently of Chebyshev heuristic from the maximum of the expanded nodes number
point of view are presented graphically the experimental results. The examination of the medium dimension
solutions, presented in Fig. 18, is achieved for the three studied heuristics: Hamming, Manhattan and
Chebyshev. The graphic presented in Fig. 19 illustrates the grand dimension solutions for the two most
efficient heuristics: Manhattan and Chebyshev.
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The values obtained from the realized experiments are represented graphical to illustrate the efficiency of the
Chebyshev heuristic in terms of the medium expanded nodes number. In Fig. 20 are analyzed the medium
dimension solutions, and the grand dimension solutions is illustrated in Fig. 21.

12
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5.3 The graphical comparison of the results regarding the effective branching factor

For illustrating the efficiency of the Chebyshev heuristic from the minimum values corresponding to the
effective branching factor point of view are presented graphical the experimental values. The analysis of the
medium dimension results, presented in Fig. 22, is realized for the three examined functions: Manhattan,
Hamming and Chebyshev heuristics. The grand dimension solutions are compared for the two most efficient
heuristics: Manhattan and Chebyshev, and the graphic is illustrated in Fig. 23.
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Fig. 19. Maximum number of expanded nodes for grand solutions
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Fig. 20. Medium number of expanded nodes for medium solutions
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Fig. 21. Medium number of expanded nodes for grand solutions

For illustrating the efficiency of the Chebyshev heuristic from the maximum values corresponding to the
effective branching factor point of view, the experimental values are represented graphical. Presented in Fig.
24, the analysis of the medium dimension solutions is achieved for the three examined functions: Manhattan,
Hamming and Chebyshev heuristic. The grand dimension solutions are compared for the two most efficient
heuristics: Manhattan and Chebyshev. The graphic is illustrated in Fig. 25.
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Fig. 23. Minimum effective branching factor for grand solutions
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Fig. 24. Maximum effective branching factor for medium solutions

For illustrating the efficiency of the Chebyshev heuristic from the medium values corresponding to the
effective branching factor point of view, the experimental values are presented graphical. The analysis of the
medium dimension solutions, presented in Fig. 26, is realized for the three examined heuristics: Manhattan,
Hamming and Chebyshev. The grand dimension solutions are compared for the two most efficient heuristics:
Manhattan and Chebyshev. The graphic is illustrated in Fig. 27.
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5.4 Conclusions regarding the space complexity

Analyzing the results presented in the graphics represented in the Figs. 10 to 15, it can be observed that the
number of steps made for obtaining the solution is the same for similar configurations, determining the
optimal solutions for the three examined heuristics. But, investigating the generated nodes number in the
search tree associated with the A* algorithm using the Chebyshev heuristic, it can be observed that this
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number is strictly less than the number obtain by using the other two heuristics. By analyzing of the results
presented in the graphics represented in the Figs. 16 to 21 referring to the expanded nodes number in the
search tree, we reach to the same conclusion, that the expanded nodes number from the search tree
associated to the A* algorithm using the Chebyshev heuristic is strictly less.

Another comparing criterion for the three heuristic searches is the effective branching factor [16].
Calculating approximately the effective branching factor for the three heuristics, using Newton method [8]
for resolving the equation, there were obtained the values illustrated graphical in Figs. 22 to 27. The values
of b* appropriate to the function hc are more appropriate to the value 1 than the values of b* appropriate to
the functions hy and hy, so the A* algorithm using h¢ heuristic drives to an optimal solution in a way that
appears to be linear. According to these experimental values, results the superiority of Chebyshev heuristic
from the Manhattan and Hamming heuristics. In this case we can say that hc heuristic dominates hy; and hy
heuristics, from the space complexity point of view.

5.5 The statistical investigation of the time complexity

In terms of time complexity it was compared the medium time of execution. The order of time complexity
depends on the effective branching factor [4], its complexity is O((b*)m), where m represents the number of
steps made for determining the optimal solutions. For illustrating the efficiency of Chebyshev heuristic from
the time complexity point of view are presented graphical the experimental values in Figs. 28 and 29.
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6 Conclusions

In this paper was introduced the Chebyshev heuristic function as the double of the Chebyshev distance.
Chebyshev heuristics is more informed than Manhattan and Hamming heuristics. From experimental results
by using the Chebyshev heuristic, an improvement in space and time complexity of A* algorithm versus
Hamming and Manhattan heuristics was observed. In three cases the generated solutions are obtained using
an optimal number of movements.
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